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We began by recalling the distinguished affine base.

Definition. The distinguished affine base of a scheme X is the data of the affine open
sets and the distinguished inclusions.

0.1. Theorem. —

(a) A sheaf on the distinguished affine base Fb determines a unique sheaf F , which when
restricted to the affine base is Fb. (Hence if you start with a sheaf, and take the sheaf on
the distinguished affine base, and then take the induced sheaf, you get the sheaf you started
with.)

(b) A morphism of sheaves on a distinguished affine base uniquely determines a morphism of
sheaves.

(c) An OX-module “on the distinguished affine base” yields an OX-module.

1. QUASICOHERENT SHEAVES

We now define the notion of quasicoherent sheaf. In the same way that a scheme is de-
fined by “gluing together rings”, a quasicoherent sheaf over that scheme is obtained by
“gluing together modules over those rings”. We will give two equivalent definitions; each
definition is useful in different circumstances. The first just involves the distinguished
topology.

The first definition is more directly “sheafy”. Given an A-module M, we defined a
sheaf M̃ on Spec A long ago — the sections over D(f) were Mf.

Definition A. An OX-module F is a quasicoherent sheaf if for every affine open Spec A,

F |Spec A
∼= ˜Γ(Spec A,F).
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(The “wide tilde” is supposed to cover the entire right side Γ(Spec A,F).) This isomor-
phism is as sheaves of OX-modules.

Hence by this definition, the sheaves on Spec A correspond to A-modules. Given an
A-module M, we get a sheaf M̃. Given a sheaf F on Spec A, we get an A-module Γ(X,F).
These operations are inverse to each other. So in the same way as schemes are obtained
by gluing together rings, quasicoherent sheaves are obtained by gluing together modules
over those rings.

The second definition really focuses on the distinguished affine base, and is reminiscent
of the Affine Covering Lemma.

Definition B. Suppose Spec Af ↪→ Spec A ⊂ X is a distinguished open set. Let φ :

Γ(Spec A,F) → Γ(Spec Af,F) be the restriction map. The source of φ is an A-module,
and the target is an Af-module, so by the universal property of localization, φ naturally
factors as:

Γ(Spec A,F)
φ

//

((QQQQQQQQQQQQQ
Γ(Spec Af,F)

Γ(Spec A,F)f

α

66mmmmmmmmmmmmm

An OX-module F is a quasicoherent sheaf if for each such distinguished Spec Af ↪→

Spec A, α is an isomorphism.

Thus a quasicoherent sheaf is the data of one module for each affine open subset (a
module over the corresponding ring), such that the module over a distinguished open set
Spec Af is given by localizing the module over Spec A. This will be an easy criterion to
check.

1.1. Proposition. — Definitions A and B are the same.

Proof. Clearly Definition A implies Definition B. (Recall that the definition of M̃ was in
terms of the distinguished topology on Spec A.) We now show that Definition B implies
Definition A. By Definition B, the sections over any distinguished open Spec Af of M on
Spec A is precisely Γ(Spec A,M)f, i.e. the sections of ˜Γ(Spec A,M) over Spec Af, and the
restriction maps agree. Thus the two sheaves agree. �

We like Definition B because it says that to define a quasicoherent OX-module is that
we just need to know what it is on all affine open sets, and that it behaves well under
inverting a single element.

One reason we like Definition A is that it works well in gluing arguments, as in the
proof of the following fact.
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1.2. Proposition (quasicoherence is an affine-local notion). — Let X be a scheme, and F an OX-
module. Then let P be the property of affine open sets that F |Spec A

∼= ˜Γ(Spec A,F). Then P is an
affine-local property.

Before we prove this, we give an exercise to show its utility.

1.A. EXERCISE. Show that locally free sheaves are quasicoherent.

Proof. By the Affine Communication Lemma, we must check two things. Clearly if Spec A

has property P, then so does the distinguished open Spec Af: if M is an A-module, then
M̃|Spec Af

∼= M̃f as sheaves of OSpec Af
-modules (both sides agree on the level of distin-

guished open sets and their restriction maps).

