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This week, we will define some useful properties of schemes.

1. TOPOLOGICAL PROPERTIES: IRREDUCIBILITY, CONNECTEDNESS,
QUASICOMPACTNESS

We will start with some topological properties. The definitions of irreducible, closed point,
specialization, generalization, generic point, connected component, and irreducible component
were given earlier. You should have pictures in your mind of each of these notions.

An earlier exercise showed that An is irreducible (it was easy). This argument “behaves
well under gluing”, yielding:

1.A. EXERCISE. Show that Pn
k is irreducible.

1.B. EXERCISE. An earlier exercise showed that there is a bijection between irreducible
closed subsets and points. Show that this is true of schemes as well.

1.C. EXERCISE. Prove that if X is a scheme that has a finite cover X = ∪n
i=1 Spec Ai where

Ai is Noetherian, then X is a Noetherian topological space. (We will soon call such a
scheme a Noetherian scheme, §3.5.)

Thus Pn
k and Pn

Z
are Noetherian topological spaces: we built them by gluing together a

finite number of Spec’s of Noetherian rings.
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1.1. Definition. A topological space X is connected if it cannot be written as the disjoint
union of two non-empty open sets.

1.D. EXERCISE. Show that an irreducible topological space is connected.

1.E. EXERCISE. Give (with proof!) an example of a scheme that is connected but re-
ducible. (Possible hint: a picture may help. The symbol “×” has two “pieces” yet is
connected.)

1.F. EXERCISE. If A =
∏

A1 × A2 × · · · × An, describe an isomorphism Spec A =
Spec A1

∐
Spec A2

∐
· · ·

∐
Spec An. Show that each Spec Ai is a distinguished open sub-

set D(fi) of Spec A. (Hint: let fi = (0, · · · , 0, 1, 0, · · ·0) where the 1 is in the ith component.)
In other words,

∐n

i=1 Spec Ai = Spec
∏n

i=1 Ai.

1.2. Fun but irrelevant remark. As affine schemes are quasicompact,
∐∞

i=1 Spec Ai cannot be
isomorphic to Spec

∏∞
i=1 Ai. This lack of isomorphism has an entertaining consequence.

Suppose the Ai are isomorphic to the field k. Then we certainly have an inclusion as sets

∞∐

i=1

Spec Ai ↪→ Spec

∞∏

i=1

Ai

— there is a maximal ideal of Spec
∏

Ai corresponding to each i (precisely those elements
0 in the ith component.) But there are other maximal ideals of

∏
Ai. Hint: describe a

proper ideal not contained in any of these maximal ideal. (One idea: consider elements∏
ai that are “eventually zero”, i.e. ai = 0 for i � 0.) This leads to the notion of ultrafilters,

which are very useful, but irrelevant to our current discussion.

As long as we are on the topic of quasicompactness...

1.3. Definition. A scheme is quasicompact if its underlying topological space is quasi-
compact. This seems like a strong condition, but because Zariski-open sets are so large,
almost any scheme naturally coming up in nature will be quasicompact.

1.G. EASY EXERCISE. Show that a scheme X is quasicompact if and only if it can be
written as a finite union of affine schemes (Hence Pn

k is quasicompact.)

1.H. EXERCISE: QUASICOMPACT SCHEMES HAVE CLOSED POINTS. Show that if X is a
nonempty quasicompact scheme, then it has a closed point. (Warning: there exist non-
empty schemes with no closed points, so your argument had better use the quasicom-
pactness hypothesis! We will see that in good situations, the closed points are dense,
Exercise 3.H.)

1.4. Quasiseparatedness.
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FIGURE 1. A picture of the scheme Spec k[x, y]/(xy, y2)

Quasiseparatedness is a weird notion that comes in handy for certain kinds of people.
Most people, however, can ignore this notion. A scheme is quasiseparated if the intersec-
tion of any two quasicompact sets is quasicompact, or equivalently, if the intersection of
any two affine open subsets is a finite union of affine open subsets.

1.I. SHORT EXERCISE. Prove this equivalence.

