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This week we discussed fibered products and separatedness.

1. FIBERED PRODUCTS OF SCHEMES EXIST

We will now construct the fibered product in the category of schemes. In other words,
given X, Y → Z, we will show that X ×Z Y exists. (Recall that the absolute product in a
category is the fibered product over the final object, so X × Y = X ×Z Y in the category of
schemes, and X × Y = X ×S Y if we are implicitly working in the category of S-schemes,
for example if S is the spectrum of a field.) Notational warning: lazy people wanting to
save chalk and ink will write ×k for ×Spec k, and similarly for ×Z. It already happened in
the paragraph above!

Before we get started, we’ll make a few random remarks.

Remark 1. We’ve made a big deal about schemes being sets, endowed with a topology,
upon which we have a structure sheaf. So you might think that we’ll construct the product
in this order. However, here is a sign that something interesting happens at the level of
sets that will mess up this strategy. you should believe that if we take the product of two
affine lines (over your favorite algebraically closed field k, say), you should get the affine
plane: A1

k ×k A1
k should be A2

k. And we’ll see that this is indeed true. But the underlying
set of the latter is not the underlying set of the former —- we get additional points! Thus
products of schemes do something a little subtle on the level of sets.
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1.A. EXERCISE. If k is algebraically closed, describe a natural map of sets A1
k × A1

k → A2
k.

Show that this map is not surjective. On the other hand, show that it is a bijection on
closed points.

Remark 2. Recall that the diagram of a fibered square

W //

��

Y

��
X

f // Z

goes by a number of names, including fibered diagram, Cartesian diagram, fibered square, and
Cartesian square. Because of its geometric interpretation, in algebraic geometry it is often
called a base change diagram or a pullback diagram, and W → X is called the pullback
of Y → Z by f, and W is called the pullback of Y by f.

The reason for the phrase “base change” or “pullback” is the following. If X is a point
of Z (i.e. f is the natural map of Spec of the residue field of a point of Z into Z), then W is
interpreted as the fiber of the family.

1.B. EXERCISE. Show that in the category of topological spaces, this is true, i.e., if Y → Z is
a continuous map, and X is a point p of Z, then the fiber of Y over p is naturally identified
with X ×Z Y.

More generally, for general X → Z, the fiber of W → X over a point p of X is naturally
identified with the fiber of Y → Z over f(p).

Let’s now show that fibered products always exist in the category of schemes.

1.1. Big Theorem (fibered products always exist). — Suppose f : X → Z and g : Y → Z are
morphisms of schemes. Then the fibered product

X ×Z Y
f ′

//

g ′

��

Y

g

��
X

f // Z

exists in the category of schemes.

As always when showing that certain objects defined by universal properties exist, we
have two ways of looking at the objects in practice: by using the universal property, or by
using the details of the construction.

The key idea, roughly, is this: we cut everything up into affine open sets, do fibered
products in that category (where it turns out we have seen the concept before in a different
guise), and show that everything glues nicely. The conceptually difficult part of the proof
comes from the gluing, and realizing that we have to check almost nothing.
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The proof will be a little long, but you will notice that we repeat a kind of argument
several times. A much shorter proof is possible by interpreting this in the language of
representable functors, and we give this proof afterward for experts.

Proof. We have an extended proof by universal property. We divide the proof up into
a number of bite-sized pieces. Between bites, we will often take a break for some side
comments.

Step 1: everything affine. First, if X, Y, Z are affine schemes, say X = Spec A, Y = Spec B,
Z = Spec C, the fibered product exists, and is Spec A⊗C B. Here’s why. Suppose W is any
scheme, along with morphisms f ′′ : W → X and g ′′ : W → Y such that f ◦ f ′′ = g ◦ g ′′ as
morphisms W → Z. We hope that there exists a unique h : W → Spec A ⊗C B such that
f ′′ = g ′ ◦ h and g ′′ = f ′ ◦ h.

W
∃!?

&&LLLLLLLLLLL

g ′′

++VVVVVVVVVVVVVVVVVVVVVVVVV

f ′′

��:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

Spec A ⊗C B

g ′

��

f ′

// Spec B

g

��
Spec A

f // Spec C

But maps to affine schemes correspond precisely to maps of global sections in the other
direction (earlier exercise):

Γ(W,OW)

A ⊗C B

∃!?
ffMMMMMMMMMM

B
f ′

oo

g ′′
jjUUUUUUUUUUUUUUUUUUUU

A

g ′

OOf ′′

^^<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

C
foo

g

OO

But this is precisely the universal property for tensor product! (The tensor product is
the cofibered product in the category of rings.)

1.2. Side remark (cf. Exercise 1.A). Thus indeed A1 × A1 ∼= A2, and more generally (A1)n ∼=
An.

Step 2: fibered products with open immersions. Second, we note that the fibered product
with open immersions always exists: if Y ↪→ Z an open immersion, then for any f : X → Z,
X ×Z Y is the open subset f−1(Y). (More precisely, this open subset satisfies the universal
property.) This was an earlier exercise (which wasn’t hard).

f−1(Y)
� _

��

// Y� _

��
X

f // Z
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Step 3: fibered products of affine with almost-affine over affine. We can combine steps 1 and 2
as follows. Suppose X and Z are affine, and Y → Z factors as Y

� � i // Y ′
g // Z where i is

an open immersion and Y ′ is affine. Then X×Z Y exists. This is because if the two smaller
squares of

W //

��

Y

��
W ′ //

��

Y ′

��
X // Z

are fibered diagrams, then the “outside rectangle” is also a fibered diagram. (This was an
earlier exercise, although you should be able to see this on the spot.)

Key Step 4: fibered product of affine with arbitrary over affine exists. We now come to the key
part of the argument: if X and Z are affine, and Y is arbitrary. This is confusing when you
first see it, so we’ll first deal with a special case, when Y is the union of two affine open
sets Y1 ∪ Y2. Let Y12 = Y1 ∩ Y2.

