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This is the last class of the quarter! We will finish with dimension theory today.

1. DIMENSION AND TRANSCENDENCE DEGREE

We now prove an alternative interpretation for dimension for irreducible varieties.

1.1. Theorem (dimension = transcendence degree). — Suppose A is a finitely-generated domain
over a field k. Then dim Spec A is the transcendence degree of the fraction field FF(A) over k.

By “finitely generated domain over k”, we mean “a finitely generated k-algebra that is
an integral domain”.

In case you haven’t seen the notion of transcendence degree, here is a quick summary
of the relevant facts. Suppose K/k is a finitely generated field extension. Then any two
maximal sets of algebraically independent elements of K over k (i.e. any set with no al-
gebraic relation) have the same size (a non-negative integer or ∞). If this size is finite,
say n, and x1, . . . , xn is such a set, then K/k(x1, . . . , xn) is necessarily a finitely generated
algebraic extension, i.e. a finite extension. (Such a set x1, . . . , xn is called a transcendence
basis, and n is called the transcendence degree.)

In particular, we see that dim An
k = n. However, our proof of Theorem 1.1 will go

through this fact, so it isn’t really a Corollary.

Date: Wednesday, December 6, 2007.
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1.2. Sample consequences. We will prove Theorem 1.1 shortly. But we first show
that it is useful by giving some immediate consequences. We begin with a proof of the
Nullstellensatz, promised earlier.

1.A. EXERCISE: NULLSTELLENSATZ FROM DIMENSION THEORY.
(a) Suppose A = k[x1, . . . , xn]/I, where k is an algebraically closed field and I is some
ideal. Then the maximal ideals are precisely those of the form (x1 − a1, . . . , xn − an),
where ai ∈ k. This version (the “weak Nullstellensatz”) was stated earlier.
(b) Suppose A = k[x1, . . . , xn]/I where k is not necessarily algebraically closed. Show that
every maximal ideal of A has a residue field that is a finite extension of k. This version
was stated in earlier. (Hint for both parts: the maximal ideals correspond to dimension 0

points, which correspond to transcendence degree 0 extensions of k, i.e. finite extensions
of k. If k = k, the maximal ideals correspond to surjections f : k[x1, . . . , xn] → k. Fix
one such surjection. Let ai = f(xi), and show that the corresponding maximal ideal is
(x1 − a1, . . . , xn − an).)

1.3. Points of A2
k. We can now confirm that we have named all the primes of k[x, y] where

k is algebraically closed (as promised earlier when k = C). Recall that we have discovered
the primes (0), f(x, y) where f is irreducible, and (x − a, y − b) where a, b ∈ k. As A2

k is
irreducible, there is only one irreducible subset of codimension 0. By the Proposition
from last day about UFDs, all codimension 1 primes are principal. By the inequality
dim X + codimY X = dim Y, there are no primes of codimension greater than 2, and any
prime of codimension 2 must be maximal. We have identified all the maximal ideals of
k[x, y] by the Nullstellensatz.

1.B. IMPORTANT EXERCISE. Suppose X is an irreducible variety. Show that dim X is the
transcendence degree of the function field (the stalk at the generic point) OX,η over k. Thus
(as the generic point lies in all non-empty open sets) the dimension can be computed in
any open set of X. (This is not true in general, see §3.4.)

Here is an application that you might reasonably have wondered about before thinking
about algebraic geometry.

1.C. EXERCISE. Suppose f(x, y) and g(x, y) are two complex polynomials (f, g ∈ C[x, y]).
Suppose f and g have no common factors. Show that the system of equations f(x, y) =
g(x, y) = 0 has a finite number of solutions. (This isn’t essential for what follows. But it
is a basic fact, and very believable.)

