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In these two lectures, we will use universal properties to define two more useful con-
structions, Spec of a sheaf of algebras A, and Proj of a sheaf of graded algebras A, on a
scheme X. These will both generalize (globalize) our constructions of Spec and Proj of
A-algebras and graded A-algebras. We'll see that affine morphisms are precisely those of
the form Spec. A — X, and so we’ll define projective morphisms to be those of the form
Proj A, — X.

1. RELATIVE SPEC OF A (QUASICOHERENT) SHEAF OF ALGEBRAS

Given an A-algebra, B, we can take its Spec to get an affine scheme over Spec A: Spec B —
Spec A. We will now see universal property description of a globalization of that notation.
Consider an arbitrary scheme X, and a quasicoherent sheaf of algebras A on it. We will
define how to take Spec of this sheaf of algebras, and we will get a scheme Spec A — X
that is “affine over X”, i.e. the structure morphism is an affine morphism.

You can think of this in two ways. First, and most concretely, for any affine open set
Spec A C X, I'(Spec A, A) is some A-algebra; call it B. Then above Spec A, Spec A will be
Spec B.

Second, it will satisfy a universal property. We could define the A-scheme Spec B by
the fact that maps to Spec B (from an A-scheme Y, over Spec A) correspond to maps of
A-algebras B — T'(Y,Oy). The universal property for Spec.A is similar. More precisely,
we describe a universal property for the morphism  : Spec A — X along with an iso-
morphism ¢ : A — B,Ogpec 41 to each morphism 7t : Y — X along with a morphism of
Ox-modules -

«: A— m0Oy,
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there is a unique map f : Y — Spec A factoring 7, i.e. so that the following diagram
commutes

Y 2. Spec A

A

where « is the composition

A —d; B*O%A —_— B*f*OY = H*OY

(For experts: we need to work with Ox-modules, and to leave our category of quasicoher-
ent sheaves on X, because we only showed that the pushforward of quasicoherent sheaves
are quasicoherent for quasicompact quasiseparated morphisms, and we don’t need such
hypotheses here.) This bijection Hom(A — 7,Oy) < Morx(Y, Spec A) is natural in Y, i.e.
given Y’ — Y the diagram -

Hom(A — m,.0y) <— Morx(Y, Spec A)

| |

Hom(A — m,Oy/) <— Morx(Y’, Spec A)

commutes. By universal property nonsense, this determines Spec A up to unique isomor-
phism, assuming of course that it exists.

1.A. EXERCISE. Show that if X is affine, say Spec A, and A = B, where B is an A-algebra,
then Spec B — Spec A satisfies this universal property. (Hint: recall that maps to an affine
scheme correspond to maps of rings of functions in the opposite direction.) Show that
this affine construction behaves well with respect to “affine base change”: given a map
g : Spec A’ — Spec A, then describe a canonical isomorphism Spec g* A = Spec A’ ® A B.

1.1. Remark. In particular, if p is a point of Spec A, k(p) is the residue field at p, and
Speck(p) — SpecA is the inclusion, then the fiber of Spec B — SpecA is canonically
identified (as a scheme) with Spec B ® o k(p). This is the motivation for our construction
below.

We define Spec A by describing the points, then the topology, and then the structure
sheaf. (Experts: where does the quasicoherence of A come in?)

First the points: above the point p € X, the points of Spec A are defined to be the points
of Spec(A ® k(p)). (For example, take the stalk, and mod out by the maximal ideal. Or
take any affine open neighborhood of p, and apply the construction of Remark 1.1.

We topologize this set as follows. Above the affine open subset Spec A C X, the points
are identified with the points of SpecI'(Spec A, A), by Remark 1.1. We impose that this be
an open subset of Spec A, and the topology restricted to this open set is required to be the
Zariski topology on SpecI'(Spec A, A).