Now for i = 1, 2, X ×Z Yi exists by Step 1; call this Wi. Also, X ×Z Y12 exists by Step 3
(call it W12), and comes with natural open immersions into W1 and W2. Thus we can glue
W1 to W2 along W12; call this resulting scheme W.

We’ll check that this is the fibered product by verifying that it satisfies the universal
property. Suppose we have maps f ′′ : V → X, g ′′ : V → Y that compose (with f and g

respectively) to the same map V → Z. We need to construct a unique map h : V → W, so
that f ′ ◦ h = g ′′ and g ′ ◦ h = f ′′.

V
∃!?

  A
A

AA
A

AA
A

g ′′

''PPPPPPPPPPPPPPP

f ′′

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

W

g ′

��

f ′

// Y

g

��
X

f // Z

For i = 1, 2, define Vi := (g ′′)−1(Yi). Define V12 := (g ′′)−1(Y12) = V1 ∩ V2. Then there is
a unique map Vi → Wi such that the composed maps Vi → X and Vi → Yi are desired
(by the universal product of the fibered product X ×Z Yi = Wi), hence a unique map
hi : Vi → W. Similarly, there is a unique map h12 : V12 → W such that the composed
maps V12 → X and V12 → Y are as desired. But the restriction of hi to V12 is one such
map, so it must be h12. Thus the maps h1 and h2 agree on V12, and glue together to a
unique map h : V → W. We have shown existence and uniqueness of the desired h. (We
are using the fact that “morphisms glue”, which corresponds to the fact that maps to a
scheme form a sheaf. This leads to a shorter explanation of the proof, which we give at
the end of this long proof.)

We have thus shown that if Y is the union of two affine open sets, and X and Z are
affine, then X ×Z Y exists.
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We now tackle the general case. (The reader may prefer to first think through the case
where “two” is replaced by “three”.) We now cover Y with open sets Yi, as i runs over
some index set (not necessarily finite!). As before, we define Wi and Wij. We can glue
these together to produce a scheme W along with open sets we identify with Wi (Exercise
4.H in the current revised version of the class 7/8 notes).

As in the two-affine case, we show that W is the fibered product by showing that it
satisfies the universal property. Suppose we have maps f ′′ : V → X, g ′′ : V → Y that
compose to the same map V → Z. We construct a unique map h : V → W, so that
f ′ ◦ h = g ′′ and g ′ ◦ h = f ′′. Define Vi = (g ′′)−1(Yi) and Vij := (g ′′)−1(Yij) = Vi ∩ Vj. Then
there is a unique map Vi → Wi such that the composed maps Vi → X and Vi → Yi are
desired, hence a unique map hi : Vi → W. Similarly, there is a unique map hij : Vij → W

such that the composed maps Vij → X and Vij → Y are as desired. But the restriction of hi

to Vij is one such map, so it must be hij. Thus the maps hi and hj agree on Vij. Thus the
hi glue together to a unique map h : V → W. We have shown existence and uniqueness
of the desired h, completing this step.

Side remark. One special case of it is called extending the base field: if X is a k-scheme,
and k ′ is a field extension (often k ′ is the algebraic closure of k), then X ×Spec k Spec k ′

(sometimes informally written X ×k k ′ or Xk ′) is a k ′-scheme. Often properties of X can
be checked by verifying them instead on Xk ′ . This is the subject of descent — certain
properties “descend” from Xk ′ to X. We have already seen that the property of being
normal descends in this way (in an earlier exercise).

Step 5: Z affine, X and Y arbitrary. We next show that if Z is affine, and X and Y are
arbitrary schemes, then X ×Z Y exists. We just follow Step 4, with the roles of X and Y

reversed, using the fact that by the previous step, we can assume that the fibered product
with an affine scheme with an arbitrary scheme over an affine scheme exists.

Step 6: Z admits an open immersion into an affine scheme Z ′, X and Y arbitrary. This is akin
to Step 3: X ×Z Y satisfies the universal property of X ×Z ′ Y.

Step 7: the general case. We again employ the trick from Step 4. Say f : X → Z, g : Y → Z

are two morphisms of schemes. Cover Z with affine open subsets Zi. Let Xi = f−1Xi and
Yi = g−1Yi. Define Zij = Zi∩Zj, and Xij and Yij analogously. Then Wi := Xi×Zi

Yi exists for
all i, and has as open sets Wij := Xij ×Zij

Yij along with gluing information satisfying the
cocycle condition (arising from the gluing information for Z from the Zi and Zij). Once
again, we show that this satisfies the universal property. Suppose V is any scheme, along
with maps to X and Y that agree when they are composed to Z. We need to show that
there is a unique morphism V → W completing the diagram

V
∃!?

  A
A

A
AA

AA
A

g ′′

((PPPPPPPPPPPPPPPP

f ′′

��0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

W

g ′

��

f ′

// Y

g

��
X

f // Z.
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Now break V up into open sets Vi = g ′′ ◦ f
−1(Zi). Then by the universal property for

Wi, there is a unique map Vi → Wi (which we can interpret as Vi → W). Thus we have
already shown uniqueness of V → W. These must agree on Vi ∩ Vj, because there is only
one map Vi∩Vj to W making the diagram commute. Thus all of these morphisms Vi → W

glue together, so we are done. �

1.3. For experts only!: Describing the existence of fibered products using high-falutin’
language.

(Thanks to Jarod for suggesting that I include this, and helping me think through how
best to present it. If you have suggestions to make this clearer — to experts of course —
please let me know!)

The previous proof can be described more cleanly in the language of representable
functors. You’ll find this enlightening only after you have absorbed the argument above
and meditated on it for a long time. For experts, we include the more abstract picture here.
You might find that this is most useful to shed light on representable functors, rather than
on the existence of the fibered product.

