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1. INTRODUCTION

At this point, we know that we can construct schemes by gluing affine schemes to-
gether. If a large number of affine schemes are involved, this can obviously be a laborious
and tedious process. Our example of closed subschemes of projective space showed that
we could piggyback on the construction of projective space to produce complicated and
interesting schemes. In this chapter, we formalize this notion of projective schemes. Projec-
tive schemes over the complex numbers give good examples (in the classical topology)
of compact complex varieties. In fact they are such good examples that it is quite hard to
come up with an example of a compact complex variety that is provably not projective.
(We will see examples later, although we won’t concern ourselves with the relationship
to the classical topology.) Similarly, it is quite hard to come up with an example of a
complex variety that is provably not an open subset of a projective variety. In particular,
most examples of complex varieties that come up in nature are of this form. More gen-
erally, projective schemes will be the key example of the algebro-geometric analogue of
compactness (properness). Thus one advantage of the notion of projective scheme is that it
encapsulates much of the algebraic geometry arising in nature.

In fact our example from last day already gives the notion of projective A-schemes
in full generality. Recall that any collection of homogeneous elements of Alxy,...,Xn]
describes a closed subscheme of P};. Any closed subscheme of P cut out by a set of ho-
mogeneous polynomials will be called a projective A-scheme. (You may be initially most
interested in the “classical” case where A is an algebraically closed field.) If I is the ideal
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in Alxo, ..., Xn] generated by these homogeneous polynomials, the scheme we have con-
structed will be called Proj Alxo, ..., xnl/I. Then xo, ..., x,, are informally said to be pro-
jective coordinates on the scheme. Warning: they are not functions on the scheme. (We will
later interpret them as sections of a line bundle.) This lecture will reinterpret this example
in a more useful language. For example, just as there is a rough dictionary between rings
and affine schemes, we will have an analogous dictionary between graded rings and pro-
jective schemes. Just as one can work with affine schemes by instead working with rings,
one can work with projective schemes by instead working with graded rings.

1.1. A motivating picture from classical geometry.

We motivate a useful way of picturing projective schemes by recalling how one thinks
of projective space “classically” (in the classical topology, over the real numbers). P™ can
be interpreted as the lines through the origin in R™"'. Thus subsets of P™ correspond to
unions of lines through the origin of R™"', and closed subsets correspond to such unions
which are closed. (The same is not true with “closed” replaced by “open”!)

One often pictures P™ as being the “points at infinite distance” in R™"', where the points
infinitely far in one direction are associated with the points infinitely far in the opposite
direction. We can make this more precise using the decomposition

(1) IP)TL—H — RTL—H H P"

by which we mean that there is an open subset in P™*! identified with R™"! (the points
with last projective co-ordinate non-zero), and the complementary closed subset identi-
fied with IP™ (the points with last projective co-ordinate zero).

Then for example any equation cutting out some set V of points in P™ will also cut out
some set of points in R™ that will be a closed union of lines. We call this the affine cone of
V. These equations will cut out some union of P's in P™**!, and we call this the projective
cone of V. The projective cone is the disjoint union of the affine cone and V. For example,
the affine cone over x? + y? = z% in P? is just the “classical” picture of a cone in R?, see
Figure 1.

We will make this analogy precise in our algebraic setting in §2.3.

2. THE Proj CONSTRUCTION

Let’s abstract these notions, just as we abstracted the notion of the Spec of a ring with
given generators and relations over k to the Spec of a ring in general.

In the examples we’ve seen, we have a graded ring Alxy, ..., xn]/I where I is a ho-
mogeneous ideal (i.e. I is generated by homogeneous elements of A[xo,...,x,]). Here
we are taking the usual grading on Alxo,...,xn], where each x; has weight 1. Then
Alxo,...,xnl/1is also a graded ring S,, and we’ll call its graded pieces Sy, S;, etc. (The
subscript @ in S, is intended to remind us of the indexing. In a graded ring, multiplication
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$x"2+y"2=2"2% in $\proj 2%

&

projective cone in $\proj~3$

affine cone: $x"2+4y"2=2"2% in $\R" 3%

FIGURE 1. The affine and projective cone of x> +y? = z? in classical geometr
proj 8 y

sends Sy, X Sy to Syin. Note that Sy is a subring, and S is a Sp-algebra.) In our examples
that So = A, and S, is generated over Sy by S;.

