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1. ASSOCIATED POINTS CONTINUED

Recall the four key facts to remember about associated points.

(1) The generic points of the irreducible components are associated points. The other associ-
ated points are called embedded points.

(2) If X is reduced, then X has no embedded points.

(3) If X is a locally Noetherian scheme, then for any U ⊂ X, the natural map

(1) Γ(U,OX) →
∏

associated p in U

OX,p

is an injection.

We define a rational function on a locally Noetherian scheme to be an element of the
image of Γ(U,OU) in (1) for some U containing all the associated points. The rational
functions form a ring, called the total fraction ring of X, denoted FF(X). If X = Spec A is
affine, then this ring is called the total fraction ring of A, FF(A).

(4) A function on X is a zero divisor if and only if it vanishes at an associated point of X.

Recall that an ideal I ⊂ A in a ring is primary if I 6= A and if xy ∈ I implies either x ∈ I

or yn ∈ I for some n > 0. In other words, the quotient is not 0, and every zero-divisor is
nilpotent. Hence the notion of “primary” should be seen as a condition on A/I, not on I.
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We know that if q is primary, then √
q is prime, say p. We then say that q is p-primary.

We know that if q and q ′ are p-primary, then so is q ∩ q ′.

We also know that primary decompositions, and hence minimal primary decomposi-
tions, exist for any ideal of a Noetherian ring.

We proved:

1.1. Theorem (“uniqueness” of primary decomposition). — Suppose I ⊂ A has a minimal primary
decomposition

I = ∩n
i=1qi.

(For example, this is always true if A is Noetherian.) Then the √qi are precisely the prime ideals
that are of the form

√

(I : x)

for some x ∈ A. Hence this list of primes is independent of the decomposition.

These primes are called the associated primes of the ideal I. The associated primes of
A are the associated primes of 0.

The proof involved the handy line

(2)
√

(I : x) = ∩
√

(qi : x) = ∩x/∈qj
pj.

So let’s move forward!

1.A. EXERCISE (ASSOCIATED PRIMES BEHAVE WELL WITH RESPECT TO LOCALIZATION).
Show that if A is a Noetherian ring, and S is a multiplicative subset (so there is an
inclusion-preserving correspondence between the primes of S−1A and those primes of
A not meeting S), then the associated primes of S−1A are just the associated primes of A

not meeting S.

We then define the associated points of a locally Noetherian scheme X to be those
points p ∈ X such that, on any affine open set Spec A containing p, p corresponds to an
associated prime of A. Note that this notion is well-defined: If p has two affine open
neighborhoods Spec A and Spec B (say corresponding to primes p ⊂ A and q ⊂ B respec-
tively), then p corresponds to an associated prime of A if and only if it corresponds to an
associated prime of Ap = OX,p = Bq if and only if it corresponds to an associated prime of
B.

If furthermore X is quasicompact (i.e. X is a Noetherian scheme), then there are a finite
number of associated points.

1.B. EXERCISE. (a) Show that the minimal primes of A are associated primes. We have
now proved important fact (1). (Hint: suppose p ⊃ ∩n

i=1qi. Then p =
√

p ⊃
√

∩n
i=1qi =

∩n
i=1

√
qi = ∩n

i=1pi, so by a previous exercise, p ⊃ pi for some i. If p is minimal, then as
p ⊃ pi ⊂ (0), we must have p = pi.)
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(b) Show that there can be other associated primes that are not minimal. (Hint: we’ve
seen an example...) Your argument will show more generally that the minimal primes of
I are associated primes of I.

1.C. EXERCISE. Show that if A is reduced, then the only associated primes are the mini-
mal primes. (This establishes (2).)

The qi corresponding to minimal primes are unique, but the qi corresponding to other
associated primes are not unique. We will not need this fact, and hence won’t prove it.

1.2. Proposition. — The set of zero-divisors is the union of the associated primes.

This establishes (4): a function is a zero-divisor if and only if it vanishes at an associated
point. Thus (for a Noetherian scheme) a function is a zero divisor if and only if its zero
locus contains one of a finite set of points.

You may wish to try this out on the example of the affine line with fuzz at the origin.