Recall that to each scheme X we have a contravariant functor hX from the category of
schemes Sch to the category of Sets, taking a scheme Y to Mor(Y, X). It may be more
convenient to think of it as a covariant functor hX : Schopp → Sets.

But this functor hX is better than a functor. We know that if {Ui} is an open cover of Y, a
morphism Y → X is determined by its restrictions Ui → X, and given morphisms Ui → X

that agree on the overlap Ui ∩Uj → X, we can glue them together to get a morphism Y →
X. (This is roughly our statement that “morphisms glue”.) In the language of equalizer
exact sequences,

· // Hom(Y, X) //
∏

Hom(Ui, X) ////
∏

Hom(Ui ∩ Uj, X) .

Thus morphisms to X (i.e. the functor hX) form a sheaf on every scheme X. If this holds,
we say that the functor is a sheaf. (If you want to impress your friends and frighten your
enemies, you can tell them that this is a sheaf on the big Zariski site.)

We can repeat this discussion for the category SchS of schemes over a given base
scheme S.

Notice that the definition of fibered product also gives a contravariant functor

hX×ZY : Sch → Sets :

to the scheme W we associate the set of commutative diagrams

W

�� ��

Y

��
X // Z
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(What is the image of W → W ′ under this functor?) The existence of fibered product
is precise the statement that there is a natural isomorphism of functors hX×ZY

∼= hW for
some scheme W. In that case, we say that hX×ZY is a representable functor, and that it is
representable by W. The usual universal property argument shows that this determines
W up to unique isomorphism.

We can now interpret Key Step 4 of the proof of Theorem 1.1 as follows. Suppose X

and Z are affine, and Yi is an affine open cover of Y. Suppose the covariant functor FY :
(SchY)opp → Sets is a sheaf on the category of Y-schemes SchY , and FYi

is the “restriction
of the sheaf to Yi” (where we include only those Y-schemes that are in fact Yi-schemes, i.e.
those T → Y whose structure morphisms factor through Yi, T → Yi → Y).

1.C. EXERCISE. Show that if FYi
is representable, then so is FY . (Hint: this is basically just

the proofs of Steps 3 and 4.)

We then apply this in the special case where FY is given by

( T
f // Y ) 7→



















T
f //

��

Y

��
X // Z



















.

[I don’t see how to make that diagram on the right look good...]

1.D. EXERCISE. Check that this FY is a sheaf. (This is not hard once you realize what this
is asking.)

Then Steps 5 through 7 are one-liners; you should think these through. (For Step 5,
you’ll replace Y by X. For Steps 6/7, you’ll replace Y by Z.)

We can make this argument slicker still (and not have to repeat three similar arguments)
as follows. (This is frighteningly abstract.) One of Grothendieck’s insights is that we
should hope to treat contravariant functors Sch → Sets as “geometric spaces”, even if
we don’t know if they are representable. For this reason, I’ll call such a functor (for this
section only!) a functor-space, to emphasize that we are thinking of it as some sort of
spaces. Many notions carry over to this more general setting without change, and some
notions are easier. For example, a morphism of functor-spaces h → h ′ is just a natural
transformation of functors. The following exercise shows that this extends the notion of
morphisms of schemes.

1.E. EXERCISE. Show that if X and Y are schemes, then there is a natural bijection between
morphisms of schemes X → Y and morphisms of functor spaces hX → hY . (Hint: this has
nothing to do with schemes; your argument will work in any category.)
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Also, fibered products of functor-spaces always exist: h ×h ′′ h ′ may be defined by

h ×h ′′ h ′(W) = h(W) ×h ′′(W) h ′(W)

(where the fibered product on the right is a fibered product of sets, and those always
exist). Notice that this didn’t use any properties of schemes; this works with Sch replaced
by any category.

We can make some other definitions that extend notions from schemes to functor-
spaces. We say that h → h ′ express h as an open subfunctor of h ′ if for all representative
morphisms hX and maps hX → h ′, the fibered product hX ×h ′ h is representable, by u say,
and hU → hX is an open immersion. the following fibered square may help.

hY //

open
��

h

��
hX // h ′

Notice that a morphism of representable functor spaces hW → hZ is an open immersion
if and only if W → Z is an open immersion, so this indeed extends the notion of open
immersion to these functors.

A collection hi of open subfunctors of h ′ is said to cover h ′ if for each map hX → h ′

from a representable subfunctor, the corresponding open subsets Ui ↪→ X cover X.

1.F. KEY EXERCISE. If a functor-space h is a sheaf that has an open cover by representable
functor-spaces (“is covered by schemes”), then h is representable.

Given this formalism, we can now give a quick description of the proof of the existence
of fibered products. Exercise 1.D showed that hX×ZY is a sheaf.

1.G. EXERCISE. Suppose (Zi)i is an affine cover of Z, (Xij)j is an affine cover of the
preimage of Zi in X, and (Yik)k is an affine cover of the preimage of Zi in Y. Show that
(hXij×Zi

Yik
)ijk is an open cover of the functor hX×ZY . (Hint: use the definition of open

covers!)

But (hXij×Zi
Yik

)ijk is representable (fibered products of affines over and affine exist, Step
1 of the proof of Theorem 1.1), so we are done.

2. COMPUTING FIBERED PRODUCTS IN PRACTICE

Before giving a bunch of examples, we should first see how to actually compute fibered
products in practice.

There are four types of morphisms that it is particularly easy to take fibered products
with, and all morphisms can be built from these four atomic components.
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(1) Base change by open immersions.

We’ve already done this, and we used it in the proof that fibered products of schemes
exist.

f−1(Y)
� _

��

// Y� _

��
X

f // Z

I’ll describe the remaining three on the level of affine open sets, because we obtain
general fibered products by gluing.

(2) Adding an extra variable.