2.1. Standing assumptions about graded rings. We make some standing assumptions
on graded rings. Fix a ring A (the base ring). Our motivating exampleis S, = A[xo, X1, X2],
with the usual grading. Assume that S, is graded by Z=°, with S, = A. Hence each S, is
an A-module. The subset S := $;-0S; C S, is an ideal, called the irrelevant ideal. The
reason for the name “irrelevant” will be clearer soon. Assume that the irrelevant ideal
S. is a finitely-generated ideal.

2.A. EXERCISE. Show that S, is a finitely-generated graded ring if and only if S, is a
finitely-generated graded A-algebra, i.e. generated over A = S, by a finite number of
homogeneous elements of positive degree. (Hint for the forward implication: show that
the generators of S, as an ideal are also generators of S, as an algebra.)

If these assumptions hold, we say that S, is a finitely generated graded ring.

We now define a scheme Proj S,. You won’t be surprised that we will define it as a set,
with a topology, and a structure sheaf.

The set. The points of Proj S, are defined to be those homogeneous prime ideals not
containing the irrelevant ideal S... The homogeneous primes containing the irrelevant ideal
are irrelevant.



For example, if S, = k[x,y, z] with the usual grading, then (z? — x* — y?) is a homoge-
neous prime ideal. We picture this as a subset of Spec S,; it is a cone (see Figure 1). We
picture P# as the “plane at infinity”. Thus we picture this equation as cutting out a conic
“at infinity”. We will make this intuition somewhat more precise in §2.3.

The topology. As with affine schemes, we define the Zariski topology by describing the
closed subsets. They are of the form V(I), where I is a homogeneous ideal. (Here V(I) has
essentially the same definition as before: those homogeneous prime ideals containing I.)
Particularly important open sets will the distinguished open sets D(f) = ProjS, \ V(f),
where f € S is homogeneous.

2.B. EASY EXERCISE. Verify that the distinguished open sets form a base of the topology.
(The argument is essentially identical to the affine case.)

As with the affine case, if D(f) C D(g), then f™ € (g) for some n, and vice versa. Clearly
D(f) N D(g) = D(fg), by the same immediate argument as in the affine case.

The structure sheaf. We define | Op,,;s, (D(f)) = ((Ss))o | where ((S.)¢)o means the O-

graded piece of the graded ring (S.)+. (The notation ((S.)¢)o is admittedly unfortunate —
the first and third subscripts refer to the grading, and the second refers to localization.)
As in the affine case, we define restriction maps, and verify that this is well-defined (i.e.
if D(f) = D(f’), then we are defining the same ring, and that the restriction maps are
well-defined).

For example, if S, = k[xo,x1,%2] and f = xo, we get (k[xo, X1, X2lx, )0 = klx1,0,%2/0]
(using our earlier language for projective patches).

We now check that this is a sheaf. We could show that this is a sheaf on the base, and the
argument would be as in the affine case (which was not easy). Here instead is a sneakier
argument. We first note that the topological space D(f) and Spec((S.)¢)o are canonically
homeomorphic: they have matching distinguished bases. (To the distinguished open
D(g) N D(f) of D(f), we associate D(g&f/fd&9) in Spec(S¢)o. To D(h) in Spec(S¢)o, we
associate D(f*h) C D(f), where n is chosen large enough so that f*h € S,.) Second,
we note that the sheaf of rings on the distinguished base of D(f) can be associated (via
this homeomorphism just described) with the sheaf of rings on the distinguished base of
Spec((Se)¢)o: the sections match (the ring of sections ((S.)¢g)o over D(g) N D(f) C D(f),
those homogeneous degree 0 quotients of S, with f’s and g’s in the denominator, is natu-
rally identified with the ring of sections over the corresponding open set of Spec((S.)¢)o)
and the restriction maps clearly match (think this through yourself!). Thus we have de-
scribed an isomorphism of schemes

(D(f), Oprojs.) = Spec(St)o.

2.C. EASY EXERCISE. Describe a natural “structure morphism” Proj S, — Spec A.

2.2. Projective and quasiprojective schemes.
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We call a scheme of the form Proj S, (Where Sy = A) a projective scheme over A, or a
projective A-scheme. A quasiprojective A-scheme is an open subscheme of a projective
A-scheme. The “A” is omitted if it is clear from the context; often A is some field.

We now make a connection to classical terminology. A projective variety (over k), or
an projective k-variety is a reduced projective k-scheme. (Warning: in the literature, it is
sometimes also required that the scheme be irreducible, or that k be algebraically closed.)
A quasiprojective k-variety is an open subscheme of a projective k-variety. We defined
affine varieties earlier, and you can check that affine open subsets of projective k-varieties
are affine k-varieties. We will define varieties in general later.