We will see later that this will be a useful hypothesis in theorems (in conjunction with
quasicompactness), and that various interesting kinds of schemes (affine, locally Noe-
therian, separated, see Exercise 1.J, Exercise 3.B, and an exercise next quarter resp.) are
quasiseparated, and this will allow us to state theorems more succinctly (e.g. “if X is qua-
sicompact and quasiseparated” rather than “if X is quasicompact, and either this or that
or the other thing hold”).

1.J. EXERCISE. Show that affine schemes are quasiseparated.

“Quasicompact and quasiseparated” means something rather down to earth:

1.K. EXERCISE. Show that a scheme X is quasicompact and quasiseparated if and only
if X can be covered by a finite number of affine open subsets, any two of which have
intersection also covered by a finite number of affine open subsets.

2. REDUCEDNESS AND INTEGRALITY

Recall that one of the alarming things about schemes is that functions are not deter-
mined by their values at points, and that was because of the presence of nilpotents.

2.1. Definition. Recall that a ring is reduced if it has no nonzero nilpotents. A scheme X

is reduced if OX(U) has no nonzero nilpotents for any open set U of X.

An example of a nonreduced affine scheme is Spec k[x, y]/(y2, xy). A useful represen-
tation of this scheme is given in Figure 1, although we will only explain in §5 why this
is a good picture. The fuzz indicates that there is some nonreducedness going on at the
origin. Here are two different functions: x and x + y. Their values agree at all points (all
closed points [(x − a, y)] = (a, 0) and at the generic point [(y)]). They are actually the
same function on the open set D(x), which is not surprising, as D(x) is reduced, as the
next exercise shows. (This explains why the fuzz is only at the origin, where y = 0.)
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2.A. EXERCISE. Show that
(

k[x, y]/(y2, xy)
)

x
has no nilpotents. (Possible hint: show that

it is isomorphic to another ring, by considering the geometric picture.)

2.B. EXERCISE (REDUCEDNESS IS STALK-LOCAL). Show that a scheme is reduced if and
only if none of the stalks have nilpotents. Hence show that if f and g are two functions
on a reduced scheme that agree at all points, then f = g. (Two hints: OX(U) ↪→

∏
x∈U OX,x

from an earlier Exercise, and the nilradical is intersection of all prime ideals.)

Warning: if a scheme X is reduced, then it is immediate from the definition that its ring
of global sections is reduced. However, the converse is not true; we will meet an example
later.

2.C. EXERCISE. Suppose X is quasicompact, and f is a function (a global section of OX)
that vanishes at all points of x. Show that there is some n such that fn = 0. Show that
this may fail if X is not quasicompact. (This exercise is less important, but shows why we
like quasicompactness, and gives a standard pathology when quasicompactness doesn’t
hold.) Hint: take an infinite disjoint union of Spec An with An := k[ε]/εn.

Definition. A scheme X is integral if OX(U) is an integral domain for every open set U

of X.

2.D. IMPORTANT EXERCISE. Show that a scheme X is integral if and only if it is irreducible
and reduced.

2.E. EXERCISE. Show that an affine scheme Spec A is integral if and only if A is an integral
domain.

2.F. EXERCISE. Suppose X is an integral scheme. Then X (being irreducible) has a generic
point η. Suppose Spec A is any non-empty affine open subset of X. Show that the stalk at
η, OX,η, is naturally FF(A), the fraction field of A. This is called the function field FF(X) of
X. It can be computed on any non-empty open set of X, as any such open set contains the
generic point. The symbol FFis deliberately ambiguous — it may stand for fraction field
or function field.

2.G. EXERCISE. Suppose X is an integral scheme. Show that the restriction maps resU,V :
OX(U) → OX(V) are inclusions so long as V 6= ∅. Suppose Spec A is any non-empty
affine open subset of X (so A is an integral domain). Show that the natural map OX(U) →
OX,η = FF(A) (where U is any non-empty open set) is an inclusion. Thus irreducible
varieties (an important example of integral schemes defined later) have the convenient
that sections over different open sets can be considered subsets of the same thing. This
makes restriction maps and gluing easy to consider; this is one reason why varieties are
usually introduced before schemes.
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Spec A
Spec BSpec Af

Spec Bg

FIGURE 2. Trick to show that the intersection of two affine open sets may
be covered by open sets that are simultaneously open in both affines

An almost-local criterion for integrality is given in 3.F.