Proof. If pi is an associated prime, then pi =
√

(0 : x) from the proof of Theorem 1.1, so
∪pi is certainly contained in the set Z of zero-divisors.

For the converse:

1.D. EXERCISE. Show that

Z = ∪x6=0(0 : x) ⊆ ∪x6=0

√

(0 : x) ⊆ Z.

Hence
Z = ∪x6=0

√

(0 : x) = ∪x

(

∩x/∈qj
pj

)

⊆ ∪pj

using (2). �

1.E. UNIMPORTANT EXERCISE (RABINOFF’S THEOREM). Here is an interesting variation
on (4): show that a ∈ A is nilpotent if and only if it vanishes at the associated points of
Spec A. Algebraically: we know that the nilpotents are the intersection of all prime ideals;
now show that in the Noetherian case, the nilpotents are in fact the intersection of the
(finite number of) associated prime ideals.

1.3. Proposition. — The natural map A →
∏

associated p Ap is an inclusion.

Proof. Suppose r 6= 0 maps to 0 under this map. Then there are si ∈ A − p with sir = 0.
Then I := (s1, . . . , sn) is an ideal consisting only of zero-divisors. Hence I ⊆ ∪pi. Then
I ⊂ pi for some i by an exercise from last week, contradicting si /∈ pi. �

3



1.F. EASIER AND LESS IMPORTANT EXERCISE. Prove fact (3). (The previous Proposition
establishes it for affine open sets.)

2. INTRODUCTION TO MORPHISMS OF SCHEMES

Whenever you learn about a new type of object in mathematics, you should naturally
be curious about maps between them, which means understanding how they form a cate-
gory. In order to satisfy this curiosity, we’ll introduce the notion of morphism of schemes
now, and at the same time we may as well define some easy-to-state properties of mor-
phisms. However, we’ll leave more subtle properties of morphisms for next quarter.

Recall that a scheme is (i) a set, (ii) with a topology, (iii) and a (structure) sheaf of rings,
and that it is sometimes helpful to think of the definition as having three steps. In the
same way, the notion of morphism of schemes X → Y may be defined (i) as a map of sets,
(ii) that is continuous, and (iii) with some further information involving the sheaves of
functions. In the case of affine schemes, we have already seen the map as sets, and later
saw that this map is continuous.

Here are two motivations for how morphisms should behave. The first is algebraic, and
the second is geometric.

(a) We’ll want morphisms of affine schemes Spec B → Spec A to be precisely the ring
maps A → B. We have already seen that ring maps A → B induce maps of topologi-
cal spaces in the opposite direction; the main new ingredient will be to see how to add
the structure sheaf of functions into the mix. Then a morphism of schemes should be
something that “on the level of affines, looks like this”.

(b) We are also motivated by the theory of differentiable manifolds. Notice that if π :
X → Y is a map of differentiable manifolds, then a differentiable function on Y pulls
back to a differentiable function on X. More precisely, given an open subset U ⊂ Y,
there is a natural map Γ(U,OY) → Γ(π−1(U),OX). This behaves well with respect to
restriction (restricting a function to a smaller open set and pulling back yields the same
result as pulling back and then restricting), so in fact we have a map of sheaves on Y:
OY → π∗OX. Similarly a morphism of schemes X → Y should induce a map OY →
π∗OX. But in fact in the category of differentiable manifolds a continuous map X → Y is
a map of differentiable manifolds precisely when differentiable functions on Y pull back
to differentiable functions on X (i.e. the pullback map from differentiable functions on
Y to functions on X in fact lies in the subset of differentiable functions, i.e. the continuous
map X → Y induces a pullback of differential functions OY → OX), so this map of sheaves
characterizes morphisms in the differentiable category. So we could use this as the definition
of morphism in the differentiable category.

But how do we apply this to the category of schemes? In the category of differentiable
manifolds, a continuous map X → Y induces a pullback of (the sheaf of) functions, and we
can ask when this induces a pullback of differentiable functions. However, functions are
odder on schemes, and we can’t recover the pullback map just from the map of topological
spaces. A reasonable patch is to hardwire this into the definition of morphism, i.e. to have
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a continuous map f : X → Y, along with a pullback map f# : OY → f∗OX. This leads to the
definition of the category of ringed spaces.