We next show the second hypothesis of the Affine Communication Lemma. Suppose
we have modules M1, . . . , Mn, where Mi is an Afi

-module, along with isomorphisms φij :

(Mi)fj
→ (Mj)fi

of Afifj
-modules, satisfying the cocycle condition. We want to construct

an M such that M̃ gives us M̃i on D(fi) = Spec Afi
, or equivalently, isomorphisms ρi :

Γ(D(fi), M̃) → Mi, so that the bottom triangle of
(1) M

⊗Afi

zzuu
uu

uu
uu

uu ⊗Afj

$$II
II

II
II

II

Mfi

ρi

∼

||xx
xx

xx
xx

x ⊗Afj

$$HHH
HHH

HH
H

Mfj

ρj

∼

""FFFFFFFF
⊗Afj

zzvv
vv

vv
vv

v

Mi

⊗Afi ""FF
FF

FF
FF

F
Mfifj
;;

∼

{{vv
vv

vv
vv

v cc

∼

##HH
HH

HH
HHH

Mj

⊗Afj||xx
xx

xx
xx

x

(Mi)fj

φij

∼

// (Mj)fi

commutes.

We already know that M should be the sections of F over Spec A, as F is a sheaf.
Consider elements of M1 × · · · × Mn that “agree on overlaps”; let this set be M. Then

0 → M → M1 × · · · × Mn → M12 × M13 × · · · × M(n−1)n

is an exact sequence (where Mij = (Mi)fj
∼= (Mj)fi

, and the latter morphism is the “dif-
ference” morphism). So M is a kernel of a morphism of A-modules, hence an A-module.
We are left to show that Mi

∼= Mfi
(and that this isomorphism satisfies (1)).

For convenience we assume i = 1. Localization is exact, so
(2)
0 // Mf1

// M1 × (M2)f1
× · · · × (Mn)f1

// M12 × · · · × (M23)f1
× · · · × (M(n−1)n)f1

is an exact sequence of Af1
-modules.

We now identify many of the modules appearing in (2) in terms of M1. First of all, f1

is invertible in Af1
, so (M1)f1

is canonically M1. Also, (Mj)f1
∼= (M1)fj

via φij. Hence if
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i, j 6= 1, (Mij)f1
∼= (M1)fifj

via φ1i and φ1j (here the cocycle condition is implicitly used).
Furthermore, (M1i)f1

∼= (M1)fi
via φ1i. Thus we can write (2) as

(3)
0 // Mf1

// M1 × (M1)f2
× · · · × (M1)fn

α // (M1)f2
× · · · × (M1)fn

× (M1)f2f3
× · · · (M1)fn−1fn

By assumption, F |Spec Af1
is quasicoherent, so by considering the cover of

Spec Af1
= Spec Af1

∪ Spec Af1f2
∪ Spec Af1f3

∪ · · · ∪ Spec Af1fn

(which indeed has a “redundant” first term), and identifying sections of F over Spec Af1

in terms of sections over the open sets in the cover and their pairwise overlaps, we have
an exact sequence of Af1

-modules

0 // M1
// M1 × (M1)f2

× · · · × (M1)fn

β
// (M1)f2

× · · · × (M1)fn
× (M1)f2f3

× · · · (M1)fn−1fn

which is very similar to (3). Indeed, the final map β of the above sequence is the same as
the map α of (3), so ker α = ker β, i.e. we have an isomorphism M1

∼= Mf1
.

Finally, the triangle of (1) is commutative, as each vertex of the triangle can be identified
as the sections of F over Spec Af1f2

. �

1.B. IMPORTANT EXERCISE. Suppose X is a quasicompact and quasiseparated scheme
(i.e. covered by a finite number of affine open sets, the pairwise intersection of which
is also covered by a finite number of affine open sets). Suppose F is a quasicoherent
sheaf on X, and let f ∈ Γ(X,OX) be a function on X. Show that the restriction map
resXf⊂X : Γ(X,F) → Γ(Xf,F) (here Xf is the open subset of X where f doesn’t vanish) is pre-
cisely localization. In other words show that there is an isomorphism Γ(X,F)f → Γ(Xf,F)

making the following diagram commute.

Γ(X,F)
resXf⊂X

//

⊗AAf %%LLLLLLLLLL
Γ(Xf,F)

Γ(X,F)f

∼

88rrrrrrrrrr

All that you should need in your argument is that X admits a cover by a finite number
of open sets, and that their pairwise intersections are each quasicompact. (Hint: cover by
affine open sets. Use the sheaf property. A nice way to formalize this is the following.
Apply the exact functor ⊗AAf to the exact sequence

0 → Γ(X,F) → ⊕iΓ(Ui,F) → ⊕Γ(Uijk,F)

where the Ui form a finite cover of X and Uijk form an affine cover of Ui ∩ Uj.)