3. PROPERTIES OF SCHEMES THAT CAN BE CHECKED “AFFINE-LOCALLY”

This section is intended to address something tricky and annoying in the definition
of schemes. We’ve defined a scheme as a topological space with a sheaf of rings, that
can be covered by affine schemes. Hence we have all of the affine opens in the cover,
but we don’t know how to communicate between any two of them. Somewhat more
explicitly, if I have an affine cover, and you have an affine cover, and we want to compare
them, and I calculate something on my cover, there should be some way of us getting
together, and figuring out how to translate my calculation over onto your cover. The
Affine Communication Lemma 3.3 will provide a convenient machine for doing this.

Thanks to this lemma, we can define a host of important properties of schemes. All
of these are “affine-local” in that they can be checked on any affine cover, i.e. a covering
by open affine sets. We like such properties because we can check them using any affine
cover we like. If the scheme in question is quasicompact, then we need only check a finite
number of affine open sets.

3.1. Warning. In our limited examples so far, any time we’ve had an affine open subset of
an affine scheme Spec B ⊂ Spec A, in fact Spec B = D(f) for some f. But this is not always
true, and we will eventually have an example, using elliptic curves.

3.2. Proposition. — Suppose Spec A and Spec B are affine open subschemes of a scheme X. Then
Spec A ∩ Spec B is the union of open sets that are simultaneously distinguished open subschemes
of Spec A and Spec B.

Proof. (See Figure 2 for a sketch.) Given any point [p] ∈ Spec A ∩ Spec B, we produce
an open neighborhood of [p] in Spec A ∩ Spec B that is simultaneously distinguished in
both Spec A and Spec B. Let Spec Af be a distinguished open subset of Spec A contained
in Spec A ∩ Spec B. Let Spec Bg be a distinguished open subset of Spec B contained in
Spec Af. Then g ∈ Γ(Spec B,OX) restricts to an element g ′ ∈ Γ(Spec Af,OX) = Af. The
points of Spec Af where g vanishes are precisely the points of Spec Af where g ′ vanishes,
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so
Spec Bg = Spec Af \ {[p] : g ′ ∈ p}

= Spec(Af)g ′.

If g ′ = g ′′/fn (g ′′ ∈ A) then Spec(Af)g ′ = Spec Afg ′′ , and we are done. �

The following easy result will be crucial for us.

3.3. Affine Communication Lemma. — Let P be some property enjoyed by some affine open sets
of a scheme X, such that

(i) if an affine open set Spec A ↪→ X has P then for any f ∈ A, Spec Af ↪→ X does too.
(ii) if (f1, . . . , fn) = A, and Spec Afi

↪→ X has P for all i, then so does Spec A ↪→ X.

Suppose that X = ∪i∈I Spec Ai where Spec Ai is an affine, and Ai has property P. Then every
other open affine subscheme of X has property P too.

We say such a property is affine-local. Note that any property that is stalk-local (a
scheme has property P if and only if all its stalks have property Q) is necessarily affine-
local (a scheme has property P if and only if all of its affines have property R, where an
affine scheme has property R if and only if and only if all its stalks have property Q),
but it is sometimes not so obvious what the right definition of Q is; see for example the
discussion of normality in the next section.

Proof. Let Spec A be an affine subscheme of X. Cover Spec A with a finite number of
distinguished opens Spec Agj

, each of which is distinguished in some Spec Ai. This is
possible by Proposition 3.2 and the quasicompactness of Spec A. By (i), each Spec Agj

has
P. By (ii), Spec A has P. �

By choosing property P appropriately, we define some important properties of schemes.

3.4. Proposition. — Suppose A is a ring, and (f1, . . . , fn) = A.

(a) If A is a Noetherian ring, then so is Afi
. If each Afi

is Noetherian, then so is A.
(b) If A is reduced, then Afi

is also reduced. If each Afi
is reduced, then so is A.

