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1. IMPORTANT EXAMPLE: INVERTIBLE SHEAVES AND MAPS TO PROJECTIVE SCHEMES

Theorem 1.1 will give one reason why line bundles are crucially important: they tell us
about maps to projective space, and more generally, to quasiprojective A-schemes. Given
that we have had a hard time naming any non-quasiprojective schemes, they tell us about
maps to essentially all schemes that are interesting to us.

Before stating the theorem, we begin with some motivation. Recall that the data of a
map to A

n corresponds to the choice of n functions, which could be called “coordinate
functions”. (The case n = 1 was an earlier exercise, and the general case is no harder.)
Our goal is to give a similar characterization of maps to P

n. We have already seen that
a choice of n + 1 functions on X with no common zeros yields a map to P

n. However,
this can’t give all maps to P

n: suppose n > 0 and consider the identity map P
n
k → P

n
k .

This map can’t be described in terms of n + 1 functions on X with no common zeros, as
the only functions on P

n are constants, so they only maps P
n
k → P

n
k that can be described

in terms of n functions with no common zeros are constant maps. The resolution of this
problem is by considering not just functions — sections of the trivial invertible sheaf —
but sections of any invertible sheaf.

1.1. Important theorem. — Maps to P
n correspond to n + 1 sections of a line bundle, not all

vanishing at any point (i.e. generated by global sections), modulo global sections of O∗

X.

This is one of those important theorems in algebraic geometry that is easy to prove, but
quite subtle in its effect on how one should think. It takes some time to properly digest.

The theorem describes all morphisms to projective space, and hence by the Yoneda
philosophy, this can be taken as the definition of projective space: it defines projective
space up to unique isomorphism.

Every time you see a map to projective space, you should immediately simultaneously
keep in mind the invertible sheaf and sections.
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Maps to projective schemes can be described similarly. For example, if Y ↪→ P
2
k is the

curve x2
2x0 = x3

1−x1x
2
0, then maps from a scheme X to Y are given by an invertible sheaf on

X along with three sections s0, s1, s2, with no common zeros, satisfying s2
2s0−s3

1+s1s
2
0 = 0.

Here more precisely is the correspondence of Theorem 1.1. If you have n + 1 sections,
then away from the intersection of their zero-sets, we have a morphism. Conversely, if
you have a map to projective space f : X → P

n, then we have n + 1 sections of OPn(1),
corresponding to the hyperplane sections, x0, . . . , xn+1. then f∗x0, . . . , f∗xn+1 are sections
of f∗OPn(1), and they have no common zero.

So to prove this, we just need to show that these two constructions compose to give the
identity in either direction.

Proof. Given n + 1 sections s0, . . . , sn of an invertible sheaf. We get trivializations on the
open sets where each one vanishes. The transition functions are precisely si/sj on Ui∩Uj.
We pull back O(1) by this map to projective space, This is trivial on the distinguished
open sets. Furthermore, f∗D(xi) = D(si). Moreover, si/sj = f∗(xi/xj). Thus starting with
the n + 1 sections, taking the map to the projective space, and pulling back O(1) and
taking the sections x0, . . . , xn, we recover the si’s. That’s one of the two directions.

Correspondingly, given a map f : X → P
n, let si = f∗xi. The map [s0; · · · ; sn] is precisely

the map f. We see this as follows. The preimage of Ui is D(si) = D(f∗xi) = f∗D(xi). So
the right open sets go to the right open sets. And D(si) → D(xi) is precisely by sj/si =

f∗xj/xi. �

Here is some convenient language. A linear system on a k-scheme X is a k-vector space
V (usually finite-dimensional), an invertible sheaf L, and a linear map λ : V → Γ(X,L).
Such a linear system is often called “V”, with the rest of the data left implicit. If the map λ

is an isomorphism, it is called a complete linear system, and is often written |L|. Given a
linear system, any point x ∈ X on which all elements of the linear system V vanish, we say
that x is a base-point of V . If V has no base-points, we say that it is base-point-free. The
union of base-points is called the base locus. The base locus has a scheme-structure — the
(scheme-theoretic) intersection of the vanishing loci of the elements of V (or equivalently,
of a basis of V). In this incarnation, it is called the base scheme of the linear system.

A linear system is sometimes called a linear series. I’m not sure of the distinction
between these two terms, so I’ll not use this second terminology.

