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We now define a bunch of types of morphisms. (These notes include some topics dis-
cussed the previous class.)

1. SOME TYPES OF MORPHISMS: QUASICOMPACT AND QUASISEPARATED; OPEN
IMMERSION; AFFINE, FINITE, CLOSED IMMERSION; LOCALLY CLOSED IMMERSION

In this section, we’ll give some analogues of open subsets, closed subsets, and locally
closed subsets. This will also give us an excuse to define affine and finite morphisms
(closed immersions are a special case). It will also give us an excuse to define some im-
portant special closed immersions, in the next section. In section after that, we’ll define
some more types of morphisms.

1.1. Quasicompact and quasiseparated morphisms.

A morphism f : X → Y is quasicompact if for every open affine subset U of Y, f−1(U) is
quasicompact. Equivalently, the preimage of any quasicompact open subset is quasicom-
pact. We will like this notion because (i) we know how to take the maximum of a finite
set of numbers, and (ii) most reasonable schemes will be quasicompact.

1.A. EASY EXERCISE. Show that the composition of two quasicompact morphisms is
quasicompact.

1.B. EXERCISE. Show that any morphism from a Noetherian scheme is quasicompact.
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1.C. EXERCISE (QUASICOMPACTNESS IS AFFINE-LOCAL ON THE TARGET). Show that a
morphism f : X → Y is quasicompact if there is cover of Y by open affine sets Ui such that
f−1(Ui) is quasicompact. (Hint: easy application of the affine communication lemma!)

Along with quasicompactness comes the weird notion of quasiseparatedness. A mor-
phism f : X → Y is quasiseparated if for every open affine subset U of Y, f−1(U) is a
quasiseparated scheme. This will be a useful hypothesis in theorems (in conjunction with
quasicompactness), and that various interesting kinds of morphisms (locally Noetherian
source, affine, separated, see Exercise 1.D, Exercise 1.J, and an exercise next quarter resp.)
are quasiseparated, and this will allow us to state theorems more succinctly.

1.D. EXERCISE. Show that any morphism from a locally Noetherian scheme is qua-
siseparated. (Hint: locally Noetherian schemes are quasiseparated.) Thus those readers
working only with Noetherian schemes may take this as a standing hypothesis.

1.E. EASY EXERCISE. Show that the composition of two quasiseparated morphisms is
quasiseparated.

1.F. EXERCISE (QUASISEPARATEDNESS IS AFFINE-LOCAL ON THE TARGET). Show that a
morphism f : X → Y is quasiseparated if there is cover of Y by open affine sets Ui such that
f−1(Ui) is quasiseparated. (Hint: easy application of the affine communication lemma!)

Following Grothendieck’s philosophy of thinking that the important notions are prop-
erties of morphisms, not of objects, we can restate the definition of quasicompact (resp.
quasiseparated) scheme as a scheme that is quasicompact (resp. quasiseparated) over the
final object Spec Z in the category of schemes.

1.2. Open immersions.

An open immersion of schemes is defined to be an open immersion as ringed spaces.
In other words, a morphism f : (X,OX) → (Y,OY) of schemes is an open immersion if f

factors as

(X,OX)
g

∼

// (U,OY |U)
h

// (Y,OY)

where g is an isomorphism, and U ↪→ Y is an inclusion of an open set. It is immediate
that isomorphisms are open immersions. We say that (U,OY |U) is an open subscheme of
(Y,OY), and often sloppily say that (X,OX) is an open subscheme of (Y,OY).

1.G. EXERCISE. Suppose i : U → Z is an open immersion, and f : Y → Z is any morphism.
Show that U ×Z Y exists. (Hint: I’ll even tell you what it is: (f−1(U),OY |f−1(U)).)

1.H. EASY EXERCISE. Show that open immersions are monomorphisms.
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1.I. EASY EXERCISE. Suppose f : X → Y is an open immersion. Show that if Y is locally
Noetherian, then X is too. Show that if Y is Noetherian, then X is too. However, show that
if Y is quasicompact, X need not be. (Hint: let Y be affine but not Noetherian.)

“Open immersions” are scheme-theoretic analogues of open subsets. “Closed immer-
sions” are scheme-theoretic analogues of closed subsets, but they are of a quite different
flavor, as we’ll see soon.

1.3. Affine morphisms.

A morphism f : X → Y is affine if for every affine open set U of Y, f−1(U) is an affine
scheme. We have immediately that affine morphisms are quasicompact.

1.J. FAST EXERCISE. Show that affine morphisms are quasiseparated. (Hint: affine
schemes are quasiseparated, an earlier exercise.)

1.4. Proposition (the property of “affineness” is affine-local on the target). — A morphism f :
X → Y is affine if there is a cover of Y by affine open sets U such that f−1(U) is affine.

For part of the proof, it will be handy to have a lemma.

1.5. Lemma. — If X is a quasicompact quasiseparated scheme and s ∈ Γ(X,OX), then the natural
map Γ(X,OX)s → Γ(Xs,OX) is an isomorphism.

A brief reassuring comment on the “quasicompact quasiseparated” hypothesis: This
just means that X can be covered by a finite number of affine open subsets, any two of
which have intersection also covered by a finite number of affine open subsets. The hy-
pothesis applies in lots of interesting situations, such as if X is affine or Noetherian.