One might hope to define morphisms of schemes as morphisms of ringed spaces. This
isn’t quite right, as then motivation (a) isn’t satisfied: as desired, to each morphism A → B

there is a morphism Spec B → Spec A, but there can be additional morphisms of ringed
spaces Spec B → Spec A not arising in this way (Exercise 3.C). A revised definition as
morphisms of ringed spaces that locally looks of this form will work, but this is awkward
to work with, and we take a different tack. However, we will check that our eventual
definition actually is equivalent to this.

We’ll begin by discussing morphisms of ringed spaces.

Before we do, we take this opportunity to use motivation (a) to motivate the definition
of equivalence of categories. We wish to say that the category of rings and the category of
affine schemes are opposite categories, i.e. that the “opposite category of affine schemes”
(where all the arrows are reversed) is “essentially the same” as the category of rings. We
indeed have a functor from rings to affine schemes (sending A to Spec A), and a functor
from affine schemes to rings (sending X to Γ(X,OX)). But if you think about it, you’ll
realize their composition isn’t exactly the identity. (It all boils down to the meaning of
“is” or “same”, and this can get confusing.) Rather than trying to set things up so the
composition is the identity, we just don’t let this bother us, and make precise the notion
that the composition is “essentially” the identity.

Suppose F and G are two functors from A to B. A natural transformation of functors
F → G is the data of a morphism ma : F(a) → G(a) for each a ∈ A such that for each
f : a → a ′ in A, the diagram

F(a)
F(f)

//

ma

��

F(a ′)

ma ′

��

G(a)
G(f)

// G(a ′)

A natural isomorphism of functors is a natural transformation such that each ma is an
isomorphism. The data of functors F : A → B and F ′ : B → A such that F ◦ F ′ is naturally
isomorphic to the identity IB on B and F ′ ◦ F is naturally isomorphic to IA is said to be an
equivalence of categories. This is the “right” notion of isomorphism of categories.

Two examples might make this strange concept more comprehensible. The double dual
of a finite-dimensional vector space V is not V , but we learn early to say that it is canoni-
cally isomorphic to V . We make can that precise as follows. Let f.d. Veck be the category
of finite-dimensional vector spaces over k. Note that this category contains oodles of
vector spaces of each dimension.

2.A. EXERCISE. Let ∨∨ : f.d. Veck → f.d. Veck be the double dual functor from the
category of vector spaces over k to itself. Show that ∨∨ is naturally isomorphic to the
identity. (Without the finite-dimensional hypothesis, we only get a natural transformation
of functors from id to ∨∨.)
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Let V be the category whose objects are kn for each n (there is one vector space for each
n), and whose morphisms are linear transformations. This latter space can be thought of
as vector spaces with bases, and the morphisms are honest matrices. There is an obvious
functor V → f.d.Veck, as each kn is a finite-dimensional vector space.

2.B. EXERCISE. Show that V → f.d.Veck gives an equivalence of categories, by describing
an “inverse” functor. (You’ll need the axiom of choice, as you’ll simultaneously choose
bases for each vector space in f.d.Veck!)

Once you have come to terms with the notion of equivalence of categories, you will
quickly see that rings and affine schemes are basically the same thing, with the arrows
reversed:

2.C. EXERCISE. Assuming that morphisms of schemes are defined so that Motivation
(a) holds, show that the category of rings and the opposite category of affine schemes are
equivalent.

3. MORPHISMS OF RINGED SPACES

3.1. Definition. A morphism π : X → Y of ringed spaces is a continuous map of
topological spaces (which we unfortunately also call π) along with a “pullback map”
OY → π∗OX. By adjointness, this is the same as a map π−1OY → OX. There is an ob-
vious notion of composition of morphisms; hence there is a category of ringed spaces.
Hence we have notion of automorphisms and isomorphisms. You can easily verify that
an isomorphism f : (X,OX) → (Y,OY) is a homeomorphism f : X → Y along with an
isomorphism OY → f∗OX (or equivalently f−1OY → OX).