2.A. EASY ALGEBRA EXERCISE.. Show that B ⊗A A[t] ∼= B[t].

Hence the following is a fibered diagram.

Spec B[t]

��

// Spec A[t]

��
Spec B // Spec A

(3) Base change by closed immersions

2.B. EXERCISE. Suppose φ : A → B is a ring homomorphism, and I ⊂ A is an ideal.
Let Ie := 〈φ(i)〉i∈I ⊂ B be the extension of I to B. Describe a natural isomorphism B/Ie ∼=
B ⊗A (A/I). (Hint: consider I → A → A/I → 0, and use the right-exactness of ⊗AB.)

As an immediate consequence: the fibered product with a subscheme is the subscheme
of the fibered product in the obvious way. We say that “closed immersions are preserved
by base change”.

As an application, we can compute tensor products of finitely generated k algebras
over k. For example, we have a canonical isomorphism

k[x1, x2]/(x2
1 − x2) ⊗k k[y1, y2]/(y3

1 + y3
2)

∼= k[x1, x2, y1, y2]/(x2
1 − x2, y

3
1 + y3

2).

2.1. Example. We can also use now compute C ⊗R C:
C ⊗R C ∼= C ⊗R (R[x]/(x2 + 1))

∼= (C ⊗R R[x])/(x2 + 1) by (3)
∼= C[x]/(x2 + 1) by (2)
∼= C[x]/(x − i)(x + i)
∼= C × C
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Thus Spec C ×R Spec C ∼= Spec C
∐

Spec C. This example is the first example of many dif-
ferent behaviors. Notice for example that two points somehow correspond to the Galois
group of C over R; for one of them, x (the “i” in one of the copies of C) equals i (the “i”
in the other copy of C), and in the other, x = −i.

(4) Base change of affine schemes by localization.

2.C. EXERCISE. Suppose φ : A → B is a ring homomorphism, and S ⊂ A is a multi-
plicative subset of A, which implies that φ(S) is a multiplicative subset of B. Describe a
natural isomorphism φ(S)−1B ∼= B ⊗A (S−1A).

Translation: the fibered product with a localization is the localization of the fibered
product in the obvious way. We say that “localizations are preserved by base change”.
This is handy if the localization is of the form A ↪→ Af (corresponding to taking distin-
guished open sets) or A ↪→ FF(A) (from A to the fraction field of A, corresponding to
taking generic points), and various things in between.

These four facts let you calculate lots of things in practice, as we will see throughout
the rest of this chapter.

2.D. EXERCISE: THE THREE IMPORTANT TYPES OF MONOMORPHISMS OF SCHEMES. Show
that the following are monomorphisms: open immersions, closed immersions, and local-
ization of affine schemes. As monomorphisms are closed under composition, composi-
tions of the above are also monomorphisms (e.g. locally closed immersions, or maps from
Spec of stalks at points of X to X).

3. PULLING BACK FAMILIES AND FIBERS OF MORPHISMS

3.1. Pulling back families.

We can informally interpret fibered product in the following geometric way. Suppose
Y → Z is a morphism. We interpret this as a “family of schemes parametrized by a base
scheme (or just plain base) Z.” Then if we have another morphism X → Z, we interpret
the induced map X ×Z Y → X as the “pulled back family”.

X ×Z Y //

pulled back family
��

Y

family
��

X // Z

We sometimes say that X ×Z Y is the scheme-theoretic pullback of Y, scheme-theoretic
inverse image, or inverse image scheme of Y. For this reason, fibered product is often
called base change or change of base or pullback.

3.2. Fibers of morphisms.
10



Suppose p → Z is the inclusion of a point (not necessarily closed). (If K is the residue
field of a point, we mean the canonical map Spec K → Z.) Then if g : Y → Z is any
morphism, the base change with p → Z is called the fiber of g above p or the preimage
of p, and is denoted g−1(p). If Z is irreducible, the fiber above the generic point is called
the generic fiber. In an affine open subscheme Spec A containing p, p corresponds to
some prime ideal p, and the morphism corresponds to the ring map A → Ap/pAp. this is
the composition if localization and closed immersion, and thus can be computed by the
tricks above.

(Quick remark: p → Z is a monomorphism, by Exercise 2.D.)

3.3. Example. The following example has many enlightening aspects. Consider the
projection of the parabola y2 = x to the x axis over Q, corresponding to the map of rings
Q[x] → Q[y], with x 7→ y2. (If Q alarms you, replace it with your favorite field and see
what happens.)

Then the preimage of 1 is two points:
Spec Q[x, y]/(y2 − x) ⊗Q Spec Q[x]/(x − 1) ∼= Spec Q[x, y]/(y2 − x, x − 1)

∼= Spec Q[y]/(y2 − 1)

∼= Spec Q[y]/(y − 1)
∐

Spec Q[y]/(y + 1).

The preimage of 0 is one nonreduced point:
Spec Q[x, y]/(y2 − x, x) ∼= Spec Q[y]/(y2).

The preimage of −1 is one reduced point, but of “size 2 over the base field”.
Spec Q[x, y]/(y2 − x, x + 1) ∼= Spec Q[y]/(y2 + 1) ∼= Spec Q[i].

The preimage of the generic point is again one reduced point, but of “size 2 over the
residue field”, as we verify now.

Spec Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Spec Q[y] ⊗ Q(y2)

i.e. you take elements polynomials in y, and you are allowed to invert polynomials in y2.
A little thought shows you that you are then allowed to invert polynomials in y, as if f(y)
is any polynomial in y, then

1

f(y)
=

f(−y)

f(y)f(−y)
,

and the latter denominator is a polynomial in y2. Thus
Spec Q[x, y]/(y2 − x) ⊗ Q(x) ∼= Q(y)

which is a degree 2 field extension of Q(x).