Proof. Cover X with finitely many affine open sets Ui = Spec Ai. Let Uij = Ui ∩ Uj. Then

Γ(X,OX) →
∏

i

Ai ⇒
∏

i,j

Γ(Uij,OX)

is exact. Localizing at s gives

Γ(X,OX)s →

(

∏

i

Ai

)

s

⇒

(

∏

i,j

Γ(Uij,OX)

)

s

As localization commutes with finite products,

Γ(X,OX)s →
∏

i

(Ai)si
⇒

∏

i,j

Γ(Uij,OX)s

is exact, where the global function s induces functions si ∈ Ai. If Γ(Uij,OX)s
∼= Γ((Uij)s,OX),

then it is clear that Γ(X,Ox)s are the sections over Xs. Note that Uij are quasicompact, by
the quasiseparatedness hypothesis, and also quasiseparated, as open subsets of quasisep-
arated schemes are quasiseparated. Therefore we can reduce to the case where X ⊆ Spec A
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is a (quasicompact quasiseparated) open subset of an affine scheme. Then Uij = Spec Afifj

is affine and Γ(Uij,Ox)s = Γ((Uij)s,OX) so the same exact sequence implies the result. �

Proof of Proposition 1.4. As usual, we use the Affine Communication Lemma. We check
our two criteria. First, suppose f : X → Y is affine over Spec B, i.e. f−1(Spec B) = Spec A.
Then f−1(Spec Bs) = Spec Af#s.

Second, suppose we are given f : X → Spec B and (f1, . . . , fn) = B with Xfi
affine

(Spec Ai, say). We wish to show that X is affine too. X is quasi-compact (as it is covered
by n affine open sets). Let ti ∈ Γ(X,OX) be the pullback of the sections si ∈ B. The
morphism f factors as h ◦ g where g : X → Spec Γ(X,OX) and h : Spec Γ(X,OX) → Spec B

are the natural maps. Then Lemma 1.5 implies that g|f−1(Spec Bsi
) : Xti

→ Spec Γ(X,OX)ti

are isomorphisms. Therefore, g is an isomorphism and X is affine. �

1.6. Finite morphisms.

An affine morphism f : X → Y is finite if for every affine open set Spec B of Y, f−1(Spec B)
is the spectrum of an B-algebra that is a finitely-generated B-module. Warning about termi-
nology (finite vs. finitely-generated): Recall that if we have a ring homomorphism A → B

such that B is a finitely-generated A-module then we say that B is a finite A-algebra. This
is stronger than being a finitely-generated A-algebra.

By definition, finite morphisms are affine.

1.K. EXERCISE (THE PROPERTY OF FINITENESS IS AFFINE-LOCAL ON THE TARGET). Show
that a morphism f : X → Y is finite if there is a cover of Y by affine open sets Spec A such
that f−1(Spec A) is the spectrum of a finite A-algebra.

1.L. EASY EXERCISE. Show that the composition of two finite morphisms is also finite.

We now give four examples of finite morphisms, to give you some feeling for how
finite morphisms behave. In each example, you’ll notice two things. In each case, the
maps are always finite-to-one. We’ll verify this in Exercise 3.E. You’ll also notice that the
morphisms are closed, i.e. the image of closed sets are closed. This argument uses the
going-up theorem, and we’ll verify this when we discuss that. Intuitively, you should
think of finite as being closed plus finite fibers, although this isn’t quite true. We’ll make
this precise later.

Example 1: Branched covers. If p(t) ∈ k[t] is a non-zero polynomial, then Spec k[t] →
Spec[u] given by u 7→ p(t) is a finite morphism, see Figure 1.

Example 2: Closed immersions (to be defined soon, in §1.8). The morphism Spec k →
Spec k[t] given by t 7→ 0 is a finite morphism, see Figure 2.
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FIGURE 1. The “branched cover” of A1 given by u 7→ p(t) is finite

0

FIGURE 2. The “closed immersion” Spec k → Spec k[t] is finite

Example 3: Normalization (to be defined later). The morphism Spec k[t] → Spec k[x, y]/(y2−

x2 − x3) given by (x, y) 7→ (t2 − 1, t3 − t) (check that this is a well-defined ring map!) is a
finite morphism, see Figure 3.

1.M. IMPORTANT EXERCISE (EXAMPLE 4, FINITE MORPHISMS TO Spec k). Show that
if X → Spec k is a finite morphism, then X is a discrete finite union of points, each with
residue field a finite extension of k, see Figure 4. (An example is Spec F8×F4[x, y]/(x2, y4)×
F4[t]/t9 × F2 → Spec F2.)

1.7. Example. The natural map A2 − {(0, 0)} → A2 is an open immersion, and has finite
fibers, but is not affine (as A2 − {(0, 0)} isn’t affine) and hence not finite.

1.8. Closed immersions and closed subschemes.

Just as open immersions (the scheme-theoretic version of open set) are locally modeled
on open sets U ⊂ Y, the analogue of closed subsets also has a local model. This was
foreshadowed by our understanding of closed subsets of Spec B as roughly corresponding
to ideals. If I ⊂ B is an ideal, then Spec B/I ↪→ Spec B is a morphism of schemes, and this
is our prototypical example of a closed immersion.

