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1. QUASICOHERENT SHEAVES OF IDEALS, AND CLOSED SUBSCHEMES

The point of this section is that closed subschemes correspond precisely to quasicoher-
ent sheaves of ideals.

Recall that if i : X ↪→ Y is a closed immersion, then we have a surjection of sheaves on
Y: OY

// // i∗OX . (The i∗ is often omitted, as we are considering the sheaf on X as being
a sheaf on Y.) The sheaf i∗OX is quasicoherent on Y; this is in some sense the definition of
“closed subscheme”. The kernel IX/Y is a “sheaf of ideals” in Y: for each open subset of
Y, the sections form an ideal in the ring of functions of Y. As quasicoherent sheaves on Y

form an abelian category, IX/Y is a quasicoherent sheaf of ideals.

Conversely, a quasicoherent sheaf of ideals I ↪→ OY defines a closed subscheme. This
was stated in slightly different language in Exercise 1. Precisely, I is quasicoherent pre-
cisely if, for each distinguished open Spec Af ↪→ Spec A, I(Spec Af) = I(Spec A)f (Defini-
tion B of quasicoherent sheaves), and this was one criterion for when ideals in affine open
sets define a closed subscheme (Exercise 1). (An example of a non-quasicoherent sheaf of
ideals was given in an earlier Exercise.)

We call

(1) 0 → IX/Y → OY → i∗OX → 0

the closed subscheme exact sequence corresponding to X ↪→ Y.

Date: Monday, January 28, 2008. Mild correction Feb. 19 (thanks Nathan!).
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2. INVERTIBLE SHEAVES (LINE BUNDLES) AND DIVISORS

We next develop some mechanism of understanding invertible sheaves (line bundles)
on a given scheme X. Recall that Pic X is the group of invertible sheaves on X. Our
goal will be to develop convenient and powerful ways of describing and working with
invertible sheaves.

We begin by describing invertible sheaves on projective space (over a field). We then
discuss sheaves of ideals that happen to be invertible (effective Cartier divisors). Partially
motivated by this insight that invertible sheaves correspond to “codimension 1 informa-
tion”, we will discuss the theory of Weil divisors, and use this to actually compute Pic X

in a number of circumstances.

3. SOME LINE BUNDLES ON PROJECTIVE SPACE

We now describe a family of invertible sheaves on projective space over a field k.

As a warm-up, we begin with the invertible sheaf OP1
k
(1) on P

1
k = Proj k[x0, x1]. (The

subscript P
1
k refers to the space on which the sheaf lives, and is often omitted when it is

clear from the context.) We describe the invertible sheaf O(1) using transition functions.
It is trivial on the usual affine open sets U0 = D(x0) = Spec k[x1/0] and U1 = D(x1 =

Spec k[x0/1]. (We continue to use the convention xi/j for describing coordinates on patches
of projective space.) Thus the data of a section over U0 is a polynomial in x1/0. The
transition function from U0 to U1 is multiplication by x0/1 = x−1

1/0
. The transition function

from U1 to U0 is hence multiplication by x1/0 = x−1
0/1

.

This information is summarized below:

open cover U0 = Spec k[x1/0] U1 = Spec k[x0/1]

trivialization and transition functions k[x1/0]

×x0/1=x−1
1/0

--

k[x0/1]

×x1/0=x−1
0/1

mm

To test our understanding, let’s compute the global sections of O(1). This will be anal-
ogous to our hands-on calculation that Γ(P1

k,OP
1
k
) ∼= k. A global section is a polynomial

f(x1/0) ∈ k[x1/0] and a polynomial g(x0/1)ink[x0/1] such that f(1/x0/1)x0/1 = g(x0/1). A
little thought will show that f must be linear: f(x1/0) = ax1/0 + b, and hence f(x0/1) =

a + bx0/1. Thus

dim Γ(P1
k,O(1)) = 2 6= 1 = dim Γ(P1

k,O).