Notice the following interesting fact: in each case, the number of preimages can be
interpreted as 2, where you count to two in several ways: you can count points (as in
the case of the preimage of 1); you can get non-reduced behavior (as in the case of the
preimage of 0); or you can have a field extension of degree 2 (as in the case of the preimage
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of −1 or the generic point). In each case, the fiber is an affine scheme whose dimension as
a vector space over the residue field of the point is 2. Number theoretic readers may have
seen this behavior before. This is going to be symptomatic of a very special and important
kind of morphism (a finite flat morphism).

Try to draw a picture of this morphism if you can, so you can develop a pictoral short-
hand for what is going on.

Here are some other examples.

3.A. EXERCISE. Prove that An
R

∼= An
Z ×Spec Z Spec R. Prove that Pn

R
∼= Pn

Z ×Spec Z Spec R.

3.B. EXERCISE. Show that the underlying topological space of the (scheme-theoretic)
fiber X → Y above a point p is naturally identified with the topological fiber of X → Y

above p.

3.C. EXERCISE. Show that for finite-type schemes over C, the closed points (=complex-
valued points by the Nullstellensatz) of the fibered product correspond to the fibered
product of the complex-valued points. (You will just use the fact that C is algebraically
closed.)

3.4. Here is a definition in common use. The terminology is a bit unfortunate, because
it is a second (different) meaning of “points of a scheme”. (Sadly, we’ll even see a third
different meaning soon, §4.2.) If T is a scheme, the T -valued points of a scheme X are
defined to be the morphism T → X. They are sometimes denoted X(T). If A is a ring
(most commonly in this context a field), the A-valued points of a scheme X are defined
to be the morphism Spec A → X. They are sometimes denoted X(A). For example, if k is
an algebraically closed field, then the k-valued points of a finite type scheme are just the
closed points; but in general, things can be weirder. (When we say “points of a scheme”,
and not A-valued points, we will always mean the usual meaning, not this meaning.)

3.D. EXERCISE. Describe a natural bijection (X ×Z Y)(T) ∼= X(T) ×Z(T) Y(T). (The right
side is a fibered product of sets.) In other words, fibered products behaves well with
respect to T -valued points. This is one of the motivations for this notion. (This generalizes
Exercise 3.C.)

3.E. EXERCISE. Consider the morphism of schemes X = Spec k[t] → Y = Spec k[u]
corresponding to k[u] → k[t], t = u2, where char k 6= 2. Show that X×Y X has 2 irreducible
components. (What happens if char k = 2?)

3.F. EXERCISE GENERALIZING C ⊗R C. Suppose L/K is a finite Galois field extension.
What is L ⊗K L?

12



3.G. HARD BUT FASCINATING EXERCISE FOR THOSE FAMILIAR WITH THE GALOIS GROUP
OF Q OVER Q. Show that the points of Spec Q⊗QQ are in natural bijection with Gal(Q/Q),
and the Zariski topology on the former agrees with the profinite topology on the latter.

3.H. WEIRD EXERCISE. Show that Spec Q(t)⊗Q C has closed points in natural correspon-
dence with the transcendental complex numbers. (If the description Spec C[t]⊗Q[t] Q(t) is
more striking, you can use that instead.) This scheme doesn’t come up in nature, but it is
certainly neat!

4. PROPERTIES PRESERVED BY BASE CHANGE

We now discuss a number of properties that behave well under base change.

We’ve already shown that the notion of “open immersion” is preserved by base change.
We did this by explicitly describing what the fibered product of an open immersion is: if
Y ↪→ Z is an open immersion, and f : X → Z is any morphism, then we checked that the
open subscheme f−1(Y) of X satisfies the universal property of fibered products.

We have also shown that the notion of “closed immersion” is preserved by base change
(§2 (3)). In other words, given a fiber diagram

W //

��

X

��
Y

� �cl. imm.// Z

where Y ↪→ Z is a closed immersion, W → X is as well.

4.A. EASY EXERCISE. Show that locally principal closed subschemes pull back to locally
principal closed subschemes.

Similarly, other important properties are preserved by base change.

4.B. EXERCISE. Show that the following properties of morphisms are preserved by base
change.

(a) quasicompact
(b) quasiseparated
(c) affine morphism
(d) finite
(e) locally of finite type
(f) finite type
(g) locally of finite presentation
(h) finite presentation

13



4.C. EXERCISE. Show that the notion of “quasifinite morphism” (finite type + finite fibers)
is preserved by base change. (Warning: the notion of “finite fibers” is not preserved by
base change. Spec Q → Spec Q has finite fibers, but Spec Q ⊗Q Q → Spec Q has one point
for each element of Gal(Q/Q), see Exercise 3.G.)

4.D. EXERCISE. Show that surjectivity is preserved by base change. (Surjectivity has its
usual meaning: surjective as a map of sets.) (You may end up using the fact that for any
fields k1 and k2 containing k3, k1 ⊗k3

k2 is non-zero, and also the axiom of choice.)

4.E. EXERCISE. If P is a property of morphisms preserved by base change, and X → Y

and X ′×Y ′ are two morphisms of S-schemes with property P, show that X×S X ′ → Y×S Y ′

has property P as well.

4.1. ? Properties not preserved by base change, and how to fix them.

There are some notions that you should reasonably expect to be preserved by pullback
based on your geometric intuition. Given a family in the topological category, fibers pull
back in reasonable ways. So for example, any pullback of a family in which all the fibers
are irreducible will also have this property; ditto for connected. Unfortunately, both of
these fail in algebraic geometry, as the Example 2.1 shows:

Spec C
∐

Spec C //

��

Spec C

��
Spec C // Spec R

The family on the right (the vertical map) has irreducible and connected fibers, and the
one on the left doesn’t. The same example shows that the notion of “integral fibers” also
doesn’t behave well under pullback.