A morphism f : X → Y is a closed immersion if it is an affine morphism, and for each
open subset Spec B ⊂ Y, with f−1(Spec B) ∼= Spec A, B → A is a surjective map (i.e. of the
form B → B/I, our desired local model). We often say that X is a closed subscheme of Y.
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FIGURE 3. The “normalization” Spec k[t] → Spec k[x, y]/(y2 −x2 −x3) given
by (x, y) 7→ (t2 − 1, t3 − t) is finite

FIGURE 4. A picture of a finite morphism to Spec k. Notice that bigger fields
are written as bigger dots. [I’d like to add some fuzz to some of these points
at some point.]

1.N. EASY EXERCISE. Show that closed immersions are finite.
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1.O. EXERCISE. Show that the property of being a closed immersion is affine-local on the
target.

A closed immersion f : X ↪→ Y determines an ideal sheaf on Y, as the kernel IX/Y of the
map of OY-modules

OY → f∗OX

(An ideal sheaf on Y is what it sounds like: it is a sheaf of ideals. It is a sub-OY-module
I ↪→ OY . On each open subset, it gives an ideal I(U) ↪→ OY(U).) We thus have an exact
sequence 0 → IX/Y → OY → f∗OX → 0.

1.P. IMPORTANT EXERCISE: A USEFUL CRITERION FOR WHEN IDEALS IN AFFINE OPEN SETS
DEFINE A CLOSED SUBSCHEME. It will be convenient (for example in §2) to define certain
closed subschemes of Y by defining on any affine open subset Spec B of Y an ideal IB ⊂ B.
Show that these Spec B/IB ↪→ Spec B glue together to form a closed subscheme precisely
if for each affine open subset Spec B ↪→ Y and each f ∈ B, I(Bf) = (IB)f.

Warning: you might hope that closed subschemes correspond to ideal sheaves of OY .
Sadly not every ideal sheaf arises in this way. Here is an example.

1.Q. UNIMPORTANT EXERCISE. Let X = Spec k[x](x), the germ of the affine line at the
origin, which has two points, the closed point and the generic point η. Define I(X) =
{0} ⊂ OX(X) = k[x](x), and I(η) = k(x) = OX(η). Show that this sheaf of ideals does not
correspond to a closed subscheme (see Exercise 1.P).

We will see later that closed subschemes correspond to quasicoherent sheaves of ideals;
the mathematical content of this statement will turn out to be precisely Exercise 1.P.

1.R. IMPORTANT EXERCISE. (a) In analogy with closed subsets, define the notion of a fi-
nite union of closed subschemes of X, and an arbitrary intersection of closed subschemes.
(b) Describe the scheme-theoretic intersection of (y − x2) and y in A2. See Figure 5 for a
picture. (For example, explain informally how this corresponds to two curves meeting
at a single point with multiplicity 2 — notice how the 2 is visible in your answer. Alter-
natively, what is the non-reducedness telling you — both its “size” and its “direction”?)
Describe the scheme-theoretic union.
(c) Describe the scheme-theoretic intersection of (y2 − x2) and y in A2. Draw a pic-
ture. (Are you surprised? Did you expect the intersection to be multiplicity one or
multiplicity two?) Hence show that if X, Y, and Z are closed subschemes of W, then
(X ∩ Z) ∪ (Y ∩ Z) 6= (X ∪ Y) ∩ Z in general.
(d) Show that the underlying set of a finite union of closed subschemes is the finite union
of the underlying sets, and similarly for arbitrary intersections.

1.S. IMPORTANT EXAMPLE THAT SHOULD HAVE BEEN DONE EARLIER. We now make a
preliminary definition of projective n-space Pn

k , by gluing together n + 1 open sets each
isomorphic to An

k . Judicious choice of notation for these open sets will make our life
easier. Our motivation is as follows. In the construction of P1 above, we thought of points
of projective space as [x0; x1], where (x0, x1) are only determined up to scalars, i.e. (x0, x1)
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=intersect

FIGURE 5. The scheme-theoretic intersection of the parabola y = x2 and the
x-axis is a non-reduced scheme (with fuzz in the x-direction)

is considered the same as (λx0, λx1). Then the first patch can be interpreted by taking the
locus where x0 6= 0, and then we consider the points [1; t], and we think of t as x1/x0; even
though x0 and x1 are not well-defined, x1/x0 is. The second corresponds to where x1 6= 0,
and we consider the points [u; 1], and we think of u as x0/x1. It will be useful to instead
use the notation x1/0 for t and x0/1 for u.

For Pn, we glue together n + 1 open sets, one for each of i = 0, . . . , n + 1. The ith open
set Ui will have co-ordinates x0/i, . . . , x(i−1)/i, x(i+1)/i, . . . , xn/i. It will be convenient to
write this as

Spec k[x0/i, x1/i, . . . , xn/i]/(xi/i − 1)

(so we have introduced a “dummy variable” xi/i which we set to 1). We glue the distin-
guished open set D(xj/i) of Ui to the distinguished open set D(xi/j) of Uj, by identifying
these two schemes by describing the identification of rings

Spec k[x0/i, x1/i, . . . , xn/i, 1/xj/i]/(xi/i − 1) ∼=

Spec k[x0/j, x1/j, . . . , xn/j, 1/xi/j]/(xj/j − 1)

via xk/i = xk/j/xi/j and xk/j = xk/i/xj/i (which implies xi/jxj/i = 1). We need to check that
this gluing information agrees over triple overlaps.