The notion of quasiprojective k-scheme is a good one, covering most interesting cases
which come to mind. We will see before long that the affine line with the doubled origin
is not quasiprojective for somewhat silly reasons (“non-Hausdorffness”), but we’ll call
that kind of bad behavior “non-separated”. Here is a surprisingly subtle question: Are
there quasicompact k-schemes that are not quasiprojective? Translation: if we’re gluing to-
gether a finite number of schemes each sitting in some A}, can we ever get something not
quasiprojective? We will finally answer this question in the negative in the next quarter.

2.D. EASY EXERCISE.  Show that all projective A-schemes are quasicompact. (Trans-
lation: show that any projective A-scheme is covered by a finite number of affine open
sets.) Show that Proj S, is finite type over A = Sy. If Sy is a Noetherian ring, show that
Proj S, is a Noetherian scheme, and hence that Proj S, has a finite number of irreducible
components. Show that any quasiprojective scheme is locally of finite type over A. If
A is Noetherian, show that any quasiprojective A-scheme is quasicompact, and hence of
finite type over A. Show this need not be true if A is not Noetherian. Better: give an
example of a quasiprojective A-scheme that is not quasicompact (necessarily for some
non-Noetherian A). (Hint: Flip ahead to silly example 3.2.)

2.3. Affine and projective cones.

If S, is a finitely-generated graded ring, then the affine cone of Proj S, is Spec S,. Note
that this construction depends on S., not just of ProjS,. As motivation, consider the
graded ring S, = C[x,y, zl/(z* — x* — y?). Figure 2 is a sketch of SpecS,. (Here we draw
the “real picture” of z* = x*+y? in R3.) It is a cone in the most traditional sense; the origin
(0,0,0) is the “cone point”.

This gives a useful way of picturing Proj (even over arbitrary rings than C). Intuitively,
you could imagine that if you discarded the origin, you would get something that would
project onto Proj S.. The following exercise makes that precise.

2.E. EXERCISE. If S, is a projective scheme over a field k, Describe a natural morphism
Spec S, \ {0} — Proj S,.

This has the following generalization to A-schemes, which you might find geometri-
cally reasonable. This again motivates the terminology “irrelevant”.

5



FIGURE 2. A sketch of the cone Spec k[x, y, z|/(z? — x* — y?).

2.F. EXERCISE. If S, is a projective A-scheme, describe a natural morphism Spec S, \
V(S,) — ProjS.,.

In fact, it can be made precise that Proj S, is the affine cone, minus the origin, modded
out by multiplication by scalars.

The projective cone of Proj S, is Proj S.[T], where T is a new variable of degree 1. For
example, the cone corresponding to the conic Proj k[x, y, zl /(z*—x*—y?) is Proj k[x, y, z, T]/(z*—

x? —y?).

2.G. EXERCISE (CFE. (1)). Show that the projective cone of Proj S.[T] has a closed sub-
scheme isomorphic to Proj S, (corresponding to T = 0), whose complement (the distin-
guished open set D(T)) is isomorphic to the affine cone Spec S,.

You can also check that Proj S, is a locally principal closed subscheme, and is also lo-
cally not a zero-divisor (an effective Cartier divisor).

This construction can be usefully pictured as the affine cone union some points “at in-
finity”, and the points at infinity form the Proj. The reader may which to ponder Figure 2,
and try to visualize the conic curve “at infinity”.

We have thus completely discribed the algebraic analog of the classical picture of 1.1.
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3. EXAMPLES

3.1. Example. We (re)define projective space by P} := Proj A[x, ..., xn]. This definition
involves no messy gluing, or choice of special patches.

3.A. EXERCISE. Check that this agrees with our earlier version of projective space.

3.2. Silly example. Note that P = ProjA[T] = SpecA. Thus “SpecA is a projective
A-scheme”.

Here is a useful generalization of this example that I forgot to say in class:

3.B. EXERCISE: FINITE MORPHISMS TO Spec A ARE PROJECTIVE. If Bis a finitely generated
A-algebra, define S, by So = A, and S, = B for n > 0 (with the obvious graded ring
structure). Describe an isomorphism

Proj S, - Spec B

~

Spec A

3.C. EXERCISE. Show that X = P2\ {x? + y? = z?%} is an affine scheme. Show that x = 0
cuts out a locally principal closed subscheme that is not principal.

3.3. Example: PV. We can make this definition of projective space even more choice-free
as follows. Let V be an (n + 1)-dimensional vector space over k. (Here k can be replaced
by any ring A as usual.) Let Sym* VY = k® VY @ Sym*VY @ ---. (The reason for the
dual is explained by the next exercise.) If for example V is the dual of the vector space
with basis associated to xo, . . ., Xn, we would have Sym*® VY = k[xy, . . ., Xn]. Then we can
define PV := ProjSym® VY. In this language, we have an interpretation for xo, ..., Xn:
they are the linear functionals on the underlying vector space V.

