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1. INVERTIBLE SHEAVES AND WEIL DIVISORS

In the previous section, we saw a link between line bundles and codimension 1 infor-
mation. We now continue this theme. The notion of Weil divisors will give a great way
of understanding and classifying line bundles, at least on Noetherian normal schemes.
Some of what we discuss will apply in more general circumstances, and the expert is
invited to consider generalizations.

For the rest of this section, we consider only Noetherian schemes. We do this because
we want to discuss codimension 1 subsets, and also have decomposition into irreducibles
components.

Define a Weil divisor as a formal sum of codimension 1 irreducible closed subsets of X.
In other words, a Weil divisor is defined to be an object of the form

Z ny[Y]
Y C X codimension 1
the ny are integers, all but a finite number of which are zero. Weil divisors obviously form

an abelian group, denoted Weil X.

For example, if X is a curve (such as the Spec of a Dedekind domain), the Weil divisors
are linear combination of points.

We say that [Y] is an irreducible (Weil) divisor. A Weil divisor is said to be effective if
ny > 0 for all Y. In this case we say D > 0, and by D; > D, we mean D; — D, > 0. The
support of a Weil divisor D is the subset Uy, »oY. If U C X is an open set, there is a natural
restriction map Weil X — Weil U, where } nvy[Y] — } e nylY N uj.

Suppose now that X is reqular in codimension 1 (and Noetherian). We add this hypothesis
because we will use properties of discrete valuation rings. Suppose that £ is an invertible
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sheaf, and s a rational section not vanishing on any irreducible component of X. (Ra-
tional sections are given by a section over a dense open subset of X, with the obvious
equivalence.) Then s determines a Weil divisor

div(s) := Y valy(s)[Y]
Y

called the divisor of zeros and poles. To determine the valuation valy(s) of s along Y,
take any open set U containing the generic point of Y where L is trivializable, along with
any trivialization over U; under this trivialization, s is a function on U, which thus has a
valuation. Any two such trivializations differ by a unit, so this valuation is well-defined.
(valy(s) = O for all but finitely many Y, by an earlier exercise.) This map gives a group
homomorphism

div : {(L£, s)} — Weil X.
A unit has no poles or zeros, so this descends to a group homomorphism

(1) div : {(L, s)}/T(X, Ox)" — Weil X.

1.A. EXERCISE. () (divisors of rational functions) Verify that on A}, div(x3/(x + 1)) =
3[0)] = [(x + 1)] = 3[0] — [-1].

(b) (divisor of a rational sections of a nontrivial invertible sheaf) On P}, there is a rational
section of O(1) “corresponding to” x?/(x + y). Figure out what this means, and calculate
div(x?/(x +v)).

We want to classify all invertible sheaves on X, and this homomorphism (1) will be the
key. Note that any invertible sheaf will have such a rational section (for each irreducible
component, take a non-empty open set not meeting any other irreducible component;
then shrink it so that £ is trivial; choose a trivialization; then take the union of all these
open sets, and choose the section on this union corresponding to 1 under the trivializa-
tion). We will see that in reasonable situations, this map div will be injective, and often
even an isomorphism. Thus by forgetting the rational section (taking an appropriate quo-
tient), we will have described the Picard group of all line bundles. Let’s put this strategy
into action.

1.1. Proposition. — If X is normal and Noetherian then the map div is injective.

Proof. Suppose div(L, s) = 0. Then s has no poles. Hence by Hartogs” lemma for invertible
sheaves, s is a regular section. Now s vanishes nowhere, so s gives an isomorphism
Ox — L (givenby 1 +— s). O

Motivated by this, we try to find the inverse map to div.

1.2. Important Definition. Suppose D is a Weil divisor. If U C X is an open subscheme,
recall that FF(U) is the field of total fractions of U, i.e. the product of the stalks at the
minimal primes of U (in this case that X is normal). If U is irreducible, this is the function
field. Define FF(U)* to be those rational functions not vanishing at any generic point of
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U, that is, not vanishing on any irreducible component of U. Define the sheaf Ox(D) by
I'(U, Ox(D)) :={s € FF(U)" : divs 4+ DJy > 0}.

The subscript will often be omitted when it is clear from the context. Define a rational
section sp of Ox(D) corresponding to 1 € FF(U)*.

It may seem more reasonable to consider those s such that divs > DJy. The reason for
the convention we use is the following exercise.

1.B. IMPORTANT EXERCISE. Show that divsp = D.

We connect this to the important example of projective space that we have recently
studied:

1.C. IMPORTANT EXERCISE. Let D = {xo = 0} be a hyperplane divisor on P}}. Show that
O(nD) = O(n). (For this reason, O(1) is sometimes called the hyperplane class in Pic X.)