1.D. EXERCISE. Suppose X ⊂ Y is an inclusion of irreducible k-varieties, and η is the
generic point of X. Show that dim X + dimOY,η = dim Y. Hence show that dim X +
codimY X = dim Y. Thus for varieties, the inequality dim X + codimY X ≤ dim Y is always
an equality.
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1.E. EXERCISE. Show that Spec k[w, x, y, z]/(wz − xy, wy − x2, xz − y2) is an integral
surface. You might expect it to be a curve, because it is cut out by three equations in 4-
space. (You may recognize this as the affine cone over the twisted cubic.) It turns out that
you actually need three equations to cut out this surface. The first equation cuts out a
threefold in four-space (by Krull’s theorem 3.2, see later). The second equation cuts out a
surface: our surface, along with another surface. The third equation cuts out our surface,
and removes the “extraneous component”. One last aside: notice once again that the cone
over the quadric surface k[w, x, y, z]/(wz − xy) makes an appearance.)

1.4. Noether Normalization.

Hopefully you are now motivated to understand the proof of Theorem 1.1 on dimen-
sion and transcendence degree. To set up the argument, we introduce another important
and ancient result, Noether’s Normalization Lemma.

1.5. Noether Normalization Lemma. — Suppose A is an integral domain, finitely generated over
a field k. If tr.deg.kA = n, then there are elements x1, . . . , xn ∈ A, algebraically independent
over k, such that A is a finite (hence integral) extension of k[x1, . . . , xn].

The geometric content behind this result is that given any integral affine k-scheme X,
we can find a surjective finite morphism X → An

k , where n is the transcendence degree of
the function field of X (over k). Surjectivity follows from the Going-Up Theorem.

Nagata’s proof of Noether normalization ?. Suppose we can write A = k[y1, . . . , ym]/p, i.e.
that A can be chosen to have m generators. Note that m ≥ n. We show the result by
induction on m. The base case m = n is immediate.

Assume now that m > n, and that we have proved the result for smaller m. We will
find m − 1 elements z1, . . . , zm−1 of A such that A is finite over A ′ := k[z1, . . . , zm−1] (i.e.
the subring of A generated by z1, . . . , zm−1). Then by the inductive hypothesis, A ′ is finite
over some k[x1, . . . , xn], and A is finite over A ′, so A is finite over k[x1, . . . , xn].

A

finite

A ′ = k[z1, . . . , zm−1]/p

finite

k[x1, . . . , xn]

As y1, . . . , ym are algebraically dependent, there is some non-zero algebraic relation
f(y1, . . . , ym) = 0 among them (where f is a polynomial in m variables).

Let z1 = y1 −yr1
m, z2 = y2 −yr2

m , . . . , zm−1 = ym−1 −y
rm−1
m , where r1, . . . , rm−1 are positive

integers to be chosen shortly. Then

f(z1 + yr1
m, z2 + yr2

m, . . . , zm−1 + yrm−1
m , ym) = 0.
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Then upon expanding this out, each monomial in f (as a polynomial in m variables) will
yield a single term in that is a constant times a power of ym (with no zi factors). By
choosing the ri so that 0 � r1 � r2 � · · · � rm−1, we can ensure that the powers of
ym appearing are all distinct, and so that in particular there is a leading term yN

m, and all
other terms (including those with zi-factors) are of smaller degree in ym. Thus we have
described an integral dependence of ym on z1, . . . , zm−1 as desired. �

1.6. Aside: the geometric idea behind Nagata’s proof. There is some geometric intuition
behind this. Suppose we have an m-dimensional variety in A

n
k with m < n, for example

xy = 1 in A2. One approach is to project it to a hyperplane via a finite morphism. In
the case of xy = 1, if we projected to the x-axis, it wouldn’t be finite, roughly speaking
because the asymptote x = 0 prevents the map from being closed. But if we projected to
a line, we might hope that we would get rid of this problem, and indeed we usually can:
this problem arises for only a finite number of directions. But we might have a problem
if the field were finite: perhaps the finite number of directions in which to project each
have a problem. (The reader may show that if k is an infinite field, then the substitution
in the above proof zi = yi − yri

m can be replaced by the linear substitution zi = yi − aiym

where ai ∈ k, and that for a non-empty Zariski-open choice of ai, we indeed obtain a
finite morphism.) Nagata’s trick in general is to “jiggle” the variables in a non-linear way,
and that this is enough to prevent non-finiteness of the map.