If U ⊂ Y is an open subset, then there is a natural morphism of ringed spaces (U,OY |U) →
(Y,OY). (Check this! The f−1 interpretation is cleaner to use here.) This is our model for an
open immersion. More precisely, if U → Y is an isomorphism of U with an open subset V

of Y, and we are given an isomorphism (U,OU) ∼= (V,OV) (via the isomorphism U ∼= V),
then the resulting map of ringed spaces is called an open immersion of ringed spaces.

3.A. EXERCISE (MORPHISMS OF RINGED SPACES GLUE). Suppose (X,OX) and (Y,OY) are
ringed spaces, X = ∪iUi is an open cover of X, and we have morphisms of ringed spaces
fi : Ui → Y that “agree on the overlaps”, i.e. fi|Ui∩Uj

= fj|Ui∩Uj
. Show that there is a unique

morphism of ringed spaces f : X → Y such that f|Ui
= fi. (An earlier exercise essentially

showed this for topological spaces.)

3.B. EASY IMPORTANT EXERCISE. Given a morphism of ringed spaces f : X → Y with
f(p) = q, show that there is a map of stalks (OY)q → (OX)p.
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3.2. Key Exercise. Suppose f# : B → A is a morphism of rings. Define a morphism of
ringed spaces f : Spec A → Spec B as follows. The map of topological spaces was given
earlier. To describe a morphism of sheaves OB → f∗OA on Spec B, it suffices to describe a
morphism of sheaves on the distinguished base of Spec B. On D(g) ⊂ Spec B, we define

OB(D(g)) → OA(f−1D(g)) = OA(D(f#g))

by Bg → Af#g. Verify that this makes sense (e.g. is independent of g), and that this
describes a morphism of sheaves on the distinguished base. (This is the third in a series
of exercises. We showed that a morphism of rings induces a map of sets first, a map of
topological spaces later, and now a map of ringed spaces here.)

This will soon be an example of morphism of schemes! In fact we could make that
definition right now.

3.3. Definition we won’t start with. A morphism of schemes f : (X,OX) → (Y,OY) is a
morphism of ringed spaces that “locally looks like” the maps of affine schemes described
in Key Exercise 3.2. Precisely, for each choice of affine opens Spec A ⊂ X, Spec B ⊂ Y, such
that f(Spec A) ⊂ Spec B, the induced map of ringed spaces should be of the form shown
in Key Exercise 3.2.

We would like this definition to be checkable on an affine cover, and we might hope to
use the affine communication lemma to develop the theory in this way. This works, but
it will be more convenient to use a clever trick: in the next section, we will use the notion
of locally ringed spaces, and then once we have used it, we will discard it like yesterday’s
garbage.

The map of ringed spaces of Key Exercise 3.2 is really not complicated. Here is an
example. Consider the ring map C[x] → C[y] given by x 7→ y2. We are mapping the affine
line with co-ordinate y to the affine line with co-ordinate x. The map is (on closed points)
a 7→ a2. For example, where does [(y− 3)] go to? Answer: [(x− 9)], i.e. 3 7→ 9. What is the
preimage of [(x−4)]? Answer: those prime ideals in C[y] containing [(y2 −4)], i.e. [(y−2)]
and [(y + 2)], so the preimage of 4 is indeed ±2. This is just about the map of sets, which
is old news, so let’s now think about functions pulling back. What is the pullback of the
function 3/(x − 4) on D([(x − 4)]) = A

1 − {4}? Of course it is 3/(y2 − 4) on A
1 − {−2, 2}.

We conclude with an example showing that not every morphism of ringed spaces be-
tween affine schemes is of the form of Key Exercise 3.2.

3.C. UNIMPORTANT EXERCISE. Recall that Spec k[x](x) has two points, corresponding
to (0) and (x), where the second point is closed, and the first is not. Consider the map
of ringed spaces Spec k(x) → Spec k[x](x) sending the point of Spec k(x) to [(x)], and the
pullback map f#OSpec k(x) → OSpec k[x](x)

is induced by k ↪→ k(x). Show that this map of
ringed spaces is not of the form described in Key Exercise 3.2.
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4. FROM LOCALLY RINGED SPACES TO MORPHISMS OF SCHEMES

In order to prove that morphisms behave in a way we hope, we will introduce the
notion of a locally ringed space. It will not be used later, although it is useful elsewhere
in geometry. The notion of locally ringed spaces is inspired by what we know about
manifolds. If π : X → Y is a morphism of manifolds, with π(p) = q, and f is a function
on Y vanishing at q, then the pulled back function π#f on X should vanish on p. Put
differently: germs of functions (at q ∈ Y) vanishing at q should pull back to germs of
functions (at p ∈ X) vanishing at p.