1.3. Proposition. — Suppose L is an invertible sheaf, and s is a rational section not vanishing on
any irreducible component of X. Then there is an isomorphism (L, s) = (O(div s),t), where t is
the canonical rational section described above.

Proof. We first describe the isomorphism O(divs) = L. Over open subscheme U C X,
we have a bijection I'(U, £) — I'(U, O(divs)) given by s’ — s’/s, with inverse obviously
given by t’ — st’. Clearly under this bijection, s corresponds to the section 1 in FF(U)*;
this is the section we are calling t. O

We denote the subgroup of Weil X corresponding to divisors of rational functions the
subgroup of principal divisors, which we denote Prin X. Define the class group of X,
ClX, by Weil X/ Prin X. If X is normal, then by taking the quotient of the inclusion (1)
by Prin X, we have the inclusion PicX — CIX. This is summarized in the convenient
diagram

div : {(£, s)}/T(X, Ox)* = Weil X
l/{(ox ,8)} l/Prin X

Pic X {L)C C1X

This diagram is very important, and although it is short to say, it takes some time to inter-
nalize. (If X is Noetherian and regular in codimension 1 but not necessarily normal, then
we have a similar diagram, except the horizontal maps are not necessarily inclusions.)

We can now compute of Pic X in a number of interesting cases!

1.D. EXERCISE. Suppose that A is a Noetherian domain. Show that A is a Unique Fac-
torization Domain if and only if A is integrally closed and ClSpec A = 0. (One direction
is easy: we have already shown that Unique Factorization Domains are integrally closed
in their fraction fields. Also, an earlier exercise showed that all codimension 1 primes
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of a Unique Factorization Domain are principal, so that implies that Cl1Spec A = 0. It
remains to show that if A is integrally closed and ClSpec A = 0, then all codimension
1 prime ideals are principal, as this characterizes Unique Factorization Domains. Har-
togs’ lemma may arise in your argument.) This is the third important characterization of
unique factorization domains promised long ago.

Hence CI(A}) = 0, so | Pic(A}) = 0| Geometers will find this believable: “C™ is a con-
tractible manifold, and hence should have no nontrivial line bundles”.

Removing subset of X of codimension greater 1 doesn’t change the Class group, as it
doesn’t change the Weil divisor group or the principal divisors.

Removing a subset of codimension 1 changes the Weil divisor group in a controllable
way. For example, suppose Z is an irreducible codimension 1 subset of X. Then we clearly
have an exact sequence:

1= [Z] .
0 —Z— Weil X — Weil(X — Z) —0.
When we take the quotient by principal divisors, we lose exactness on the left, and get:

1—=[Z]
(2) Z ClX Cl(X—Z)——0.

1.E. EASY EXERCISE. Suppose X — A™is an open subset. Show that Pic X = {0}.

For example, let X = IP}}, and Z be the hyperplane xo = 0. We have
Z — ClPy — CIAY — 0
from which C1P} = Z[Z] (which is Z or 0), and Pic P} is a subgroup of this.

By Exercise 1.C, [Z] — O(1). Hence Pic P}y — CIlP} is anisomorphism, and | Pic P} = Z

with generator O(1). The degree of an invertible sheaf on P™ is defined using this:
deg O(d) :=d.

More generally:

1.4. Proposition. — If X is Noetherian and factorial (all stalks are unique factorization domains)
then for any Weil divisor D, O(D) is invertible, and hence the map Pic X — Cl1X is an isomor-
phism.

Proof. 1t will suffice to show that [Y] is effective Cartier if Y is any irreducible divisor. Our
goal is to cover X by open sets so that on each open set U there is a function whose divisor
is [YNU]. One open set will be X —Y, where we take the function 1. Next, we find an open
set U containing an arbitrary x € Y, and a function on U. As Ox  is a unique factorization
domain, the prime corresponding to 1 is codimension 1 and hence principal (by an earlier
Exercise). Let f € FF(A) be a generator. Then f is regular at x. f has a finite number of
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zeros and poles, and through x there is only one 0, notably [Y]. Let U be X minus all the
others zeros and poles. O

I will now mention a bunch of other examples of class groups and Picard groups you
can calculate.

First, notice that you can restrict invertible sheaves on X to any subscheme Y, and this
can be a handy way of checking that an invertible sheaf is not trivial. For example, if
X is something crazy, and Y = P!, then we're happy, because we understand invertible
sheaves on P'. Effective Cartier divisors sometimes restrict too: if you have effective
Cartier divisor on X, then it restricts to a closed subscheme on Y, locally cut out by one
equation. If you are fortunate and this equation doesn’t vanish on any associated point
of Y, then you get an effective Cartier divisor on Y. You can check that the restriction of
effective Cartier divisors corresponds to restriction of invertible sheaves.