Proof of Theorem 1.1 on dimension and transcendence degree. Suppose X is an integral affine
k-scheme. We show that dim X equals the transcendence degree n of its function field, by
induction on n. Fix X, and assume the result is known for all transcendence degrees less
than n.

By Noether normalization, there exists a surjective finite morphism map X → An
k . By

the Going-Up theorem, dim X = dim An
k . If n = 0, we are done, as dim A0

k = 0.

We now show that dim An
k = n for n > 0, by induction. Clearly dim An

k ≥ n, as we can
describe a chain of irreducible subsets of length n + 1: if x1, . . . , xn are coordinates on A

n,
consider the chain of ideals

(0) ⊂ (x1) ⊂ · · · ⊂ (x1, . . . , xn)

in k[x1, . . . , xn]. Suppose we have a chain of prime ideals of length at least n:

(0) = p0 ⊂ · · · ⊂ pm.

where p1 is a codimension 1 prime ideal. Then p1 is principal (as k[x1, . . . , xn] is a unique
factorization domain, a Proposition proved on Monday) say p1 = (f(x1, . . . , xn)), where f

is an irreducible polynomial. Then k[x1, . . . , xn]/(f(x1, . . . , xn)) has transcendence degree
n − 1, so by induction,

dim k[x1, . . . , xn]/(f) = n − 1.

�
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2. IMAGES OF MORPHISMS, AND CHEVALLEY’S THEOREM

We can now prove Chevalley’s Theorem 2.1, discussed earlier.

2.1. Chevalley’s Theorem. — Suppose f : X → Y is a morphism of finite type of Noetherian
schemes. Then the image of any constructable set is constructable.

The proof will use Noether normalization. This is remarkable: Noether normalization
is about finitely generated algebras over a field, but there is no field in the statement of
Chevalley’s theorem. Hence if you prefer to work over arbitrary rings (or schemes), this
shows that you still care about facts about finite type schemes over a field. Conversely,
even if you are interested in finite type schemes over a given field (like C), the field that
comes up in the proof of Chevalley’s theorem is not that field, so even if you prefer to
work over C, this argument shows that you still care about working over arbitrary fields,
not necessarily algebraically closed.

2.A. HARD EXERCISE. Reduce the proof of Chevalley’s theorem 2.1 to the following
statement: suppose f : X = Spec A → Y = Spec B is a dominant morphism, where A and
B are domains, and f corresponds to φ : B → B[x1, . . . , xn]/I ∼= A. Then the image of f

contains a dense open subset of Spec B. (Hint: Make a series of reductions. The notion of
constructable is local, so reduce to the case where Y is affine. Then X can be expressed as a
finite union of affines; reduce to the case where X is affine. X can be expressed as the finite
union of irreducible components; reduce to the case where X is irreducible. Reduce to
the case where X is reduced. By considering the closure of the image of the generic point
of X, reduce to the case where Y also is integral (irreducible and reduced), and X → Y is
dominant. Use Noetherian induction in some way on Y.)

Proof. We prove the statement given in the previous exercise. Let K := FF(B). Now A⊗B K

is a localization of A with respect to B∗ (interpreted as a subset of A), so it is a domain,
and it is finitely generated over K (by x1, . . . , xn), so it has finite transcendence degree r

over K. Thus by Noether normalization, we can find a subring K[y1, . . . , yr] ⊂ A ⊗B K, so
that A⊗B K is integrally dependent on K[y1, . . . , yr]. We can choose the yi to be in A: each
is in (B∗)−1A to begin with, so we can replace each yi by a suitable K-multiple.