4.F. EXERCISE. Suppose k is a field of characteristic p, so k(up)/k(u) is an inseparable
extension. By considering k(up)⊗k(u)k(up), show that the notion of “reduced fibers” does
not necessarily behave well under pullback. (The fact that I’m giving you this example
should show that this happens only in characteristic p, in the presence of something as
strange as inseparability.)

We rectify this problem as follows.

4.2. A geometric point of a scheme X is defined to be a morphism Spec k → X where
k is an algebraically closed field. Awkwardly, this is now the third kind of “point” of a
scheme! There are just plain points, which are elements of the underlying set; there are
T -valued points, which are maps T → X, §3.4; and there are geometric points. Geometric
points are clearly a flavor of a T -valued point, but they are also an enriched version of a
(plain) point: they are the data of a point with an inclusion of the residue field of the point
in an algebraically closed field.

14



A geometric fiber of a morphism X → Y is defined to be the fiber over a geometric
point of Y. A morphism has connected (resp. irreducible, integral, reduced) geometric
fibers if all its geometric fibers are connected (resp. irreducible, integral, reduced).

4.G. EXERCISE. Show that the notion of “connected (resp. irreducible, integral, reduced)”
geometric fibers behaves well under base change.

4.H. EXERCISE FOR THE ARITHMETICALLY-MINDED. Show that for the morphism Spec C →
Spec R, all geometric fibers consist of two reduced points. (Cf. Example 2.1.)

4.I. EXERCISE. Recall Example 3.3, the projection of the parabola y2 = x to the x axis,
corresponding to the map of rings Q[x] → Q[y], with x 7→ y2. Show that the geometric
fibers of this map are always two points, except for those geometric fibers over 0 = [(x)].

Checking whether a k-scheme is geometrically connected etc. seems annoying: you
need to check every single algebraically closed field containing k. However, in each of
these four cases, the failure of nice behavior of geometric fibers can already be detected
after a finite field extension. For example, Spec Q(i) → Spec Q is not geometrically con-
nected, and in fact you only need to base change by Spec Q(i) to see this. We make this
precise as follows.

4.J. EXERCISE. Suppose X is a k-scheme.

(a) Show that X is geometrically irreducible if and only if X ×k ks is irreducible if and
only if X ×k K is irreducible for all field extensions K/k. (Here ks is the separable
closure of k.)

(b) Show that X is geometrically connected if and only if X ×k ks is connected if and
only if X ×k K is connected for all field extensions K/k.

(c) Show that X is geometrically reduced if and only if X ×k kp is reduced if and only
if X ×k K is reduced for all field extensions K/k. (Here kp is the perfect closure of
k.) Thus if char k = 0, then X is geometrically reduced if and only if it is reduced.

(d) Combining (a) and (c), show that X is geometrically integral if and only if X ×k K

is geometrically integral for all field extensions K/k.

5. PRODUCTS OF PROJECTIVE SCHEMES: THE SEGRE EMBEDDING

I will next describe products of projective A-schemes over A. The case of greatest initial
interest is if A = k. In order to do this, I need only describe Pm

A ×A Pn
A, because any

projective scheme has a closed immersion in some Pm
A , and closed immersions behave

well under base change, so if X ↪→ Pm
A and Y ↪→ Pn

A are closed immersions, then X×A Y ↪→
Pm

A ×A Pn
A is also a closed immersion, cut out by the equations of X and Y.

We’ll describe Pm
A ×A Pn

A, and see that it too is a projective A-scheme.

15



Before we do this, we’ll get some motivation from classical projective spaces (non-zero
vectors modulo non-zero scalars) in a special case. Our map will send [x0; x1; x2]× [y0; y1]

to a point in P5, whose co-ordinates we think of as being entries in the “multiplication
table”

[ x0y0; x1y0; x2y0;
x0y1; x1y1; x2y1 ]

This is indeed a well-defined map of sets. Notice that the resulting matrix is rank one, and
from the matrix, we can read off [x0; x1; x2] and [y0; y1] up to scalars. For example, to read
off the point [x0; x1; x2] ∈ P2, we just take the first row, unless it is all zero, in which case
we take the second row. (They can’t both be all zero.) In conclusion: in classical projective
geometry, given a point of Pm and Pn, we have produced a point in Pmn+m+n, and from
this point in Pmn+m+n, we can recover the points of Pm and Pn.

Suitably motivated, we return to algebraic geometry. We define a map

Pm
A ×A Pn

A → Pmn+m+n
A

by
([x0; . . . ; xm], [y0; . . . ; yn]) 7→ [z00; z01; · · · ; zij; · · · ; zmn]

= [x0y0; x0y1; · · · ; xiyj; · · ·xmyn].

More explicitly, we consider the map from the affine open set Ui × Vj (where Ui = D(xi)
and Vj = D(yj) to the affine open set Wij = D(zij) by

(x0/i, . . . , xm/i, y0/j, . . . , yn/j) 7→ (x0/iy0/j; . . . ; xi/iyj/j; . . . ; xm/iyn/j)

or, in terms of algebras, zab/ij 7→ xa/iyb/j.

5.A. EXERCISE. Check that these maps glue to give a well-defined morphism Pm
A ×APn

A →
Pmn+m+n

A .

I claim this morphism is a closed immersion. We can check this on an open cover of
the target (the notion of being a closed immersion is affine-local, an earlier exercise). Let’s
check this on the open set where zij 6= 0. The preimage of this open set in Pm

A × Pn
A is the

locus where xi 6= 0 and yj 6= 0, i.e. Ui × Vj. As described above, the map of rings is given
by zab/ij 7→ xa/iyb/j; this is clearly a surjection, as zaj/ij 7→ xa/i and zib/ij 7→ yb/j.

This map is called the Segre morphism or Segre embedding. If A is a field, the image
is called the Segre variety.

Here are some useful comments.