1.B. EXERCISE. Show that this topology is well-defined. In other words, show that if
Spec A and Spec A’ are affine open subsets of X, then the topology imposed on ' (Spec AN
Spec A’) by the construction using Spec A agrees with the topology imposed by Spec A’.
(Some ideas behind the Affine Communication Lemma may be helpful. For example, this
question is much easier if Spec A’ is a distinguished open subset of Spec A.)

Next, we describe the structure sheaf, and the description is precisely what you might
expect: on 3" (Spec A) C Spec A, the sheaf is isomorphic to the structure sheaf on Spec I'(Spec A, A).

1.C. EXERCISE. Rigorously define the structure sheaf. How do you glue these sheaves
on small open sets together? Once again, the ideas behind the Affine Communication
Lemma may help.

1.D. EXERCISE. Describe the isomorphism ¢ : A — B.Ogpec. 4. Show that given any
m: Y — X, this construction yields the isomorphism Morx(Y, Spec A) — Hom(A — m.Oy)
via the composition

A—2B.Ospeca —— B.£.0y = m,0y.

1.E. EXERCISE. Show that Spec A satisfies the desired universal property. (Hint: figure
out how to reduce to the case X affine, Exercise 1.A.)

We make some quick observations, some verified in exercises. First Spec .4 can be “com-
puted affine-locally on X”.

Second, this gives an important way to understand affine morphisms. Note that Spec A —
Xis an affine morphism. The “converse” is also true:

1L.F. EXERCISE. Show that if f : Z — X is an affine morphism, then we have a natural
isomorphism Z = Spec f, Oz of X-schemes.

Hence we can recover any affine morphism in this way. More precisely, a morphism is
affine if and only if it is of the form Spec A — X.

1.G. EXERCISE (Spec BEHAVES WELL WITH RESPECT TO BASE CHANGE). Suppose f:Z —
X is any morphism, and A is a quasicoherent sheaf of algebras on X. Show that there is a
natural isomorphism Z xx Spec A = Spec f*A.

An important example of this Spec construction is the total space of a finite rank locally
free sheaf F, which we define to be Spec Sym*® F".
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1.H. EXERCISE. Show that this is a vector bundle, i.e. that given any point p € X, there is
a neighborhood p € U C X such that Spec Sym® FV|; = Al\. Show that F is isomorphic to
the sheaf of sections of it.

In particular, if F is a free sheaf of rank n, then Spec Sym* FV is called A}, generalizing
our earlier notions of A}. As the notion of a free sheave behaves well with respect to base
change, so does the notion of A}, i.e. given X — Y, A} xy X = A%

Here is one last fact that can be useful.

1.I. EXERCISE. Suppose f : Spec. A — X is a morphism. Show that the category of quasi-

coherent sheaves on Spec A is “essentially the same as” (i.e. equivalent to) the category of

quasicoherent sheaves on X with the structure of .4-modules (quasicoherent A-modules
on X).

The reason you could imagine caring is when X is quite simple, and Spec A is compli-
cated. We’ll use this before long when X = P!, and Spec A is a more complicated curve.

1.J. IMPORTANT EXERCISE: THE TAUTOLOGICAL BUNDLE ON P™ IS O(—1). Define the
subset X C A" x P corresponding to “points of A}"' on the corresponding line of P,
so that the fiber of the map 7t : X — P™ corresponding to a point 1 = [xo; - - - ;Xn] is the line
in A" corresponding to 1, i.e. the scalar multiples of (xo, ..., x). Show that 7t: X — P"
is (the line bundle corresponding to) the invertible sheaf O(—1). (Possible hint: work first
over the usual affine open sets of P™, and figure out transition functions.) (For this reason,
O(—1) is often called the tautological bundle of P™.)

2. RELATIVE PROJ OF A SHEAF OF GRADED ALGEBRAS

In parallel with Spec, we will define a relative version of Proj, denoted Proj.

Suppose now that S, is a quasicoherent sheaf of graded algebras of X. We require that
S. is locally generated in degree 1 (i.e. there is a cover by small affine open sets, where for
each affine open set, the corresponding algebra is generated in degree 1), and S; is finite
type. We will define Proj S, by describing a universal property, and the constructing it.