Sadly A is not necessarily integrally dependent on A[y1, . . . , yr] (as this would imply
that Spec A → Spec B is surjective by the Going-Up Theorem). However, each xi satisfies
some integral equation

xn
i + f1(y1, . . . , yr)x

n−1
i + · · ·+ fn(y1, . . . , yr) = 0

where fj are polynomials with coefficients in K = FF(B). Let g be the product of the
denominators of all the coefficients of all these polynomials (a finite set). Then Ag is
integral over Bg[y1, . . . , yr], and hence Spec Ag → Spec Bg is surjective; Spec Bg is our
open subset. �
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3. FUN IN CODIMENSION ONE: KRULL’S PRINCIPAL IDEAL THEOREM, ALGEBRAIC
HARTOGS’ LEMMA, AND MORE

In this section, we’ll explore a number of results related to codimension one.

Codimension one primes of Z and k[x, y] correspond to prime numbers and irreducible
polynomials respectively. We will make this link precise for unique factorization do-
mains. Then we introduce two results that apply in more general situations, and link
functions and the codimension one points where they vanish, Krull’s Principal Ideal The-
orem 3.2, and Algebraic Hartogs’ Lemma 3.6. We will find these two theorems very use-
ful. For example, Krull’s Principal Ideal Theorem will help us compute codimensions,
and will show us that codimension can behave oddly, and Algebraic Hartogs’ Lemma
will give us a useful characterization of Unique Factorization Domains (Proposition 3.8).

The results in this section will require (locally) Noetherian hypotheses.

3.1. Krull’s Principal Ideal Theorem. As described earlier in the chapter, in analogy
with linear algebra, we have the following.

3.2. Krull’s Principal Ideal Theorem (geometric version). — Suppose X is a Noetherian scheme,
and f is a function. Then the irreducible components of V(f) are codimension 0 or 1.

This is clearly equivalent to the following algebraic statement.

3.3. Krull’s Principal Ideal Theorem (algebraic version). — Suppose A is a Noetherian ring, and
f ∈ A. Then every minimal prime p containing f has codimension at most 1. If furthermore f is
not a zero-divisor, then every minimal prime p containing f has codimension precisely 1.

The full proof is technical, so I’ll postpone it to §4, and you shouldn’t read it unless you
really want to.

But this immediately useful. For example, consider the scheme Spec k[w, x, y, z]/(wx −
yz). What is its dimension? It is cut out by one non-zero equation wx − yz in A4, so it is a
threefold.

3.A. EXERCISE. What is the dimension of Spec k[w, x, y, z]/(wz−xy, y17+z17)? (Be careful
to check they hypotheses before invoking Krull!)

3.B. EXERCISE. Show that an irreducible homogeneous polynomial in n + 1 variables
over a field k describes an integral scheme of dimension n − 1.

3.C. EXERCISE (IMPORTANT FOR LATER). (a) (Hypersurfaces meet everything of dimension
at least 1 in projective space — unlike in affine space.) Suppose X is a closed subset of Pn

k of
dimension at least 1, and H a nonempty hypersurface in P

n
k . Show that H meets X. (Hint:
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consider the affine cone, and note that the cone over H contains the origin. Use Krull’s
Principal Ideal Theorem 3.3.)
(b) (Definition: Subsets in Pn cut out by linear equations are called linear subspaces.
Dimension 1, 2 linear subspaces are called lines and planes respectively.) Suppose X ↪→
Pn

k is a closed subset of dimension r. Show that any codimension r linear space meets X.
Hint: Refine your argument in (a). (In fact any two things in projective space that you
might expect to meet for dimensional reasons do in fact meet. We won’t prove that here.)
(c) Show further that there is an intersection of r + 1 hypersurfaces missing X. (The key
step: show that there is a hypersurface of sufficiently high degree that doesn’t contain
every generic point of X. Show this by induction on the number of generic points. To get
from n to n + 1: take a hypersurface not vanishing on p1, . . . , pn. If it doesn’t vanish on
pn+1, we’re done. Otherwise, call this hypersurface fn+1. Do something similar with n+1

replaced by i (1 ≤ i ≤ n). Then consider
∑

i f1 · · · f̂i · · · fn+1.)