1.T. EXERCISE. Check this, as painlessly as possible. (Possible hint: the triple intersection
is affine; describe the corresponding ring.)

Note that our definition doesn’t use the fact that k is a field. Hence we may as well
define Pn

A for any ring A. This will be useful later.

1.9. Example: Closed immersions of projective space Pn
A. Consider the definition of projec-

tive space Pn
A given above. Any homogeneous polynomial f in x0, . . . , xn defines a closed

subscheme. (Thus even though x0, . . . , xn don’t make sense as functions, their vanishing
locus still makes sense.) On open set Ui, the closed subscheme is f(x0/i, . . . , xn/i), which
we think of as f(x0, . . . , xn)/x

deg f
i . On the overlap

Ui ∩ Uj = Spec A[x0/i, . . . , xn/i, x
−1
j/i

]/(xi/i − 1),

8



these functions on Ui and Uj don’t exactly agree, but they agree up to a non-vanishing
scalar, and hence cut out the same subscheme of Ui ∩ Uj:

f(x0/i, . . . , fn/i) = x
deg f

j/i
f(x0/j, . . . , xn/j).

Thus by intersecting such closed subschemes, we see that any collection of homogeneous
polynomials in A[x0, . . . , xn] cut out a closed subscheme of Pn

A. We could take this as a
provisional definition of a projective A-scheme (or a projective scheme over A). (We’ll give
a better definition in the next Chapter.)

Notice: piggybacking on the annoying calculation that Pn consists of n+1 pieces glued
together nicely is the fact that any closed subscheme of Pn cut out by a bunch of homoge-
neous polynomials consists of n + 1 pieces glued together nicely.

Notice also that this subscheme is not in general cut out by a single global function
on Pn

A. For example, if A = k, there are no nonconstant global functions. We take this
opportunity to introduce some related terminology. A closed subscheme is locally prin-
cipal if on each open set in a small enough open cover it is cut out by a single equation.
Thus each homogeneous polynomial in n + 1 variables defines a locally principal closed
subscheme. (Warning: one can check this on a fine enough affine open cover, but this
is not an affine-local condition! We will see an example in the next day’s notes — one
P2 minus a conic, consider a line.) A case that will be important later is when the ideal
sheaf is not just locally generated by a function, but is generated by a function that is not
a zero-divisor. In this case (once we have defined our terms) we will call this an invertible
ideal sheaf, and the closed subscheme will be an effective Cartier divisor.

A closed subscheme cut out by a single (homogeneous) equation is called a hypersur-
face in Pn

k . The degree of a hypersurface is the degree of the polynomial. (Implicit in this
is that this notion can be determined from the subscheme itself; we haven’t yet checked
this.) A hypersurface of degree 1 (resp. degree 2, 3, . . . ) is called a hyperplane (resp.
quadric, cubic, quartic, quintic, sextic, septic, octic, . . . hypersurface). If n = 2, a degree
1 hypersurface is called a line, and a degree 2 hypersurface is called a conic curve, or a
conic for short. If n = 3, a hypersurface is called a surface.) (In a couple of weeks, we
will justify the terms curve and surface.)

1.U. EXERCISE. (a) Show that wz = xy, x2 = wy, y2 = xz describes an irreducible curve in
P3

k. This curve is called the twisted cubic. The twisted cubic is a good non-trivial example
of many things, so it you should make friends with it as soon as possible. (b) Show that
the twisted cubic is isomorphic to P1

k.

1.V. UNIMPORTANT EXERCISE. The usual definition of a closed immersion is a morphism
f : X → Y such that f induces a homeomorphism of the underlying topological space of Y

onto a closed subset of the topological space of X, and the induced map f# : OX → f∗OY of
sheaves on X is surjective. Show that this definition agrees with the one given above. (To
show that our definition involving surjectivity on the level of affine open sets implies this
definition, you can use the fact that surjectivity of a morphism of sheaves can be checked
on a base, which you can verify yourself.)
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1.10. ? A fun example. The affine-locality of affine morphisms (Proposition 1.4) has some
non-obvious consequences, as shown in the next exercise.

1.W. EXERCISE. Suppose X is an affine scheme, and Y is a closed subscheme locally cut
out by one equation (e.g. if Y is an effective Cartier divisor). Show that X − Y is affine.
(This is clear if Y is globally cut out by one equation f; then if X = Spec A then Y = Spec Af.
However, Y is not always of this form.)