1.C. LESS IMPORTANT EXERCISE. Give a counterexample to show that the above state-
ment need not hold if X is not quasicompact. (Possible hint: take an infinite disjoint union
of affine schemes. The key idea is that infinite direct sums do not commute with localiza-
tion.)
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1.D. IMPORTANT EXERCISE (COROLLARY TO EXERCISE 1.B). Suppose π : X → Y is a
quasicompact quasiseparated morphism, and F is a quasicoherent sheaf on X. Show that
π∗F is a quasicoherent sheaf on Y.

1.E. UNIMPORTANT EXERCISE (NOT EVERY OX-MODULE IS A QUASICOHERENT SHEAF).
(a) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at the origin [(t)],
with group k(t) and the usual k[t]-module structure. Show that this is an OX-module that
s not a quasicoherent sheaf. (More generally, if X is an integral scheme, and p ∈ X that
is not the generic point, we could take the skyscraper sheaf at p with group the function
field of X. Except in a silly circumstances, this sheaf won’t be quasicoherent.)
(b) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at the generic point
[(0)], with group k(t). Give this the structure of an OX-module. Show that this is a quasi-
coherent sheaf. Describe the restriction maps in the distinguished topology of X.

2. QUASICOHERENT SHEAVES FORM AN ABELIAN CATEGORY

The category of A-modules is an abelian category. Indeed, this is our motivating ex-
ample of our notion of abelian category. Similarly, quasicoherent sheaves form an abelian
category. I’ll explain how.

When you show that something is an abelian category, you have to check many things,
because the definition has many parts. However, if the objects you are considering lie in
some ambient abelian category, then it is much easier. As a metaphor, there are several
things you have to do to check that something is a group. But if you have a subset of
group elements, it is much easier to check that it forms a subgroup.

You can look at back at the definition of an abelian category, and you’ll see that in
order to check that a subcategory is an abelian subcategory, you need to check only the
following things:

(i) 0 is in your subcategory
(ii) your subcategory is closed under finite sums

(iii) your subcategory is closed under kernels and cokernels

In our case of
{quasicoherent sheaves} ⊂ {OX-modules},

the first two are cheap: 0 is certainly quasicoherent, and the subcategory is closed under
finite sums: if F and G are sheaves on X, and over Spec A, F ∼= M̃ and G ∼= Ñ, then
F ⊕ G = M̃ ⊕ N, so F ⊕ G is a quasicoherent sheaf.

We now check (iii). Suppose α : F → G is a morphism of quasicoherent sheaves.
Then on any affine open set U, where the morphism is given by β : M → N, define
(ker α)(U) = ker β and (coker α)(U) = coker β. Then these behave well under inversion of
a single element: if

0 → K → M → N → P → 0
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is exact, then so is
0 → Kf → Mf → Nf → Pf → 0,

from which (ker β)f
∼= ker(βf) and (coker β)f

∼= coker(βf). Thus both of these define
quasicoherent sheaves. Moreover, by checking stalks, they are indeed the kernel and
cokernel of α (exactness can be checked stalk-locally ). Thus the quasicoherent sheaves
indeed form an abelian category.

2.A. EXERCISE. Show that a sequence of quasicoherent sheaves F → G → H on X is
exact if and only if it is exact on each open set in an affine cover of X. (In particular,
taking sections over an affine open Spec A is an exact functor from the category of qua-
sicoherent sheaves on X to the category of A-modules. Recall that taking sections is only
left-exact in general.) In particular, we may check injectivity or surjectivity of a morphism
of quasicoherent sheaves by checking on an affine cover.

Warning: If 0 → F → G → H → 0 is an exact sequence of quasicoherent sheaves, then
for any open set

0 → F(U) → G(U) → H(U)

is exact, and we have exactness on the right is guaranteed to hold only if U is affine. (To
set you up for cohomology: whenever you see left-exactness, you expect to eventually
interpret this as a start of a long exact sequence. So we are expecting H1’s on the right,
and now we expect that H1(Spec A,F) = 0. This will indeed be the case.)

2.B. EXERCISE (CONNECTION TO ANOTHER DEFINITION). Show that an OX-module F
on a scheme X is quasicoherent if and only if there exists an open cover by Ui such that
on each Ui, F |Ui

is isomorphic to the cokernel of a map of two free sheaves:
O⊕I

Ui
→ O⊕J

Ui
→ F |Ui

→ 0

is exact. We have thus connected our definitions to the definition given at the very start
of the chapter.

We then began to discuss module-like constructions for quasicoherent sheaves, and I’ve
left these for the next day’s notes, so all of our discussion on that topic is in one place.
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