1.5. Fun with hypersurface complements.

1.E. EXERCISE: A TORSION PICARD GROUP. Show that Y is an irreducible degree d hyper-
surface of P™. Show that Pic(P™ —Y) = Z/d. (For differential geometers: this is related to
the fact that iy (P —Y) = Z/d.)

As a very explicit example, we can consider the plane minus a conic (n = d = 2).

The next two exercises explore its consequences, and provide us with some examples
we have been waiting for.

1.G. EXERCISE. Keeping the same notation, assume d > 1 (so Pic(P™ —Y) # 0), and let
Ho, ..., Hn be the n + 1 coordinate hyperplanes on P™. Show that P™ — Y is affine, and
P™ —Y — H; is a distinguished open subset of it. Show that the P — Y — H; form an open
cover of P™ — Y. Show that Pic(P™ — Y — H;) = 0. Then by Exercise 1.D, each P™ —Y — H;
is the Spec of a unique factorization domain, but P™ —Y is not. Thus the property of being
a unique factorization domain is not an affine-local property — it satisfies only one of the
two hypotheses of the affine communication lemma.

1.H. EXERCISE. Keeping the same notation as the previous exercise, show that on P™" -,
H; (restricted to this open set) is an effective Cartier divisor that is not cut out by a single
equation. (Hint: Otherwise it would give a trivial element of the class group.)

1.6. Quadric surfaces.

1.I. EXERCISE. Let X = Proj k[w, x,y, z|/(wz — xy), a smooth quadric surface (Figure 1).
Show that Pic X = Z @ Z as follows: Show that if L and M are two lines in different rulings
(e.g. L= V(w,x) and M = V(w,y)), then X — L — M = AZ. This will give you a surjection



7Z.®7Z — ClX. Show that O(L) restricts to O on L and O(1) on M. Show that O(M) restricts
to O on M and O(1) on L. (This is a bit longer to do, but enlightening.)

/
I/ \|

FIGURE 1. Finding all line bundles on the quadric surface

1.J. EXERCISE. Let X = Speck[w,x,y,z]/(xy — z?), a cone. show that PicX = 1, and
Cl1X = Z/2. (Hint: show that the ruling Z = {x = z = 0} generates C1 X by showing that
its complement is isomorphic to AZ. Show that 2[Z] = div(x) (and hence principal), and
that Z is not principal (an example we did when learning how to use the Zariski tangent
space).

1.7. Nagata’s Lemma »x.

I mentioned earlier that I only know a few ways of checking that a ring is a unique
factorization domain. Nagata’s Lemma is the last, and least useful.

1.K. EXERCISE. Prove Nagata’s Lemma: Suppose A is a Noetherian domain, x € A an
element such that (x) is prime and A[1/x] is a unique factorization domain. Then A is a
unique factorization domain. (Hint: Exercise 1.D. Use the short exact sequence [(x)] —
ClSpec A — CIA[1/x] — 0 (2) to show that ClSpec A = 0. Show that A[1/x] is integrally
closed, then show that A is integrally closed as follows. Suppose T" + a, 1T + .- +
ap = 0, where a; € A, and T € FF(A). Then by integral closure of A[1/x], we have that
T =1/x™, where if m > 0, then r ¢ x. Then we quickly get a contradiction if m > 0.)

This leads to a remarkable algebra fact. Suppose k is an algebraically closed field of
characteristic not 2. Let A = k[x1,...,xnl/(x 4+ - -+ +x2) where m < n. When m < 2, we
get some special behavior. (If m = 0, we get affine space; if m = 1, we get a non-reduced
scheme; if m = 2, we get a reducible scheme that is the union of two affine spaces.) If
m > 3, we have verified that Spec A is normal, in an earlier exercise.

In fact, if m > 3, then A is a unique factorization domain unless m = 4. The failure at 4
comes from the geometry of the quadric surface: we have checked that in Spec klw, x, y, z|/(wx—
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yz), there is a codimension 1 prime ideal — the cone over a line in a ruling — that is not
principal.

We already understand success at 3:A = k[x,y,z, w1, ..., wn_3l/(x*+y?—2z?) isa unique
factorization domain, as it is normal and has class group 0 (as verified above).

1.L. EXERCISE (THE CASE m > 5). Suppose that k is algebraically closed of characteristic
not 2. Show that if m > 3, then A = k[a,b,x1,...,%x.]/(ab — x5 — -+ — x2 ) is a unique
factorization domain, by using the Nagata’s Lemma with x = a.

E-mail address: vakil@math.stanford.edu