1.11. Example. Here is an explicit consequence. We showed earlier that on the cone over
the smooth quadric surface Spec k[w, x, y, z]/(wz − xy), the cone over a ruling w = x = 0

is not cut out scheme-theoretically by a single equation, by considering Zariski-tangent
spaces. We now show that it isn’t even cut out set-theoretically by a single equation.
For if it were, its complement would be affine. But then the closed subscheme of the
complement cut out by y = z = 0 would be affine. But this is the scheme y = z = 0

(also known as the wx-plane) minus the point w = x = 0, which we’ve seen is non-affine.
(For comparison, on the cone Spec k[x, y, z]/(xy − z2), see Figure 6, the ruling x = z = 0 is
not cut out scheme-theoretically by a single equation, but it is cut out set-theoretically by
x = 0.) Verify all this! (Hint: Use Exercise 1.4.)

FIGURE 6. V(x, z) ⊂ Spec k[x, y, z]/(xy − z2) is a ruling on a cone

We have now defined the analog of open subsets and closed subsets in the land of
schemes. Their definition is slightly less “symmetric” than in the usual topological set-
ting: the “complement” of a closed subscheme is a unique open subscheme, but there are
many “complementary” closed subschemes to a given open subscheme in general. (We’ll
soon define one that is “best”, that has a reduced structure, §2.6.)

1.12. Locally closed immersions and locally closed subschemes.
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Now that we have defined analogs of open and closed subsets, it is natural to define
the analog of locally closed subsets. Recall that locally closed subsets are intersections
of open subsets and closed subsets. Hence they are closed subsets of open subsets, or
equivalently open subsets of closed subsets. That equivalence will be a little subtle in the
land of schemes.

We say a morphism X → Y is a locally closed immersion if it can factored into X
f

// Z
g

// Y
where f is a closed immersion and g is an open immersion. (Warning: The term immer-
sion is often used instead of locally closed immersion, but this is unwise terminology, as the
differential geometric notion of immersion is closer to what algebraic geometers call un-
ramified, which we’ll define next quarter. The algebro-geometric notion of locally closed
immersion is closest to the differential geometric notion of embedding.) It is often said that
X is a locally closed subscheme of Y.

For example, Spec k[t, t−1] → Spec k[x, y] where (x, y) 7→ (t, 0) is a locally closed im-
mersion (see Figure 7).

FIGURE 7. The locally closed immersion Spec k[t, t−1] → k[x, y] (t 7→
(t, 0) = (x, y), i.e. (x, y) → (t, 0))

We can make sense of finite intersections of locally closed immersions.

Clearly a open subscheme U of a closed subscheme V of X can be interpreted as a closed
subscheme of an open subscheme: as the topology on V is induced from the topology on
X, the underlying set of U is the intersection of some open subset U ′ on X with V . We
can take V ′ = V ∩ U, and then V ′ → U ′ is a closed immersion, and U ′ → X is an open
immersion.

It is less clear that a closed subscheme V ′ of an open subscheme U ′ can be expressed
as an open subscheme U of a closed subscheme V . In the category of topological spaces,
we would take V as the closure of V ′, so we are now motivated to define the analogous
construction, which will give us an excuse to introduce several related ideas, in the next
section. We will then resolve this issue in good cases (e.g. if X is Noetherian) in Exer-
cise 2.D.
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2. CONSTRUCTIONS RELATED TO “SMALLEST CLOSED SUBSCHEMES”:
SCHEME-THEORETIC IMAGE, SCHEME-THEORETIC CLOSURE, INDUCED REDUCED

SUBSCHEME, AND THE REDUCTION OF A SCHEME

We now define a series of notions that are all of the form “the smallest closed subscheme
such that something or other is true”. One example will be the notion of scheme-theoretic
closure of a locally closed immersion, which will allow us to interpret locally closed im-
mersions in three equivalent ways (open subscheme intersect closed subscheme; open
subscheme of closed subscheme; and closed subscheme of open subscheme).

2.1. Scheme-theoretic image.

We start with the notion of scheme-theoretic image. If f : X → Y is a morphism of
schemes, the notion of the image of f as sets is clear: we just take the points in Y that are the
image of points in X. But if we would like the image as a scheme, then the notion becomes
more problematic. (For example, what is the image of A2 → A2 given by (x, y) 7→ (x, xy)?)
We will come back to the notion of image later, but for now we will define the “scheme-
theoretic image”. This will incorporate the notion that the image of something with non-
reduced structure (“fuzz”) can also have non-reduced structure.

Definition. Suppose i : Z ↪→ Y is a closed subscheme, giving an exact sequence 0 →
IZ/Y → OY → i∗OZ → 0. We say that the image of f : X → Y lies in Z if the composition
IZ/Y → O)Y → f∗OX is zero. Informally, locally functions vanishing on Z pull back to
the zero function on X. If the image of f lies in two subschemes Z1 and Z2, it clearly
lies in their intersection Z1 ∩ Z2. We then define the scheme-theoretic image of f of f, a
closed subscheme on Y, as the “smallest closed subscheme containing the image”, i.e. the
intersection of all closed subschemes containing the image.

Example 1. Consider Spec k[ε]/ε2 → Spec k[x] = A1
k given by x 7→ ε. Then the scheme-

theoretic image is given by k[x]/x2 (the polynomials pulling back to 0 are precisely multi-
ples of x2). Thus the image of the fuzzy point still has some fuzz.