(c) Suppose B is a ring, and A is an B-algebra. (Hence Ag is a B-algebra for all B.) If A is a
finitely generated B-algebra, then so is Afi

. If each Afi
is a finitely-generated B-algebra,

then so is A.

We’ll prove these shortly. But let’s first motivate you to read the proof by giving some
interesting definitions assuming Proposition 3.4 is true.

3.5. Important Definitions. Suppose X is a scheme. If X can be covered by affine opens
Spec A where A is Noetherian, we say that X is a locally Noetherian scheme. If in addition
X is quasicompact, or equivalently can be covered by finitely many such affine opens, we
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say that X is a Noetherian scheme. By Exercise 1.C, the underlying topological space of a
Noetherian scheme is Noetherian. (We will see a number of definitions of the form “if X

has this property, we say that it is locally Q; if further X is compact, we say that it is Q.”)

3.A. EXERCISE. Show that all open subsets of a Noetherian topological space (hence a
Noetherian scheme) are quasicompact.

3.B. EXERCISE. Show that locally Noetherian schemes are quasiseparated.

3.C. EXERCISE. Show that a Noetherian scheme has a finite number of irreducible com-
ponents. Show that a Noetherian scheme has a finite number of connected components,
each a finite union of irreducible components.

3.D. EXERCISE. If X is a Noetherian scheme, show that every point p has a closed point
in its closure. (In particular, every non-empty Noetherian scheme has closed points; this
is not true for every scheme, as remarked in Exercise 1.H.)

3.E. EXERCISE. If X is an affine scheme or Noetherian scheme, show that it suffices to
check reducedness at closed points. (Hint: For the Noetherian case, recall Exercise 3.D.)

Integrality is not stalk-local, but it almost is, as is shown in the following believable
exercise.

3.F. UNIMPORTANT EXERCISE. Show that a locally Noetherian scheme X is integral if and
only if X is connected and all stalks OX,p are integral domains (informally: “the scheme is
locally integral”). Thus in “good situations” (when the scheme is Noetherian), integrality
is the union of local (stalks are domains) and global (connected) conditions.

3.6. Remark. Joe Rabinoff gave a great example showing that “locally Noetherian” is not
a stalk-local condition. Joe’s counterexample: Let k be an algebraically closed field, let
b1, b2, b3, ... ∈ k be a sequence of distinct elements, and let

A = k[s, a1, a2, ...]/((s − bi)ai+1 − ai, a
2
i )i=1,2,...

I claim that A is not noetherian, but that Ap is noetherian for every prime ideal. It suffices
to check for maximal ideals, as Noetherianness is preserved by localization.. The nilradi-
cal N of A is (a1, a2, ...) (as the ai clearly lie in the nilradical, and A/(a1, . . . ) is a domain
so we’ve found it all), and A/N = k[s], so the maximal ideals of A are the ideals of the
form m = (s − b, a1, a2, ...) for b ∈ k Let m be such an ideal.

• Suppose that b = bn for some n. For i 6= n, we have ai+1 = ai/(s − bi) in Am.
Hence Am is the localization of a ring generated by the two variables s and an, so
it’s Noetherian.

• If b is distinct from all the bi, then Am is the localization of a ring generated by s

and a1, as above.
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Hence all stalks are Noetherian, but clearly the nilradical of A is not finitely generated.

3.G. EXERCISE. Show that X is reduced if and only if X can be covered by affine opens
Spec A where A is reduced (nilpotent-free).

Our earlier definition required us to check that the ring of functions over any open set
is nilpotent free. Our new definition lets us check a single affine cover. Hence for example
An

k and Pn
k are reduced.