A locally ringed space is a ringed space (X,OX) such that the stalks OX,x are all local
rings. A morphism of locally ringed spaces f : X → Y is a morphism of ringed spaces
such that the induced map of stalks OY,q → OX,p (Exercise 3.B) sends the maximal ideal
of the former into the maximal ideal of the latter (a “local morphism of local rings”). This
means something rather concrete and intuitive: “if p 7→ q, and g is a function vanishing
at q, then it will pull back to a function vanishing at p.” Note that locally ringed spaces
form a category.

4.A. EXERCISE. Show that morphisms of locally ringed spaces glue (cf. Exercise 3.A).
(Hint: Basically, the proof of Exercise 3.A works.)

4.B. EASY IMPORTANT EXERCISE. (a) Show that Spec A is a locally ringed space. (b) The
morphism of ringed spaces f : Spec A → Spec B defined by a ring morphism f# : B → A

is a morphism of locally ringed spaces.

4.1. Key Proposition. — If f : Spec A → Spec B is a morphism of locally ringed spaces then
it is the morphism of locally ringed spaces induced by the map f# : B = Γ(Spec B,OSpec B) →
Γ(Spec A,OSpec A) = A as in Exercise 4.B(b).

Proof. Suppose f : Spec A → Spec B is a morphism of locally ringed spaces. Then we wish
to show that f# : OSpec B → f∗OSpec A is the morphism of sheaves given by Exercise 3.2 (cf.
Exercise 4.B(b)). It suffices to checked this on the distinguished base.

Note that if b ∈ B, f−1(D(b)) = D(f#b); this is where we use the hypothesis that f is a
morphism of locally ringed spaces.

The commutative diagram

Γ(Spec B,OSpec B)
f
#

Spec B
//

��

Γ(Spec A,OSpec A)

⊗BBb

��

Γ(D(b),OSpecB)
f
#

D(b)
// Γ(D(f#b),OSpec A)
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may be written as

B
f
#

Spec B
//

��

A

⊗BBb

��

Bb

f
#

D(b)
// Af#b.

We want that f
#

D(b)
= (f#

Spec B)b. This is clear from the commutativity of that last diagram.
�

We are ready for our definition.

4.2. Definition. If X and Y are schemes, then a morphism of locally ringed spaces is
called a morphism of schemes. We have thus defined a category of schemes. (We then
have notions of isomorphism — just the same as before — and automorphism.)

The definition in terms of locally ringed spaces easily implies tentative definition 3.3:

4.C. IMPORTANT EXERCISE. Show that a morphism of schemes f : X → Y is a morphism
of ringed spaces that looks locally like morphisms of affines. Precisely, if Spec A is an
affine open subset of X and Spec B is an affine open subset of Y, and f(Spec A) ⊂ Spec B,
then the induced morphism of ringed spaces is a morphism of affine schemes. Show that
it suffices to check on a set (Spec Ai, Spec Bi) where the Spec Ai form an open cover X.

In practice, we will use the fact the affine cover interpretation, and forget completely
about locally ringed spaces.

It is also clear (from the corresponding facts about locally ringed spaces) that mor-
phisms glue (Exercise 4.A), and the composition of two morphisms is a morphism. Iso-
morphisms in this category are precise what we defined them to be earlier (homeomor-
phism of topological spaces with isomorphisms of structure sheaves).

4.3. The category of schemes (or k-schemes, or A-schemes, or Z-schemes). It is often
convenient to consider subcategories. For example, the category of k-schemes (where k is
a field) is defined as follows. The objects are morphisms of the form

X

structure morphism
��

Spec k

(This is the same definition as earlier, but in a more satisfactory form.) The morphisms in
the category of k-schemes are commutative diagrams

X

��

// Y

��

Spec k
=

// Spec k
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which is more conveniently written as a commutative diagram

X //

##GG
GG

GG
GG

G Y

{{xx
xx

xxx
xx

Spec k.