Example 2. Consider f : Spec k[ε]/ε2 → Spec k[x] = A1
k given by x 7→ 0. Then the

scheme-theoretic image is given by k[x]/x: the image is reduced. In this picture, the fuzz
is “collapsed” by f.

Example 3. Consider f : Spec k[t, t−1] = A1 − {0} → A1 = Spec k[u] given by u 7→ t. Any
function g(u) which pulls back to 0 as a function of t must be the zero-function. Thus
the scheme-theoretic image is everything. The set-theoretic image, on the other hand, is
the distinguished open set A1 − {0}. Thus in not-too-pathological cases, the underlying
set of the scheme-theoretic image is not the set-theoretic image. But the situation isn’t
terrible: the underlying set of the scheme-theoretic image must be closed, and indeed it is
the closure of the set-theoretic image. We might imagine that in reasonable cases this will
be true, and in even nicer cases, the underlying set of the scheme-theoretic image will be
set-theoretic image. We will later see that this is indeed the case.

But we feel obliged to show that pathologies can happen.
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Example 4. Let X =
∐

k[εn]/(εn
n) and Y = Spec k[x], and define X → Y by x → εn on

the nth component of X. Then if a function g(x) on Y pulls back to 0 on X, then its Taylor
expansion is 0 to order n (by examining the pullback to the nth component of X, so g(x)
must be 0. Thus the scheme-theoretic image is Y, while the set-theoretic image is easily
seen to be just the origin.

This example clearly is weird though, and we can show that in “reasonable circum-
stances” such pathology doesn’t occur. It would be great to compute the scheme-theoretic
image affine-locally. On affine open set Spec B ⊂ Y, define the ideal IB ⊂ B of functions
which pullback to 0 on X. (Formally, IB := ker(B → Γ(f∗(OX), SpecB).) Then if for each
such B, and each g ∈ B, IB ⊗B Bg → IBg is an isomorphism, then we will have defined the
pushforward subscheme (see Exercise 1.P). Clearly each function on Spec B that vanishes
when pulled back to f−1(Spec B) also vanishes when restricted to D(g) and then pulled
back to f−1(D(g)). So the question is: given a function r/gn on D(g) that pulls back to
f−1D(g), is it true that for some m, rgm = 0 when pulled back to f−1(Spec B)? (i) The an-
swer is clearly yes if f−1(Spec B) is reduced: we simply take rg. (ii) The answer is also yes
if f−1(Spec B) is affine, say Spec A: if r ′ = f#r and g ′ = f#g in A, then if r ′ = 0 on D(g ′),
then there is an m such that r ′(g ′)m = 0: r ′ = 0 in D(g ′), which means precisely this fact.
(iii) Furthermore, the answer is yes if f−1(Spec B) is quasicompact: cover f−1(Spec B) with
finitely many affine open sets. For each one there will be some mi so that rgmi = 0 when
pulled back to this open set. Then let m = max(mi). (We now see why quasicompactness
is our friend!)

In conclusion, we have proved the following theorem.

2.2. Theorem. — Suppose f : X → Y is a morphism of schemes. If X is reduced or f is quasicompact
(e.g. if X is Noetherian, Exercise 1.B), then the scheme-theoretic image of f may be computed affine-
locally.

2.3. Corollary. — Under the hypotheses of the previous theorem, the closure of the set-theoretic
image of f is the underlying set of the scheme-theoretic image.

Example 4 above shows that we cannot excise these hypotheses.

Proof. The set-theoretic image is clearly in the underlying set of the scheme-theoretic
image. The underlying set of the scheme-theoretic image is closed, so the closure of the
set-theoretic image is contained in underlying set of the scheme-theoretic image. On the
other hand, if U is the complement of the closure of the set-theoretic image, f−1(U) =
∅. As under these hypotheses, the scheme theoretic image can be computed locally, the
scheme-theoretic image is the empty set on U. �

We conclude with a few stray remarks.

2.A. EASY EXERCISE. If X is reduced, show that the scheme-theoretic image of f : X → Y

is also reduced.
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More generally, you might expect there to be no unnecessary non-reduced structure on
the image not forced by non-reduced structure on the source. We make this precise in the
locally Noetherian case, when we can talk about associated points.

2.B. ? UNIMPORTANT EXERCISE. If f : X → Y is a morphism of locally Noetherian
schemes, show that the associated points of the image subscheme are a subset of the
image of the associated points of X.

2.4. Aside: set-theoretic images can be nice too. I want to say a little more on what the
set-theoretic image of a morphism can look like, although we’ll hold off before proving
these statements. We know that the set-theoretic image can be open (open immersion),
and closed (closed immersions), and locally closed (locally closed immersions). But it can
be weirder still: consider the example A2 → A2 given by (x, y) 7→ (x, xy) mentioned ear-
lier. The image is the plane, minus the y-axis, plus the origin. The image can be stranger
still, and indeed if S is any subset of a scheme Y, it can be the image of a morphism: let X

be the disjoint union of spectra of the residue fields of all the points of S, and let f : X → Y

be the natural map. This is quite pathological, and in fact that if we are in any reasonable
situation, the image is essentially no worse than arose in the previous example.