Thus O(1) is not isomorphic to O, and we have constructed our first (proved) example of
a nontrivial line bundle!
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We next define more generally O
P

1
k
(n) on P

1
k. It is defined in the same way, except that

the transition functions are the nth powers of those for O(1).

open cover U0 = Spec k[x1/0] U1 = Spec k[x0/1]

trivialization and transition functions k[x1/0]

×xn
0/1

=x−n
1/0

--

k[x0/1]
×xn

1/0
=x−n

0/1

mm

In particular, thanks to the explicit transition functions, we see that O(n) = O(1)⊗n (with
the obvious meaning if n is negative: (O(1)⊗(−n))∨). Clearly also O(m) ⊗O(n) = O(m +

n).

3.A. IMPORTANT EXERCISE. Show that Γ(P1,O(n)) = n + 1 if n ≥ 0, and 0 otherwise.

Long ago, we warned that sheafification was necessary when tensoring OX-modules:
if F and G are two OX-modules on a ringed space, then it is not necessarily true that
F(X) ⊗OX(X) G(X) ∼= (F ⊗ G)(X). We now have an example: let X = P

1
k, F = O(1),

G = O(−1).

3.B. EXERCISE. Show that if m 6= n, then O(m) 6∼= O(n). Hence conclude that we have an
injection of groups Z ↪→ Pic P

1
k given by n 7→ O(n).

It is useful to identify the global sections of O(n) with the homogeneous polynomials
of degree n in x0 and x1, i.e. with the degree n part of k[x0, x1]. Can you see this from your
solution to Exercise 3.A? We will see that this identification is natural in many ways. For
example, we will later see that the definition of O(n) doesn’t depend on a choice of affine
cover, and this polynomial description is also independent of cover. As an immediate
check of the usefulness of this point of view, ask yourself: where does the section x3

0 −x0x
2
1

of O(3) vanish? The section x0 + x1 of O(1) can be multiplied by the section x2
0 of O(2) to

get a section of O(3). Which one? Where does the rational section x4
0(x1 +x0)/x7

1 of O(−2)

have zeros and poles, and to what order? (We will rigorously define the meaning of zeros
and poles shortly, but you should already be able to intuitively answer these questions.)

We now define the invertible sheaf OP
m
k
(n) on the projective space P

m
k . On the usual

affine open set Ui = Spec k[x0/i, . . . , xm/i]/(xi/i−1) = Spec Ai, it is trivial, so sections (as an
Ai-module) are isomorphic to Ai. The transition function from Ui to Uj is multiplication
by xn

i/j = x−n
j/i

. Note that these transition functions clearly satisfy the cocycle condition.

Ui = Spec k[x0/i, . . . , xm/i]/(xi/i − 1) Uj = Spec k[x0/j, . . . , xm/j]/(xj/j − 1)

k[x0/i, . . . , xm/i]/(xi/i − 1)

×xn
i/j

=x−n
j/i

//

Spec k[x0/j, . . . , xm/j]/(xj/j − 1)
×xn

j/i
=x−n

i/j

nn
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3.C. ESSENTIAL EXERCISE. Show that dimk Γ(Pm
k ,OP

m
k
(n)) =

(

m+n

n

)

.

You will notice that, as in the P
1 case, sections of O(m) on P

n
k are naturally identified

with forms degree m polynomials in our n + 1 variables. Thus x + y + 2z is a section of
O(1) on P

2. It isn’t a function, but I can say where this section vanishes — precisely where
x + y + 2z = 0.

Also, notice that for fixed n,
(

m+n

n

)

is a polynomial in m of degree n for m ≥ 0 (or
better: for m ≥ −n − 1). This should be telling you that this function “wants to be a
polynomial” but has not succeeded. We will later define h0(Pn

k ,O(m)) := Γ(Pn
k ,O(m)),

and later still we will define higher cohomology groups, and we will define the Euler
characteristic χ(Pn

k ,O(m)) :=
∑∞

i=0(−1)ihi(Pn
k ,O(m)) (cohomology will vanish in degree

higher than n). We will discover the moral that the Euler characteristic is better-behaved
than h0, and so we should now suspect (and later prove) that this polynomial is in fact
the Euler characteristic, and the reason that it agrees with h0 for m ≥ 0 because all the
other cohomology groups should vanish.

We finally note that we can define O(n) on P
m
A for any ring A: the above definition

applies without change.