3.4. Pathologies of the notion of “codimension”. We can use Krull’s Principal Ideal
Theorem to produce the long-promised example of pathology in the notion of codimen-
sion. Let A = k[x](x)[t]. In other words, elements of A are polynomials in t, whose coeffi-
cients are quotients of polynomials in x, where no factors of x appear in the denominator.
(Warning: A is not isomorphic to k[x, t](x).) Clearly, A is a domain, and (xt − 1) is not a
zero divisor. You can verify that A/(xt− 1) ∼= k[x](x)[1/x] ∼= k(x) — “in k[x](x), we may di-
vide by everything but x, and now we are allowed to divide by x as well” — so A/(xt−1)
is a field. Thus (xt − 1) is not just prime but also maximal. By Krull’s theorem, (xt − 1)
is codimension 1. Thus (0) ⊂ (xt − 1) is a maximal chain. However, A has dimension
at least 2: (0) ⊂ (t) ⊂ (x, t) is a chain of primes of length 3. (In fact, A has dimension
precisely 2, although we don’t need this fact in order to observe the pathology.) Thus we
have a codimension 1 prime in a dimension 2 ring that is dimension 0. Here is a picture
of this lattice of ideals.

(x, t)

(t)

DD
DD

DD
DD

(xt − 1)

vvvvvvvvv

(0)

This example comes from geometry; it is enlightening to draw a picture see Figure 1.
Spec k[x](x) corresponds to a germ of A1

k near the origin, and Spec k[x](x)[t] corresponds to
“this × the affine line”. You may be able to see from the picture some motivation for this
pathology — note that V(xt − 1) doesn’t meet V(x), so it can’t have any specialization on
V(x), and there nowhere else for V(xt − 1) to specialize.

It is disturbing that this misbehavior turns up even in a relative benign-looking ring.

3.D. UNIMPORTANT EXERCISE. Show that it is false that if X is an integral scheme, and U

is a non-empty open set, then dim U = dim X.
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V(x)

Spec k[x](x)

Spec k[x](x)[t]

V(xt − 1)

FIGURE 1. Dimension and codimension behave oddly on the surface Spec k[x](x)[t]

3.5. Algebraic Hartogs’ Lemma for Noetherian normal schemes.

Hartogs’ Lemma in several complex variables states (informally) that a holomorphic
function defined away from a codimension two set can be extended over that. We now
describe an algebraic analog, for Noetherian normal schemes.

3.6. Algebraic Hartogs’ Lemma. — Suppose A is a Noetherian normal domain.
A = ∩p codimension 1Ap.

The equality takes place inside FF(A); recall that any localization of a domain A is
naturally a subset of FF(A). Warning: No one else calls this Algebraic Hartogs’ Lemma.
I’ve called it this because I find the that it parallels the statement in complex geometry.
The proof is technical, so we postpone it to §3.9. (One can state Algebraic Hartogs’ Lemma
more generally in the case that Spec A is a Noetherian normal scheme, meaning that A is
a product of Noetherian normal domains; the reader may wish to do so. A more general
statement is that if A is a Noetherian domain, then ∩codim P=1AP is the integral closure of
A (Atiyah-Macdonald, Cor. 5.22). We won’t need this. And this “domain” condition can
also be relaxed.)

One might say that if f ∈ FF(A) does not lie in Ap where p has codimension 1, then f has
a pole at [p], and if f ∈ FF(A) lies in pAp where p has codimension 1, then f has a zero at
[p]. It is worth interpreting Algebraic Hartogs’ Lemma as saying that a rational function
on a normal scheme with no poles is in fact regular (an element of A). More generally, if
X is a Noetherian normal scheme, we can define zeros and poles of rational functions on
X. (We will soon define the order of a zero or a pole.)
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3.E. EXERCISE. Suppose f is an element of a normal domain A, and f is contained in no
codimension 1 primes. Show that f is a unit.

3.F. EXERCISE. Suppose f and g are two global sections of a Noetherian normal scheme,
not vanishing at any associated point, with the same poles and zeros. Show that each is a
unit times the other.

3.7. A useful characterization of unique factorization domains.

We can use Algebraic Hartogs’ Lemma 3.6 to prove one of the four things you need to
know about unique factorization domains.