We define a constructible subset of a Noetherian scheme to be a subset which belongs
to the smallest family of subsets such that (i) every open set is in the family, (ii) a finite in-
tersection of family members is in the family, and (iii) the complement of a family member
is also in the family. So for example the image of (x, y) 7→ (x, xy) is constructible.

Note that if X → Y is a morphism of schemes, then the preimage of a constructible set
is a constructible set.

2.C. EXERCISE. Suppose X is a Noetherian scheme. Show that a subset of X is con-
structible if and only if it is the finite disjoint union of locally closed subsets.

Then if f : X → Y is a finite type morphism of Noetherian schemes, the image of any
constructible set is constructible. This is Chevalley’s Theorem, and we will prove it later.
We will also have reasonable criteria for when the image is closed.

(For hardened experts only: [EGA 0III.9.1] gives a definition of constructible in more
generality. A constructible subset of a topological space X is a member of the Boolean algebra
generated by open subsets U of X such that the inclusion U ↪→ X is quasicompact. If X is
an affine scheme, or more generally quasicompact and quasiseparated, this is equivalent
to U being quasicompact. A subset Z ⊂ X is locally constructible if X admits an open
covering {Vi} such that Z ∩ Vi ⊂ Vi is constructible for each i. If X is quasicompact and
quasiseparated, this is the same as Z ⊂ X being constructible, so if X is a scheme, then it
is equivalent to say that Z ∩ V is constructible for every affine open set V . The general
form of Chevalley’s constructibility theorem [EGA IV1.1.8.4] is that the image of a locally
constructible set under a finitely presented map, is also locally constructibility. Thanks to
Brian Conrad for this!)
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2.5. Scheme-theoretic closure of a locally closed subscheme.

We define the scheme-theoretic closure of a locally closed immersion f : X → Y as the
scheme-theoretic image of X.

2.D. EXERCISE. If X → Y is quasicompact (e.g. if X is Noetherian, Exercise 1.B) or if X is re-
duced, show that the following three notions are the same. (Hint: Theorem niceschemethe-
oreticimage.)

(a) V is an open subscheme of X intersect a closed subscheme of X

(b) V is an open subscheme of a closed subscheme of X

(c) V is a closed subscheme of an open subscheme of X.

(Hint: it will be helpful to note that the scheme-theoretic image may be computed on each
open subset of the base.)

2.E. UNIMPORTANT EXERCISE USEFUL FOR INTUITION. If f : X → Y is a locally closed
immersion into a locally Noetherian scheme (so X is also locally Noetherian), then the
associated points of the scheme-theoretic image are (naturally in bijection with) the asso-
ciated points of X. (Hint: Exercise 2.B.) Informally, we get no non-reduced structure on
the scheme-theoretic closure not “forced by” that on X.

2.6. The induced reduced subscheme structure on a closed subset.

Suppose Xset is a closed subset of a scheme Y. Then we can define a canonical scheme
structure X on Xset, that is reduced. We could describe it as being cut out by those func-
tions whose values are zero at all the points of Xset. On affine open subset Spec B of Y,
if the set Xset corresponds to the radical ideal I = I(Xset), the scheme X corresponds to
Spec B/I. We could also consider this construction as an example of a scheme-theoretic
image in the following crazy way: let W be the scheme that is a disjoint union of all the
points of Xset, where the point corresponding to p in Xset is Spec of the residue field of
OY,p. Let f : W → Y be the “canonical” map sending “p to p”, and giving an isomorphism
on residue fields. Then the scheme structure on X is the scheme-theoretic image of f. A
third definition: it is the smallest closed subscheme whose underlying set contains Xset.

This construction is called the induced reduced subscheme structure on the closed sub-
set Xset. (Vague exercise: Make a definition of the induced reduced subscheme structure
precise and rigorous to your satisfaction.)

2.F. EXERCISE. Show that the underlying set of the induced reduced subscheme X → Y

is indeed the closed subset Xset. Show that X is reduced.

2.7. Reduced version of a scheme.
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In the special case where Xset all of Y, we obtain a reduced closed subscheme Yred → Y,
called the reduction of Y. On affine open subset Spec B ↪→ Y, Y red

↪→ Y corresponds to the
nilradical N(B) of B. The reduction of a scheme is the “reduced version” of the scheme,
and informally corresponds to “shearing off the fuzz”.

An alternative equivalent definition: on the affine open subset Spec B ↪→ Y, the reduc-
tion of Y corresponds to the ideal N (B) ⊂ Y. As for any f ∈ B, N (B)f = N (Bf), by
Exercise 1.P this defines a closed subscheme.

2.G. UNIMPORTANT EXERCISE (BUT USEFUL FOR VISUALIZATION). Show that if Y is a
locally Noetherian scheme, the “reduced locus” of Y (where Y red → Y is an isomorphism)
is an open subset of Y. (In fact the non-reduced locus is a closure of certain associated
points.)

3. MORE FINITENESS CONDITIONS ON MORPHISMS: (LOCALLY) OF FINITE TYPE,
QUASIFINITE, (LOCALLY) OF FINITE PRESENTATION

3.1. Morphisms (locally of) finite type.

A morphism f : X → Y is locally of finite type if for every affine open set Spec B of Y,
f−1(Spec B) can be covered with open sets Spec Ai so that the induced morphism B → Ai

expresses Ai as a finitely generated B-algebra. By the affine-locality of finite-typeness
of B-schemes, this is equivalent to: for every affine open set Spec Ai in X, Ai is a finitely
generated B-algebra.