4. EFFECTIVE CARTIER DIVISORS “=” INVERTIBLE IDEAL SHEAVES

In the previous section, we produced a number of interesting invertible sheaves on pro-
jective space by explicitly giving transition functions. We now give a completely different
means of describing invertible sheaves on a scheme.

Suppose D ↪→ X is a closed subscheme such that corresponding ideal sheaf I is an
invertible sheaf. Then D is called an effective Cartier divisor. Suppose D is an effective
Cartier divisor. Then I is locally trivial; suppose U is a trivializing affine open set Spec A.
Then the closed subscheme exact sequence

0 → I → OX → OD → 0

corresponds to
0 → I → A → A/I → 0

with I ∼= A as an A-module. Thus I is generated by a single element, say a, and this exact
sequence starts as

0 // A
×a

// A

As multiplication by a is injective, a is not a zero-divisor. We conclude that D is locally
cut out by a single equation, that is not a zero-divisor. This was the definition of effective
Cartier divisor given before. This argument is clearly reversible, so we now have a quick
new definition of effective Cartier divisor (that I is invertible).

4.A. EASY EXERCISE. Show that a is unique up to multiplication by a unit.
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In the case where X is locally Noetherian, and we can use the language of associated
points, we can restate this definition as: D is locally cut out by a single equation, not
vanishing at any associated point of X.

We now define an invertible sheaf corresponding to D. The seemingly obvious defini-
tion would be to take ID, but instead we define the invertible sheaf O(D) corresponding
to an effective Cartier divisor to be the dual: I∨

D . The ideal sheaf itself is sometimes de-
noted O(−D). We have an exact sequence

0 → O(−D) → O → OD → 0.

The invertible sheaf O(D) has a canonical section sD: Tensoring 0 → I → O with I∨

gives us O → I∨. (Easy unimportant fact to check: instead of tensoring I → O with I∨,
we could have dualized I → O, and we would get the same section.)

4.B. SURPRISINGLY TRICKY EXERCISE. Recall that a section of a locally free sheaf on X

cuts out a closed subscheme of X. Show that this section sD cuts out D.

This construction has a converse.

4.C. EXERCISE. Suppose L is an invertible sheaf, and s is a section that is not locally a
zero divisor (make sense of this!). Show that s = 0 cuts out an effective Cartier divisor D,
and O(D) ∼= L. (Again, if X is locally Noetherian, “not locally a zero divisor” translate to
“does not vanish at an associated point”.)

4.D. EXERCISE. Suppose I and J are invertible ideal sheaves (hence corresponding to
effective Cartier divisors, say D and D ′ respectively). Show that IJ is an invertible ideal
sheaf. (First make sense of this notation!) We define the corresponding Cartier divisor to
be D + D ′. Verify that O(D + D ′) ∼= O(D) ⊗O(D ′).

Thus the effective Cartier divisors form a semigroup. Thus we have a map of semi-
groups, from effective Cartier divisors to invertible sheaves with sections not locally zero-
divisors (and hence also to the Picard group of invertible sheaves).

Hence we can get a bunch of invertible sheaves, by taking differences of these two. In
fact we “usually get them all”! It is very hard to describe an invertible sheaf on a finite
type k-scheme that is not describable in such a way. For example, we will see soon that
there are none if the scheme is nonsingular or even factorial. We will see later that there
are none if X is quasiprojective. over a field.

We thus have an important correspondence between effective Cartier divisors (closed
subschemes whose ideal sheaves are invertible, or equivalently locally cut out by one
non-zero-divisor, or in the locally Noetherian case locally cut out by one equation not
vanishing at an associated point) and ordered pairs (L, s) where L is an invertible sheaf,
and s is a section that is not locally a zero-divisor (or in the locally Noetherian case, not
vanishing at an associated point). This is an isomorphism of semigroups.
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An effective Cartier divisor is pure codimension 1 by Krull’s Principal Ideal Theorem.
This correspondence of “invertible sheaf with section” with “codimension one informa-
tion” is a powerful theme that we will explore further in the next section.

E-mail address: vakil@math.stanford.edu
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