3.8. Proposition. — Suppose that A is a Noetherian domain. Then A is a Unique Factorization
Domain if and only if all codimension 1 primes are principal.

This contains the Proposition last day showing that in a UFD, all height 1 primes are
principal, and (in some sense) its converse.

Proof. We have already shown in last day (in the Proposition mentioned in the previous
sentence) that if A is a Unique Factorization Domain, then all codimension 1 primes are
principal. Assume conversely that all codimension 1 primes of A are principal. I claim
that the generators of these ideals are irreducible, and that we can uniquely factor any
element of A into these irreducibles, and a unit. First, suppose (f) is a codimension 1

prime ideal p. Then if f = gh, then either g ∈ p or h ∈ p. As codim p > 0, p 6= 0, so by
Nakayama’s Lemma (as p is finitely generated), p 6= p2. Thus both g and h cannot be in
p. Say g /∈ p. Then g is contained in no codimension 1 primes (as f was contained in only
one, namely p), and hence is a unit by Exercise 3.E.

Finally, we show that any non-zero element f of A can be factored into irreducibles.
Now V(f) is contained in a finite number of codimension 1 primes, as (f) as a finite num-
ber of associated primes, and hence a finite number of minimal primes. We show that
any nonzero f can be factored into irreducibles by induction on the number of codimen-
sion 1 primes containing f. In the base case where there are none, then f is a unit by
Exercise 3.E. For the general case where there is at least one, say f ∈ p = (g). Then
f = gnh for some h /∈ (g). (Reason: otherwise, we have an ascending chain of ideals
(f) ⊂ (f/g) ⊂ (f/g2) ⊂ · · · , contradicting Noetherianness.) Thus f/gn ∈ A, and is con-
tained in one fewer codimension 1 primes. �

3.9. Proof of Algebraic Hartogs’ Lemma 3.6 ?. This proof does not shed light on any of
the other discussion in this section, and thus should not be read. However, you should
sleep soundly at night knowing that the proof is this short. Obviously the right side is
contained in the left. Assume we have some x in all AP but not in A. Let I be the “ideal of
denominators”:

I := {r ∈ A : rx ∈ A}.
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(The ideal of denominators arose in an earlier discussion about normality, when we proved
the stalk-locality of normality.) We know that I 6= A, so choose q a minimal prime con-
taining I.

Observe that this construction behaves well with respect to localization (i.e. if p is any
prime, then the ideal of denominators x in Ap is the Ip, and it again measures the failure
of ‘Algebraic Hartogs’ Lemma for x,’ this time in Ap). But Hartogs’ Theorem is vacuously
true for dimension 1 rings, so hence no codimension 1 prime contains I. Thus q has
codimension at least 2. By localizing at q, we can assume that A is a local ring with
maximal ideal q, and that q is the only prime containing I. Thus

√
I = q, so there is some

n with I ⊂ qn. Take a minimal such n, so I 6⊂ qn−1, and choose any y ∈ qn−1 − qn. Let
z = yx. Then z /∈ A (so qz /∈ q), but qz ⊂ A: qz is an ideal of A.

I claim qz is not contained in q. Otherwise, we would have a finitely-generated A-
module (namely q) with a faithful A[z]-action, forcing z to be integral over A (and hence
in A) by an Exercise in the Nakayama section last day.

Thus qz is an ideal of A not contained in q, so it must be A! Thus qz = A from which
q = A(1/z), from which q is principal. But then codim Q = dim A ≤ dimA/Q Q/Q2 ≤ 1 by
Nakayama’s lemma, contradicting the fact that q has codimension at least 2. �

4. PROOF OF KRULL’S PRINCIPAL IDEAL THEOREM 3.3 ??

The details of this proof won’t matter much to us, so you should probably not read it. It
is included so you can glance at it and believe that the proof is fairly short, and you could
read it if you really wanted to.

4.1. Lemma. — If A is a Noetherian ring with one prime ideal. Then A is Artinian, i.e., it satisfies
the descending chain condition for ideals.