A morphism is of finite type if it is locally of finite type and quasicompact. Translation:
for every affine open set Spec B of Y, f−1(Spec B) can be covered with a finite number of open
sets Spec Ai so that the induced morphism B → Ai expresses Ai as a finitely generated
B-algebra.

3.A. EXERCISE (THE NOTIONS “LOCALLY OF FINITE TYPE” AND “FINITE TYPE” ARE AFFINE-
LOCAL ON THE TARGET). Show that a morphism f : X → Y is locally of finite type if there
is a cover of Y by affine open sets Spec Bi such that f−1(Spec Bi) is locally of finite type
over Bi.

3.B. EXERCISE. Show that a morphism f : X → Y is locally of finite type if for every affine
open subsets Spec A ⊂ X, Spec B ⊂ Y, with f(Spec A) ⊂ Spec B, A is a finitely generated
B-algebra. (Hint: use the affine communication lemma on f−1(Spec B).)

Example: the “structure morphism” Pn
A → Spec A is of finite type, as Pn

A is covered by
n + 1 open sets of the form Spec A[x1, . . . , xn]. More generally, Proj S∗ → Spec A (where
S0 = A) is of finite type.
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More generally still: our earlier definition of schemes of “finite type over k” (or “finite
type k-schemes”) is now a special case of this more general notion: a scheme X is of finite
type over k means that we are given a morphism X → Spec k (the “structure morphism”)
that is of finite type.

Here are some properties enjoyed by morphisms of finite type.

3.C. EASY EXERCISE. Show that finite morphisms are of finite type. Hence closed immer-
sions are of finite type.

3.D. EXERCISES (NOT HARD, BUT IMPORTANT).

(a) Show that an open immersion is locally of finite type. Show that an open immer-
sion into a locally Noetherian scheme is of finite type. More generally, show that a
quasicompact open immersion is of finite type.

(b) Show that the composition of two morphisms of locally finite type is locally of
finite type. (Hence as quasicompact morphisms also compose, the composition of
two morphisms of finite type is also of finite type.)

(c) Suppose we have morphisms X
f

// Y
g

// Z , with f quasicompact, and g ◦ f of
finite type. Show that f is finite type.

(d) Suppose f : X → Y is finite type, and Y is Noetherian. Show that X is also Noether-
ian.

A morphism f is quasifinite if it is of finite type, and for all y ∈ Y, f−1(y) is a finite set.
The main point of this definition is the “finite fiber” part; the “finite type” part is there
so this notion is “preserved by fibered product” (an exercise in the class on fiber products
next week).

3.E. EXERCISE. Show that finite morphisms are quasifinite. (This is a useful exercise,
because you will have to figure out how to figure out how to get at points in a fiber of a
morphism: given f : X → Y, and y ∈ Y, what are the points of f−1(y)? Here is a hint: if
X = Spec A and Y = Spec B are both affine, and y = [p], then we can throw out everything
in A outside y by modding out by p; you can show that the preimage is A/p. Then we
have reduced to the case where Y is the Spec of an integral domain, and [p] = [0] is the
generic point. We can throw out the rest of the points by localizing at 0. You can show that
the preimage is (Ap)/pAp. Then, once you have shown that finiteness behaves well with
respect to the operations you made done, you have reduced the problem to Exercise 1.M.)

There are quasifinite morphisms which are not finite, for example A2 − {(0, 0} → A2

(Example 1.7). The key example of a morphism with finite fibers that is not quasifinite is
Spec Q → Spec Q.
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How to picture quasifinite morphisms, thanks go Brian Conrad. If X → Y is a finite mor-
phism, then quasi-compact open subset U ⊂ X is quasi-finite over Y. In fact every reason-
able quasifinite morphism arises in this way. Thus the right way to visualize quasifinite-
ness is as a finite map with some (closed locus of) points removed.

3.2. ? Morphisms (locally) of finite presentation. There is a variant often of use to non-
Noetherian people. A morphism f : X → Y is locally of finite presentation (or locally
finitely presented) if for each affine open subset Spec B of Y, f−1(Spec B) == ∪i Spec Ai

with B → Ai finitely presented (finitely generated with a finite number of relations). A
morphism is of finite presentation (or finitely presented) if it is locally of finite presenta-
tion and quasicompact.

If X is locally Noetherian, then locally of finite presentation is the same as locally of
finite type, and finite presentation is the same as finite type. So if you are a Noetherian
person, you needn’t worry about this notion.

3.F. EXERCISE. Show that the notion of “locally finite presentation” is affine-local.

3.G. ?? EXERCISE: LOCALLY OF FINITE PRESENTATION IS A PURELY CATEGORICAL NO-
TION. Show that “locally of finite presentation” is equivalent to the following. If
F : (Sch/Y) → (Sets), S 7→ HomY(S, X), we require F to commute with direct limits,
i.e. if {Ai} is a direct system, then F(lim

−→
Ai) = lim

−→
F(Ai).
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