1.A. EXERCISE (AUTOMORPHISMS OF PROJECTIVE SPACE). Show that all the automor-
phisms of projective space P

n
k correspond to (n + 1) × (n + 1) invertible matrices over

k, modulo scalars (also known as PGLn+1(k)). (Hint: Suppose f : P
n
k → P

n
k is an auto-

morphism. Show that f∗O(1) ∼= O(1). Show that f∗ : Γ(Pn,O(1)) → Γ(Pn,O(1)) is an
isomorphism.)

Exercise 1.A will be useful later, especially for the case n = 1. In this case, these auto-
morphisms are called fractional linear transformations.
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(A question for experts: why did I not state that previous exercise over an arbitrary
base ring A? Where does the argument go wrong in that case?)

Here are some more examples of these ideas in action.

Example 1. Consider the n + 1 functions x0, . . . , xn on A
n+1 (otherwise known as n +

1 sections of the trivial bundle). They have no common zeros on A
n − 0. Hence they

determine a morphism A
n+1 − 0 → P

n. (We’ve talked about this morphism before. But
now we don’t have to worry about gluing.)

Example 2: the Veronese morphism is |OPn(d)|. Consider the line bundle OPn(m)

on P
n. We’ve checked that the number of sections of this line bundle are

(

n+m

m

)

, and
they correspond to homogeneous degree m polynomials in the projective coordinates for
P

n. Also, they have no common zeros (as for example the subset of sections xm
0 , xm

1 ,
. . . , xm

n have no common zeros). Thus the complete linear system is base-point-free, and
determines a morphism P

n
→ P(n+m

m )−1. This is called the Veronese morphism. For
example, if n = 2 and m = 2, we get a map P

2
→ P

5.

We have checked earlier that this is a closed immersion. How can you tell in general if
something is a closed immersion, and not just a map? Here is one way.

1.B. EXERCISE. Suppose π : X → P
n
A corresponds to an invertible sheaf L on X, and

sections s0, . . . , sn. Show that π is a closed immersion if and only if

(i) each open set Xsi
is affine, and

(ii) for each i, the map of rings A[y0, . . . , yn] → Γ(Xsi
,O) given by yj 7→ sj/si is surjec-

tive.

Example 3: The rational normal curve. Recall that the image of the Veronese mor-
phism when n = 1 is called a rational normal curve of degree m. Our map is P

1
→ P

m

given by [x; y] → [xm; xm−1y; · · · ; xym−1; ym].

1.C. EXERCISE. If the image scheme-theoretically lies in a hyperplane of projective space,
we say that it is degenerate (and otherwise, non-degenerate). Show that a base-point-
free linear system V with invertible sheaf L is non-degenerate if and only if the map
V → Γ(X,L) is an inclusion. Hence in particular a complete linear system is always non-
degenerate.

1.D. EXERCISE. Suppose we are given a map π : P
1
k → P

n
k where the corresponding

invertible sheaf on P
1
k is O(d). (We will later call this a degree d map.) Show that if d < n,

then the image is degenerate. Show that if d = n and the image is nondegenerate, then the
image is isomorphic (via an automorphism of projective space, Exercise 1.A) to a rational
normal curve.
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Example 4: The Segre morphism in terms of a linear system. The Segre morphism can
also be interpreted in this way. This is a useful excuse to define some notation. Suppose
F is a quasicoherent sheaf on a Z-scheme X, and G is a quasicoherent sheaf on a Z-scheme
Y. Let πX, πY be the projections from X×Z Y to X and Y respectively. Then F �G is defined
to be π∗

XF ⊗ π∗

YG. In particular, OPm×Pn(a, b) is defined to be OPm(a) � OPn(b) (over any
base Z). The Segre morphism P

m × P
n

→ P
mn+m+n corresponds to the complete linear

system for the invertible sheaf O(1, 1).

When we first saw the Segre morphism, we saw (in different language) that this com-
plete linear system is base-point-free. We also checked by hand that it is a closed immer-
sion, essentially by Exercise 1.B.

1.E. FUN EXERCISE. Show that any map from projective space to a smaller projective
space is constant (over a field). Hint: show that if m < n then m non-empty hypersurfaces
in P

n have non-empty intersection. For this, use the fact that any non-empty hypersurface
in P

n
k has non-empty intersection with any subscheme of dimension at least 1.

1.F. EXERCISE. Show that a base-point-free linear system V on X corresponding to L

induces a morphism to projective space X → PV∗ = Proj⊕nL
⊗n. The resulting morphism

is often written X
|V |

// P
n .
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