In order to understand the universal property, let’s revisit maps to Proj S, (over a base
ring A), satisfying the analogous assumptions. Suppose S; is generated by X1, ..., Xn.
Recall that maps from an A-scheme to projective space

Y Proj S,

N T

Spec A

correspond to invertible sheaves £ on Y and sections s, ..., sn,
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(i) with no common zeros (they are a base-point-free linear system),

4

(ii) satistying “the same relations as x1, ..., x,”.

It is helpful to write this map as

[s1538a] .
YLSISI"OJS..

The condition that sy, ..., sy, satisfy the same conditions as x1, ..., X, can be formalized to
say that there is a map of graded A-algebras

N(Y, L) := @2, I(Y, L2 <— S,
given by x; — s;. This will yield a “relative” version of (ii).

We now describe a relative version of (i).

2.1. Definition. Given a morphism 7 : Y — X, an invertible sheaf £ on Y is relatively
base-point-free (with respect to ) if for every point of y € Y, there is an open subset
U C X and a section s of £ above U (s € T'(t~'(U), £)) such that s(y) # 0.

2.A. EASY EXERCISE. If X = SpecA, and L is base-point-free, show that L is relatively
base-point-free.

Thus £ is relatively base-point-free if it is “base-point-free over an affine cover X”.

2.B. EXERCISE. Suppose 7t is quasicompact and quasiseparated (so 7, sends quasicoher-
ent sheaves to quasicoherent sheaves). Show that L is basepoint free if the canonical map
', L — L is surjective.

More generally, if F is a quasicoherent and quasiseparated, we say that a quasicoherent
sheaf F on X is relatively generated (with respect to m) if the canonical map *'n,.F — F
is surjective. We won't be using this notion.

2.C. EXERCISE. Describe why this is the relative version of generated by global sections.

Having defined relative versions of (i) and (ii) above, we are now ready to define Proj.

2.2. Definition. Suppose S, is a graded quasicoherent sheaf of algebras on a scheme X,
locally generated in degree 1. In analogy with Spec, we define

(B:ProjSe — X,0(1),d:Se — ®npO0(M))

by the following universal property. (Here ¢ is a map of graded sheaves, and is not
required to be an isomorphism.)



Maps

Y f Proj S,
X

correspond to maps « : S — B L™, where L is an invertible sheaf on Y, « factors as

S.—23B.OM) —> BB.FLE™ = B, LO™,

and the image of S; is relatively base-point free. (You might be worried about what hap-
pens if 7t is not quasicompact and quasiseparated, in which case we don’t know that 7, is
a quasicoherent sheaf. This isn’t a problem: we can work with Ox-modules. This won't
cause any complication.)

Asusual, if (B : ProjSe — X, 0(1), ¢ : S¢ = ®,.0(n)) exists, it is unique up to unique
isomorphism. We now show that it exists, in analogy with Spec.

2.D. EXERCISE. Show the result if X is affine by restating what we know about the Proj
construction.

Note that this construction behaves well with respect to affine base change.

Motivated by this, we define the points of Proj S, over a point p € X as the points of
Proj(S. @ k(p)).

2.E. EXERCISE. Define a topology on this set as follows: above each affine open subset
of Spec A C X, take the Zariski topology on ProjI'(Spec A, S,). Be sure to show this is
well-defined.

2.F. EXERCISE. Define the structure sheaf on this topological space as follows: above each
affine open subset of Spec A C X, take the structure sheaf of Proj I'(Spec A, S, ). Be sure to
show this is well-defined.

2.G. EXERCISE. Define the map ¢ : S = ¢O(n).
2.H. EXERCISE. Show that your construction satisfies the universal property.