Suppose X is a scheme, and A is a ring (e.g. A is a field k), and Γ(U,OX) has an A-
algebra for all A, and the restriction maps respect the A-algebra structure. Then we say
that X is an A-scheme, or a scheme over A. Suppose X is an A-scheme. If X can be
covered by affine opens Spec Bi where each Bi is a finitely generated A-algebra, we say that
X is locally of finite type over A, or that it is a locally of finite type A-scheme. (This is
admittedly cumbersome terminology; it will make more sense later, once we know about
morphisms.) If furthermore X is quasicompact, X is finite type over A, or a finite type
A-scheme. Note that a scheme locally of finite type over k or Z (or indeed any Noetherian
ring) is locally Noetherian, and similarly a scheme of finite type over any Noetherian ring
is Noetherian. As our key “geometric” example: if I ⊂ C[x1, . . . , xn] is an ideal, then
Spec C[x1, . . . , xn]/I is a finite-type C-scheme.

3.7. We now make a definition to make a connection to the language of varieties. An
affine scheme that is reduced and finite type k-scheme is said to be an affine variety (over
k), or an affine k-variety. We are not yet ready to define varieties in general; we will need
the notion of separatedness first, to exclude abominations of nature like the line with the
doubled origin. We will define projective k-varieties before defining varieties in general
(as separated finite type k-schemes). (Warning: in the literature, it is sometimes also
required that the scheme be irreducible, or that k be algebraically closed.)

3.H. EXERCISE. Show that a point of a locally finite type k-scheme is a closed point if and
only if the residue field of the stalk of the structure sheaf at that point is a finite extension
of k. (Recall the following form of Hilbert’s Nullstellensatz, richer than the version stated
before: the maximal ideals of k[x1, . . . , xn] are precisely those with residue of the form
a finite extension of k.) Show that the closed points are dense on such a scheme. (For
another exercise on closed points, see 1.H.)

3.8. Proof of Proposition 3.4. (a) (i) If I1 ( I2 ( I3 ( · · · is a strictly increasing chain of
ideals of Af, then we can verify that J1 ( J2 ( J3 ( · · · is a strictly increasing chain of
ideals of A, where

Jj = {r ∈ A : r ∈ Ij}

where r ∈ Ij means “the image in Af lies in Ij”. (We think of this as Ij∩A, except in general
A needn’t inject into Afi

.) Clearly Jj is an ideal of A. If x/fn ∈ Ij+1 \ Ij where x ∈ A, then
x ∈ Jj+1, and x /∈ Jj (or else x(1/f)n ∈ Jj as well). (ii) Suppose I1 ( I2 ( I3 ⊂ · · · is a strictly
increasing chain of ideals of A. Then for each 1 ≤ i ≤ n,

Ii,1 ⊂ Ii,2 ⊂ Ii,3 ⊂ · · ·
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is an increasing chain of ideals in Afi
, where Ii,j = Ij ⊗A Afi

. It remains to show that for
each j, Ii,j ( Ii,j+1 for some i; the result will then follow.

3.I. EXERCISE. Finish this argument.

3.J. EXERCISE. Prove (b).

(c) (i) is clear: if A is generated over B by r1, . . . , rn, then Af is generated over B by r1,
. . . , rn, 1/f.

(ii) Here is the idea. We have generators of Ai: rij/f
j
i, where rij ∈ A. I claim that

{rij}ij ∪ {fi}i generate A as a B-algebra. Here’s why. Suppose you have any r ∈ A. Then in
Afi

, we can write r as some polynomial in the rij’s and fi, divided by some huge power
of fi. So “in each Afi

, we have described r in the desired way”, except for this annoying
denominator. Now use a partition of unity type argument to combine all of these into a
single expression, killing the denominator. Show that the resulting expression you build
still agrees with r in each of the Afi

. Thus it is indeed r.

3.K. EXERCISE. Make this argument precise.

This concludes the proof of Proposition 3.4 �

4. NORMALITY AND FACTORIALITY

4.1. Normality.

We can now define a property of schemes that says that they are “not too far from
smooth”, called normality, which will come in very handy. We will see later that “locally
Noetherian normal schemes satisfy Hartogs’ theorem”: functions defined away form a
set of codimension 2 extend over that set, (2) Rational functions that have no poles are
defined everywhere. We need definitions of dimension and/or poles to make this precise.