3.D. UNIMPORTANT EXERCISE. Suppose k is algebraically closed. Describe a natural
bijection between one-dimensional subspaces of V and the points of PV. Thus this con-
struction canonically (in a basis-free manner) describes the one-dimensional subspaces of
the vector space Spec V.

On a related note: you can also describe a natural bijection between points of V and the
points of Spec Sym*® VV. This construction respects the affine/projective cone picture of
§2.3.



4. MAPS OF GRADED RINGS AND MAPS OF PROJECTIVE SCHEMES

As maps of rings correspond to maps of affine schemes in the opposite direction, maps
of graded rings sometimes give maps of projective schemes in the opposite direction.
Before we make this precise, let’s see an example to see what can go wrong. There isn’t
quite a map P — P} given by [x;y;z] — [x;y], because this alleged map isn’t defined
only at the point [0;0; 1]. What has gone wrong? The map A% = Speck[x,y,z] — A? =
Spec k[x, y] makes perfect sense. However, the z-axis in A3 maps to the origin in A?, so the
point of P? corresponding to the z-axis maps to the “cone point” of the affine cone, and
hence not to the projective scheme. The image of this point of A? contains the irrelevant
ideal. If this problem doesn’t occur, a map of rings gives a map of projective schemes in
the opposite direction.

4.A. IMPORTANT EXERCISE. (a) Suppose that f:S, — R, is a morphism of finitely-

generated graded rings (i.e. a map of rings preserving the grading) over A. Suppose
further that

) f(S,) D R,.

Show that this induces a morphism of schemes ProjR, — ProjS,. (Warning: not every
morphism arises in this way. )

(b) Suppose further that S, —= R, is a surjection of finitely-generated graded rings (so
(2) is automatic). Show that the induced morphism ProjR, — Proj S, is a closed immer-
sion. (Warning: not every closed immersion arises in this way! )

Hypothesis (2) can be replaced with the weaker hypothesis /f(S+) D R., but in prac-
tice this hypothesis (2) suffices.

4.B. EXERCISE. Show that an injective linear map of k-vector spaces V — W induces a
closed immersion PV — PW.

This closed subscheme is called a linear space. Once we know about dimension, we
will call this a linear space of dimension dim V —1 = dim PV. A linear space of dimension
1 (resp. 2, n, dimPW — 1) is called a line (resp. plane, n-plane, hyperplane). (If the linear
map in the previous exercise is not injective, then the hypothesis (2) of Exercise 4.A fails.)

4.1. A particularly nice case: when S, is generated in degree 1. If S, is generated by S,
as an A-algebra, we say that S, is generated in degree 1.

4.C. EXERCISE. Suppose S, is a finitely generated graded ring generated in degree 1.
Show that S; is a finitely-generated module, and the irrelevant ideal S is generated in
degree 1.



4.D. EXERCISE. Show that if S, is generated by S; (as an A-algebra) by n + 1 elements
Xo, - - -, Xn, then Proj S, may be described as a closed subscheme of P}; as follows. Consider
A™T as a free module with generators to, ..., t, associated to xy, ..., x,. The surjection of

Sym® A™! = Alty, t,...,ta] —= S,

implies S, = Alto, t1,...tn]/I, where I is a homogeneous ideal.

This is completely analogous to the fact that if R is a finitely-generated A-algebra, then
choosing n generators of R as an algebra is the same as describing SpecR as a closed
subscheme of A’. In the affine case this is “choosing coordinates”; in the projective case
this is “choosing projective coordinates”.

For example, Projklx,y,zl/(z* — x* — y?) is a closed subscheme of PZ. (A picture is
shown in Figure 2.)

Recall that we can interpret the closed points of P™ as the lines through the origin in
A™1. The following exercise states this more generally.

4.E. EXERCISE.  Suppose S, is a finitely-generated graded ring over an algebraically
closed field k, generated in degree 1 by xy, ..., X,,, inducing closed immersions Proj S, —
P™ and Spec S, — A™. Describe a natural bijection between the closed points of Proj S,
and the “lines through the origin” in Spec S, C A™

5. IMPORTANT EXERCISES

There are many fundamental properties that are best learned by working through prob-
lems.

5.1. Analogues of results on affine schemes.

5.A. EXERCISE.