5.B. EXERCISE. Show that the Segre scheme (the image of the Segre morphism) is cut out
by the equations corresponding to

rank





a00 · · · a0n

... . . . ...
am0 · · · amn



 = 1,
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FIGURE 1. The two rulings on the quadric surface V(wz − xy) ⊂ P3. One
ruling contains the line V(w, x) and the other contains the line V(w, y).

i.e. that all 2 × 2 minors vanish. (Hint: suppose you have a polynomial in the aij that
becomes zero upon the substitution aij = xiyj. Give a recipe for subtracting polynomials
of the form monomial times 2 × 2 minor so that the end result is 0.)

5.1. Important Example. Let’s consider the first non-trivial example, when m = n = 1. We
get P1 × P1

↪→ P3. We get a single equation

rank

(

a00 a01

a10 a11

)

= 1,

i.e. a00a11−a01a10 = 0. We get our old friend, the quadric surface! Hence: the nonsingular
quadric surface wz − xy = 0 is isomorphic to P1 × P1 (Figure 1). One family of lines
corresponds to the image of {x} × P1 as x varies, and the other corresponds to the image
P1 × {y} as y varies.

Since (by diagonalizability of quadratics) all nonsingular quadratics over an algebraically
closed field are isomorphic, we have that all nonsingular quadric surfaces over an alge-
braically closed field are isomorphic to P1 × P1.

Note that this is not true over a field that is not algebraically closed. For example, over
R, w2 + x2 + y2 + z2 = 0 is not isomorphic to P1

R ×R P1
R. Reason: the former has no real

points, while the latter has lots of real points.

5.C. EXERCISE: A CO-ORDINATE-FREE DESCRIPTION OF THE SEGRE EMBEDDING. Show
that the Segre embedding can be interpreted as PV × PW → P(V ⊗ W) via the surjective
map of graded rings

Sym•(V∨ ⊗ W∨) // //
∑∞

i=0

(

Symi V∨
)

⊗
(

Symi W∨
)

“in the opposite direction”.
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Can you define the Segre embedding for the product of three projective spaces?

6. SEPARATED MORPHISMS

The notion of a separated morphism is fundamentally important. It looks weird the
first time you see it, but it is highly motivated.

6.1. Motivation. Separation is the analogue of the Hausdorff condition for manifolds
(see Exercise 6.A), so let’s review why we like Hausdorffness. Recall that a topological
space is Hausdorff if for every two points x and y, there are disjoint open neighborhoods
of x and y. The real line is Hausdorff, but the “real line with doubled origin” is not. Many
proofs and results about manifolds use Hausdorffness in an essential way. For example,
the classification of compact one-dimensional real manifolds is very simple, but if the
Hausdorff condition were removed, we would have a very wild set.

So armed with this definition, we can cheerfully exclude the line with doubled origin
from civilized discussion, and we can (finally) define the notion of a variety, in a way that
corresponds to the classical definition.

With our motivation from manifolds, we shouldn’t be surprised that all of our affine
and projective schemes are separated: certainly, in the land of real manifolds, the Haus-
dorff condition comes for free for “subsets” of manifolds. (More precisely, if Y is a man-
ifold, and X is a subset that satisfies all the hypotheses of a manifold except possibly
Hausdorffness, then Hausdorffness comes for free.)

As an unexpected added bonus, a separated morphism to an affine scheme has the
property that the intersection of a two affine open sets in the source is affine (Proposi-
tion 6.8). This will make Cech cohomology work very easily on (quasicompact) schemes.
You should see this as the analogue of the fact that in Rn, the intersection of two con-
vex sets is also convex. In fact affine schemes will be trivial from the point of view of
quasicoherent cohomology, just as convex sets in Rn are, so this metaphor is quite apt.

A lesson arising from the construction is the importance of the diagonal morphism.
More precisely given a morphism X → Y, nice consequences can be leveraged from good
behavior of the diagonal morphism δ : X → X ×Y X, usually through fun diagram chases.
This is a lesson that applies across many fields of mathematics. (Another nice gift the
diagonal morphism: it will soon give us a good algebraic definition of differentials.)

Grothendieck taught us that one should try to define properties of morphisms, not of
objects; then we can say that an object has that property if the morphism to the final
object has that property. We saw this earlier with the notion of quasicompact. In this
spirit, separation will be a property of morphisms, not schemes.

Before we define separation, we make an observation about all diagonal maps.
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X ×Y X

X

X

FIGURE 2. A neighborhood of the diagonal is covered by Uij ×Vj
Uij

6.2. Proposition. — Let X → Y be a morphism of schemes. Then the diagonal morphism δ : X →
X ×Y X is a locally closed immersion.

This locally closed subscheme of X ×Y X (the diagonal) will be denoted ∆.

Proof. We will describe a union of open subsets of X ×Y X covering the image of X, such
that the image of X is a closed immersion in this union.

6.3. Say Y is covered with affine open sets Vi and X is covered with affine open sets Uij,
with π : Uij → Vi. Then the diagonal is covered by Uij ×Vi

Uij. (Any point p ∈ X lies in
some Uij; then δ(p) ∈ Uij ×Vi

Uij. Figure 2 may be helpful.) As a reality check: Uij ×Vi
Uij

is indeed an affine open subscheme of X ×Y X, by considering the factorization

Uij ×Vi
Uij → Uij ×Y Uij → Uij ×Y X → X ×Y X

where the first arrow is an isomorphism as Vi ↪→ Y is a monomorphism (as it is an open
immersion, Exercise 2.D). The second and third arrows are open immersions as open
immersions are preserved by base change.

Finally, we’ll check that Uij → Uij ×Vi
Uij is a closed immersion. Say Vi = Spec S

and Uij = Spec R. Then this corresponds to the natural ring map R ×S R → R, which is
obviously surjective. �

The open subsets we described may not cover X×Y X, so we have not shown that δ is a
closed immersion.