The notion of Artinian rings is very important, but we will get away without discussing
it much.

Proof. If A is a ring, we define more generally an Artinian A-module, which is an A-module
satisfying the descending chain condition for submodules. Thus A is an Artinian ring if
it is Artinian over itself as a module.

If m is a maximal ideal of R, then any finite-dimensional (R/m)-vector space (interpreted
as an R-module) is clearly Artinian, as any descending chain

M1 ⊃ M2 ⊃ · · ·

must eventually stabilize (as dimR/m Mi is a non-increasing sequence of non-negative in-
tegers).
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4.A. EXERCISE. Show that for any n, mn/mn+1 is a finitely-dimensional A/m-vector space.
(Hint: show it for n = 0 and n = 1. Use the dimension for n = 1 to bound the dimension
for general n.) Hence mn/mn+1 is an Artinian A-module.

As
√

0 is prime, it must be m.

4.B. EXERCISE. Prove that mn = 0 = 0 for some n. (Hint: suppose m can be generated by
m elements, each of which has kth power 0, and show that mm(k−1)+1 = 0.)

4.C. EXERCISE. Show that if 0 → M ′ → M → M ′′ → 0 is an exact sequence of mod-
ules. then M is Artinian if and only if M ′ and M ′′ are Artinian. (Hint: think about the
corresponding question about Noetherian modules, which we’ve seen before.)

Thus as we have a finite filtration

A ⊃ m ⊃ · · · ⊃ mn = 0

all of whose quotients are Artinian, so A is Artinian as well. This completes the proof of
the Lemma. �

Proof of Krull’s principal ideal theorem 3.3. Suppose we are given x ∈ A, with p a minimal
prime containing x. By localizing at p, we may assume that A is a local ring, with maximal
ideal p. Suppose q is another prime strictly contained in p.

x � o

��>
>>

>>
>>

p �
�

// A

q
0

�

@@��������

For the first part of the theorem, we must show that Aq has dimension 0. The second part
follows from our earlier work: if any minimal primes are height 0 (minimal primes of A),
f is a zero-divisor, as minimal primes of A are all associated primes of A, and elements of
associated primes of A are zero-divisors.

Now p is the only prime ideal containing (x), so A/(x) has one prime ideal. By Lemma 4.1,
A/(x) is Artinian.

We invoke a useful construction, the nth symbolic power of a prime ideal: if A is a ring,
and q is a prime ideal, then define

q(n) := {r ∈ A : rs ∈ qn for some s ∈ A − q}.

We have a descending chain of ideals in A

q(1) ⊃ q(2) ⊃ · · · ,
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so we have a descending chain of ideals in A/(x)

q(1) + (x) ⊃ q(2) + (x) ⊃ · · ·
which stabilizes, as A/(x) is Artinian. Say q(n) + (x) = q(n+1) + (x), so

q(n) ⊂ q(n+1) + (x).

Hence for any f ∈ q(n), we can write f = ax + g with g ∈ q(n+1). Hence ax ∈ q(n). As p is
minimal over x, x /∈ q, so a ∈ q(n). Thus

q(n) = (x)q(n) + q(n+1).

As x is in the maximal ideal p, the second version of Nakayama’s lemma gives q(n) =

q(n+1).

We now shift attention to the local ring Aq, which we are hoping is dimension 0. We
have q(n)Aq = q(n+1)Aq (the symbolic power construction clearly construction commutes
with respect to localization). For any r ∈ qnAq ⊂ q(n)Aq, there is some s ∈ Aq − qAq such
that rs ∈ qn+1Aq. As s is invertible, r ∈ qn+1Aq as well. Thus qnAq ⊂ qn+1Aq, but as
qn+1Aq ⊂ qnAq, we have qnAq = qn+1Aq. By Nakayama’s Lemma version 4,

qnAq = 0.

Finally, any local ring (R, m) such that mn = 0 has dimension 0, as Spec A consists of only
one point: [m] = V(m) = V(mn) = V(0) = Spec A. �
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