(a) Suppose I is any homogeneous ideal, and f is a homogeneous element. Show that
f vanishes on V(I) if and only if f* € I for some n. (Hint: Mimic the affine case;
see an earlier exercise.)

(b) If Z C ProjS., define I(-). Show that it is a homogeneous ideal. For any two
subsets, show that I(Z; U Z,) = 1(Z;) N I(Z3).

(c) For any subset Z C Proj S,, show that V(I(Z)) = Z.

5.B. EXERCISE. Show that the following are equivalent. (This is more motivation for the
S, being “irrelevant”: any ideal whose radical contains it is “geometrically irrelevant”.)

@ V() =2



(b) for any f; (i in some index set) generating I, UD(f;) = Proj S,
(© VIDS,.

5.2. Scaling the grading, and the Veronese embedding.

Here is a useful construction. Define S,. = ©§2,Sn;. (We could rescale our degree, so
“old degree” n is “new degree” 1.)

5.C. EXERCISE. Show that Proj S, is isomorphic to Proj S,.

5.D. EXERCISE. Suppose S, is generated over Sy by fy, ..., f,,. Find a d such that Sg, is
generated in “new” degree 1 (= “old” degree d). This is handy, as it means that, using
the previous Exercise 5.C, we can assume that any finitely-generated graded ring is gen-
erated in degree 1. In particular, we can place every Proj in some projective space via the
construction of Exercise 4.D.

Example: Suppose S. = klx,yl, so ProjS. = P}. Then Sy, = k[x? xy,y?] C klx,yl. We
identify this subring as follows.

5.E. EXERCISE. Letu =x?, v = xy, w = y2. Show that S,, = k[u, v, w]/(uw —v?).

We have a graded ring generated by three elements in degree 1. Thus we think of it as
sitting “in” P?, via the construction of §4.D. This can be interpreted as “P' as a conic in
P2

Thus if k is algebraically closed of characteristic not 2, using the fact that we can di-
agonalize quadrics, the conics in P2, up to change of co-ordinates, come in only a few
flavors: sums of 3 squares (e.g. our conic of the previous exercise), sums of 2 squares (e.g.
y?—x? = 0, the union of 2 lines), a single square (e.g. x> = 0, which looks set-theoretically
like a line, and is non-reduced), and 0 (not really a conic at all). Thus we have proved: any
plane conic (over an algebraically closed field of characteristic not 2) that can be written
as the sum of three squares is isomorphic to P'.

We now soup up this example.
5.F. EXERCISE. Show that Proj S3, is the twisted cubic “in” P3.
5.G. EXERCISE. Show that Proj S g, is given by the equations that
Yo Y1 -+ Ya
Yt Y2 -+ Ya
is rank 1 (i.e. that all the 2 x 2 minors vanish). This is called the degree d rational normal

curve “in” P4,
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FIGURE 3. The two rulings on the quadric surface V(wz — xy) C P3. One
ruling contains the line V(w, x) and the other contains the line V(w, y).

More generally, if S, = k[xo, ..., xn], then ProjSq4. C PN-T (where N is the number of
degree d polynomials in xy, ..., X;,) is called the d-uple embedding or d-uple Veronese
embedding. Itis enlightening to interpret this closed immersion as a map of graded rings.

5.H. COMBINATORIAL EXERCISE. Show that N = (™/9).

5.I. UNIMPORTANT EXERCISE.  Find five linearly independent quadric equations van-
ishing on the Veronese surface Proj S,, where S, = k[xo, X1, x2], which sits naturally in
P°. (You needn’t show that these equations generate all the equations cutting out the
Veronese surface, although this is in fact true.)

5.3. Entertaining geometric exercises.

5.J. USEFUL GEOMETRIC EXERCISE. Describe all the lines on the quadric surface wz—xy =
0in . (Hint: they come in two “families”, called the rulings of the quadric surface.) This
construction arises all over the place in nature.

Hence (by diagonalization of quadrics), if we are working over an algebraically closed
field of characteristic not 2, we have shown that all rank 4 quadric surfaces have two
rulings of lines.

5.K. EXERCISE. Show that P} is normal. More generally, show that P is normal if A is a
Unique Factorization Domain.

5.4. Example. 1If we put a non-standard weighting on the variables of k[x1,...,xn] —
say we give x; degree d; — then Projk[xy,...,x,] is called weighted projective space
P(dh dZ) ) dn)
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5.L. EXERCISE. Show that P(m,n) is isomorphic to P'. Show that
P(1,1,2) = Proj klu, v, w, z]/(uw — v?).
Hint: do this by looking at the even-graded parts of k[xg, x1, x2], cf. Exercise 5.C.
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