A scheme X is normal if all of its stalks OX,x are normal (i.e. are domains, and integrally
closed in their fraction fields). As reducedness is a stalk-local property (Exercise 2.B),
normal schemes are reduced.

4.A. EXERCISE. Show that integrally closed domains behave well under localization: if
A is an integrally closed domain, and S is a multiplicative subset, show that S−1A is an
integrally closed domain. (The domain portion is easy. Hint for integral closure: assume
that xn + an−1x

n−1 + · · · + a0 = 0 where ai ∈ S−1A has a root in the fraction field. Turn
this into another equation in A[x] that also has a root in the fraction field.)
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It is no fun checking normality at every single point of a scheme. Thanks to this ex-
ercise, we know that if A is an integrally closed domain, then Spec A is normal. Also,
for Noetherian schemes, normality can be checked at closed points, thanks to this exer-
cise, and the fact that for such schemes, any point is a generization of a closed point (see
Exercise 3.D)

It is not true that normal schemes are integral. For example, the disjoint union of two
normal schemes is normal. Thus Spec k

∐
Spec k ∼= Spec(k × k) ∼= Spec k[x]/(x(x − 1)) is

normal, but its ring of global sections is not a domain.

4.B. UNIMPORTANT EXERCISE. Show that a Noetherian scheme is normal if and only if it
is the finite disjoint union of integral Noetherian normal schemes.

We are close to proving a useful result in commutative algebra, so we may as well go
all the way.

4.2. Proposition. — If A is an integral domain, then the following are equivalent.

(1) A integrally closed.
(2) Ap is integrally closed for all prime ideals p ⊂ A.
(3) Am is integrally closed for all maximal ideals m ⊂ A.

Proof. Clearly (2) implies (3). Exercise 4.A shows that integral closure is preserved by
localization, so (1) implies (2).

It remains to show that (3) implies (1). This argument involves a very nice construction
that we will use again. Suppose A is not integrally closed. We show that there is some m
such that Am is also not integrally closed. Suppose

(1) xn + an−1x
n−1 + · · ·+ a0 = 0

(with ai ∈ A) has a solution s in FF(A). Let I be the ideal of denominators of s:

I := {r ∈ A : rs ∈ A}.

(Note that I is clearly an ideal of A.) Now I 6= A, as 1 /∈ I. Thus there is some maximal
ideal m containing I. Then s /∈ Am, so equation (1) in Am[x] shows that Am is not integrally
closed as well, as desired. �

4.C. UNIMPORTANT EXERCISE. If A is an integral domain, show that A = ∩Am, where
the intersection runs over all maximal ideals of A. (We won’t use this exercise, but it gives
good practice with the ideal of denominators.)

4.D. UNIMPORTANT EXERCISE RELATING TO THE IDEAL OF DENOMINATORS. One might
naively hope from experience with unique factorization domains that the ideal of de-
nominators is principal. This is not true. As a counterexample, consider our new friend
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A = k[a, b, c, d]/(ad − bc) (which we will later recognize as the cone over the quadric
surface), and a/c = b/d ∈ FF(A). Show that I = (c, d).

4.3. Factoriality.

We define a notion which implies normality.

4.4. Definition. If all the stalks of a scheme X are unique factorization domains, we say
that X is factorial.

4.E. EXERCISE. Show that any localization of a Unique Factorization Domain is a Unique
Factorization Domain.

Thus if A is a unique factorization domain, then Spec A is factorial. (The converse need
not hold. Hence this property is not affine-local, as we will verify later. Here is a counter-
example without proof: Z[

√
17].) Hence it suffices to check factoriality by finding an

appropriate affine cover.

One of the reasons we like factoriality is that it implies normality.

4.F. IMPORTANT EXERCISE. Show that unique factorization domains are integrally closed.
Hence factorial schemes are are normal, and if A is a unique factorization domain, then
Spec A is normal. (However, rings can be integrally closed without being unique factor-
ization domains, as we’ll see in Exercise 4.I. An example without proof: Z[

√
17] again.)