2.1. EXERCISE (Proj BEHAVES WELL WITH RESPECT TO BASE CHANGE). Suppose S, is a
quasicoherent sheaf of graded algebras on X satisfying the required hypotheses above for
Proj S, to exist. Let f : Y — X be any morphism. Give a natural isomorphism

(PI‘Oj f*S., O@f*s.(‘l)) = (Y Xx PI'Oj S., g*Omg.(]))
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where g is the natural morphism in the base change diagram

Y xx Proj S, 2—~ Proj S,

l l

Y X.

2.3. Definition. If F is a finite rank locally free sheaf on X. Then Proj Sym® F is called
its projectivization. If F is a free sheaf of rank n + 1, then we define P} := Proj Sym® F.
(Then Pg,.. o agrees with our earlier definition of P}.) Clearly this notion behaves well
with respect to base change.

This “relative O(1)” we have constructed is a little subtle. Here are couple of exercises
to give you practice with the concept.

2.J. EXERCISE.  Proj(S.[t]) = SpecS, | [ ProjS., where Spec S, is an open subscheme,
and Proj S, is a closed subscheme. Show that Proj Sx is an effective Cartier divisor, cor-
responding to the invertible sheaf Op,,;n(1). (This is the generalization of the projective
and affine cone.) o

2.K. EXERCISE. Suppose L is an invertible sheaf on X, and S, is a quasicoherent sheaf of
graded algebras on X satisfying the required hypotheses above for Proj S, to exist. Define
S! = Bn=oSn ® L,,. Give a natural isomorphism of X-schemes

(Proj S, Oprojs;(1)) = (Proj Sa, Oprojs, (1) @ L),

where 7 : ProjS, — X is the structure morphism. In other words, informally speaking,
the Proj is the same, but the O(1) is twisted by L.

3. PROJECTIVE MORPHISMS

In §1, that we reinterpreted affine morphisms: X — Y is an affine morphism if there is
an isomorphism X = Spec A of Y-schemes for some quasicoherent sheaf of algebras A on
Y. We now define the notion of a projective morphism similarly.

3.1. Definition. A morphism X — Y is projective if there is an isomorphism

X - Proj S,
Y

for a quasicoherent sheaf of algebras S, on Y. X is said to be a projective Y-scheme, or
projective over Y. This generalizes the notion of a projective A-scheme.
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3.2. Warnings. First, notice that O(1), an important part of the definition of Proj, is not
mentioned. As a result, the notion of affine morphism is affine-local on the target, but this
notion is not affine-local on the target. (In nice circumstances it is, as we’ll see later. We’ll
also see an example where this is not.)

Second, Hartshorne gives a different definition; we are following the more general def-
inition of Grothendieck. These definitions turn out to be the same in nice circumstances.

We now establish a number of properties of projective morphisms.

Note first that projective morphisms are proper. (Reason: properness is local on the
base, and we’ve seen earlier that projective A-schemes are proper over A.) Equivalently
(by definition of properness!) they are separated, finite type, and universally closed.

3.A. IMPORTANT EXERCISE: FINITE MORPHISMS ARE PROJECTIVE. Show that finite mor-
phisms are projective as follows. Suppose Y — Xis finite, and that Y = Spec A where A
is a finite type quasicoherent sheaf on X. Describe a sheaf of graded algebras S, where
So = Oxand S,, = A for n > 0. (What is the multiplication in this algebra?) Describe an
X-isomorphism Y = Proj S,.

In particular, closed immersions are projective. We have the sequence of implications
for morphisms

closed immersion = finite = projective = proper.

3.B. EXERCISE. Show that a morphism (over Speck) from a projective k-scheme to a
separated k-scheme is always projective. (Hint: the Cancellation Theorem for properties
of morphisms.)

3.C. EXERCISE. Show that the property of a morphism being projective is preserved by
base change.

3.D. HARDER EXERCISE. Show that the property of being projective is preserved by
composition. (Ask me for a hint. The main thing is to figure out a candidate O(1).)

The previous two exercises imply that the property of being projective is preserved by
products: if f : X — Y and f' : X’ — Y are projective, thensois f x f': X x X" =Y x Y’
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