19



6.4. Definition. A morphism X → Y is separated if the diagonal morphism δ : X → X×Y X

is a closed immersion. An A-scheme X is said to be separated over A if the structure mor-
phism X → Spec A is separated. When people say that a scheme (rather than a morphism)
X is separated, they mean implicitly that some morphism is separated. For example, if
they are talking about A-schemes, they mean that X is separated over A.

Thanks to Proposition 6.2, a morphism is separated if and only if the diagonal is closed.
This is reminiscent of a definition of Hausdorff, as the next exercise shows.

6.A. EXERCISE (FOR THOSE SEEKING TOPOLOGICAL MOTIVATION). Show that a topolog-
ical space X is Hausdorff if the diagonal is a closed subset of X × X. (The reason separat-
edness of schemes doesn’t give Hausdorffness — i.e. that for any two open points x and y

there aren’t necessarily disjoint open neighborhoods — is that in the category of schemes,
the topological space X × X is not in general the product of the topological space X with
itself. For example, Exercise 1.A showed that A2

k does not have the product topology on
A1

k ×k A1
k.)

6.B. IMPORTANT EASY EXERCISE. Show that open immersions and closed immersions
are separated. (Hint: Just do this by hand. Alternatively, show that monomorphisms are
separated. Open and closed immersions are monomorphisms, by Exercise 2.D.)

6.C. IMPORTANT EASY EXERCISE. Show that every morphism of affine schemes is sepa-
rated. (Hint: this was essentially done in Proposition 6.2.)

I’ll now give you an example of something separated that is not affine. The following
single calculation will imply that all quasiprojective A-schemes are separated (once we
know that the composition of separated morphisms are separated, after Thanksgiving).

6.5. Proposition. — Pn
A → Spec A is separated.

We give two proofs. The first is by direct calculation. The second requires no calcula-
tion, and just requires that you remember some classical constructions described earlier.

Proof 1: direct calculation. We cover Pn
A ×A Pn

A with open sets of the form Ui × Uj, where
U0, . . . , Un form the “usual” affine open cover. The case i = j was taken care of before, in
the proof of Proposition 6.2. If i 6= j then

Ui ×A Uj
∼= Spec A[x0/i, . . . , xn/i, y0/j, . . . , yn/j]/(xi/i − 1, yj/j − 1).

Now the restriction of the diagonal ∆ is contained in Ui (as the diagonal map composed
with projection to the first factor is the identity), and similarly is contained in Uj. Thus
the diagonal map over Ui ×A Uj is Ui ∩Uj → Ui ×A Uj. This is a closed immersion, as the
corresponding map of rings

Spec A[x0/i, . . . , xn/i, y0/j, . . . , yn/j] → Spec A[x0/i, . . . , xn/i, x
−1
j/i

]/(xi/i − 1)
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U ∩ V ∼= (U × V) ∩ ∆

U × X

X × V

∆
U × V

FIGURE 3. Small Proposition 6.6

(given by xk/i 7→ xk/i, yk/j 7→ xk/i/xj/i) is clearly a surjection (as each generator of the ring
on the right is clearly in the image — note that x−1

j/i
is the image of yi/j). �

Proof 2: classical geometry, pointed out by Jarod. Note that the diagonal map δ : Pn
A →

Pn
A ×A Pn

A followed by the Segre embedding S : Pn
A ×A Pn

A → Pn2+n (a closed immersion)
can also be factored as the second Veronese map ν2 : Pn

A → P(n+2
2 )−1 followed by a linear

map L : P(n+2
2 )−1 → Pn2+n (an earlier exercise, from when we discussed morphisms of

projective schemes via morphisms of graded rings), both of which are closed immersions.
You should verify this. This forces δ to send closed sets to closed sets (or else S ◦ δ won’t,
but L ◦ ν2 to).

Pn
A ×A Pn

A

S

&&LLLLLLLLLL

Pn
A

δ
::tttttttttt

ν2

$$I
II

II
II

II
I Pn2+n

P(n+2
2 )−1

L
99rrrrrrrrrr

We note for future reference a minor result proved in the course of Proof 1. Figure 3
may help show why this is natural.

6.6. Small Proposition. — If U and V are open subsets of an A-scheme X, then ∆ ∩ (U ×A V) ∼=
U ∩ V .

6.D. EXERCISE. Show that the line with doubled origin X is not separated, by verifying
that the image of the diagonal morphism is not closed.

21



We finally define then notion of variety!

6.7. Definition. A variety over a field k, or k-variety, is a reduced, separated scheme
of finite type over k. For example, a reduced finite type affine k-scheme is a variety. In
other words, to check if Spec k[x1, . . . , xn]/(f1, . . . , fr) is a variety, you need only check
reducedness.

Notational caution: In some sources, the additional condition of irreducibility is im-
posed. We will not do this. Also, it is often assumed that k is algebraically closed. We will
not do this either.

Here is a very handy consequence of separatedness.

6.8. Proposition. — Suppose X → Spec A is a separated morphism to an affine scheme, and U

and V are affine open sets of X. Then U ∩ V is an affine open subset of X.

Before proving this, we state a consequence that is otherwise nonobvious. If X =
Spec A, then the intersection of any two affine open sets is open (just take A = Z in the
above proposition). This is certainly not an obvious fact! We know that the intersection of
any two distinguished affine open sets is affine (from D(f) ∩ D(g) = D(fg)), but we have
very little handle on affine open sets in general.

Warning: this property does not characterize separatedness. For example, if A = Spec k

and X is the line with doubled origin over k, then X also has this property.

Proof. By Proposition 6.6, (U ×A V) ∩ ∆ = U ∩ V , where ∆ is the diagonal. But U ×A V

is affine (the fibered product is two affine schemes over an affine scheme is affine, Step 1
of our construction of fibered products, Theorem 1.1), and ∆ is a closed subscheme of an
affine scheme, and hence affine. �
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