For example, complex geometers may consider the category of C-schemes.

When there is no confusion, simply the top row of the diagram is given. More generally,
if A is a ring, the category of A-schemes is defined in the same way, with A replacing
k. And if Z is a scheme, the category of Z-schemes is defined in the same way, with Z

replacing Spec k.

4.4. Examples.

4.D. IMPORTANT EXERCISE. (This exercise will give you some practice with understand-
ing morphisms of schemes by cutting up into affine open sets.) Make sense of the follow-
ing sentence: “An+1 \ {~0} → Pn given by

(x0, x1, . . . , xn+1) 7→ [x0; x1; . . . ; xn]

is a morphism of schemes.” Caution: you can’t just say where points go; you have to say
where functions go. So you’ll have to divide these up into affines, and describe the maps,
and check that they glue.

4.E. IMPORTANT EXERCISE. Show that morphisms X → Spec A are in natural bijection
with ring morphisms A → Γ(X,OX). (Hint: Show that this is true when X is affine. Use
the fact that morphisms glue.)

In particular, there is a canonical morphism from a scheme to Spec of its space of global
sections. (Warning: Even if X is a finite-type k-scheme, the ring of global sections might
be nasty! In particular, it might not be finitely generated.)

4.5. Side fact for experts: Γ and Spec are adjoints. We have a functor Spec from rings to
locally ringed spaces, and a functor Γ from locally ringed spaces to rings. Exercise 4.E
implies (Γ, Spec) is an adjoint pair! Thus we could have defined Spec by requiring it to be
adjoint to Γ .

4.F. EXERCISE. Show that Spec Z is the final object in the category of schemes. In other
words, if X is any scheme, there exists a unique morphism to Spec Z. (Hence the category
of schemes is isomorphic to the category of Z-schemes.)

4.G. EXERCISE. Show that morphisms X → Spec Z[t] correspond to global sections of the
structure sheaf.
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4.6. ? Representable functors. This is one of our first explicit examples of an important
idea, that of representable functors. This is a very useful idea, whose utility isn’t imme-
diately apparent. We have a contravariant functor from schemes to sets, taking a scheme
to its set of global sections. We have another contravariant functor from schemes to sets,
taking X to Hom(X, Spec Z[t]). This is describing a (natural) isomorphism of the functors.
More precisely, we are describing an isomorphism Γ(X,OX) ∼= Hom(X, Spec Z[t]) that be-
haves well with respect to morphisms of schemes: given any morphism f : X → Y, the
diagram

Γ(Y,OY)
∼

//

f∗

��

Hom(Y, Spec Z[t])

f◦
��

Γ(X,OX)
∼

// Hom(X, Spec Z[t])

commutes. Given a contravariant functor from schemes to sets, by the usual universal property
argument, there is only one possible scheme Y, up to isomorphism, such that there is a natural
isomorphism between this functor and Hom(·, Y). If there is such a Y, we say that the functor
is representable.

Here are a couple of examples of something you’ve seen to put it in context. (i) The
contravariant functor hY = Hom(·, Y) (i.e. X 7→ Hom(X, Y)) is representable by Y. (ii)
Suppose we have morphisms X, Y → Z. The contravariant functor Hom(·, X) ×Hom(·,Z)

Hom(·, Y) is representable if and only if the fibered product X×Z Y exists (and indeed then
the contravariant functor is represented by Hom(·, X×Z Y)). This is purely a translation of
the definition of the fibered product — you should verify this yourself.

Remark for experts: The global sections form something better than a set — they form
a scheme. You can define the notion of ring scheme, and show that if a contravariant
functor from schemes to rings is representable (as a contravariant functor from schemes
to sets) by a scheme Y, then Y is guaranteed to be a ring scheme. The same is true for
group schemes.

4.H. RELATED EXERCISE. Show that global sections of O∗
X correspond naturally to maps

to Spec Z[t, t−1]. (Spec Z[t, t−1] is a group scheme.)

5. SOME TYPES OF MORPHISMS

(This section has been moved forward to class 13.)
E-mail address: vakil@math.stanford.edu
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