4.G. EASY EXERCISE. Show that the following schemes are normal: An
k , Pn

k , Spec Z.

4.H. EXERCISE (WHICH WILL GIVE US A NUMBER OF ENLIGHTENING EXAMPLES LATER).
Suppose A is a Unique Factorization Domain with 2 invertible, f ∈ A has no repeated
prime factors, and z2−f is irreducible in A[z]. Show that Spec A[z]/(z2−f) is normal. Show
that if f is not square-free, then Spec A[z]/(z2 − f) is not normal. (Hint: B := A[z]/(z2 − f) is
a domain, as (z2 − f) is prime in A[z]. Suppose we have monic F(T) = 0 with F(T) ∈ B[T ]

which has a solution α in FF(B). Then by replacing F(T) by F(T)F(T), we can assume
F(T) ∈ A[T ]. Also, α = g + hz where g, h ∈ FF(A). Now α is the solution of monic
Q(T) = T 2 − 2gT + (g2 − h2f)T ∈ FF(A)[T ], so we can factor F(T) = P(T)Q(T) in K[T ]. By
Gauss’ lemma, 2g, g2 − h2f ∈ A. Say g = r/2, h = s/t (s and t have no common factors,
r, s, t ∈ A). Then g2 − h2f = (r2t2 − rs2f)/4t2. Then t = 1, and r is even.)

4.I. EXERCISE. Show that the following schemes are normal:

(a) Spec Z[x]/(x2 − n) where n is a square-free integer congruent to 3 (mod 4);
(b) Spec k[x1, . . . , xn]/x2

1 + x2
2 + · · · + x2

m where char k 6= 2, m ≥ 3;
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(c) Spec k[w, x, y, z]/(wz − xy) where char k 6= 2 and k is algebraically closed. (This is
our cone over a quadric surface example from Exercise 4.D.)

4.J. EXERCISE. Suppose A is a k-algebra where char k = 0, and l/k is a finite field exten-
sion. Show that A is normal if and only if A⊗kl is normal. Show that Spec k[w, x, y, z]/(wz−
xy) is normal if k is characteristic 0. (In fact the hypothesis on the characteristic is unnec-
essary.) Possible hint: reduce to the case where l/k is Galois.

5. ASSOCIATED POINTS OF (LOCALLY NOETHERIAN) SCHEMES, AND DRAWING FUZZY
PICTURES

Recall from just after Definition 2.1 (of reduced) our “fuzzy” pictures of the non-reduced
scheme Spec k[x, y]/(y2, xy) (see Figure 1). When this picture was introduced, we men-
tioned that the “fuzz” at the origin indicated that the non-reduced behavior was concen-
trated there; this was verified in Exercise 2.A, and indeed the origin is the only point
where the stalk of the structure sheaf is non-reduced.

You might imagine that in a bigger scheme, we might have different closed subsets
with different amount of “non-reducedness”. This intuition will be made precise in this
section. We will define associated points of a scheme, which will be the most important
points of a scheme, encapsulating much of the interesting behavior of the structure sheaf.
These will be defined for any locally Noetherian scheme. The primes corresponding to
the associated points of an affine scheme Spec A will be called associated primes of A. (In
fact this is backwards; we will define associated primes first, and then define associated
points.)

The four properties about associated points that it will be most important to remember
are as follows. Frankly, it is much more important to remember these four facts than it is
to remember their proofs.

(1) The generic points of the irreducible components are associated points. The other associ-
ated points are called embedded points.

(2) If X is reduced, then X has no embedded points. (This jibes with the intuition of the
picture of associated points described earlier.)

(3) Recall that one nice property of integral schemes X (such as irreducible affine vari-
eties) not shared by all schemes is that for any open U ⊂ X, the natural map Γ(U,OX) →
FF(X) is an inclusion (Exercise 2.G). Thus all sections over any open set (except ∅) and
stalks can be thought of as lying in a single field FF(X), which is the talk at the generic
point.

More generally, if X is a locally Noetherian scheme, then for any U ⊂ X, the natural
map

(2) Γ(U,OX) →
∏

associated p in U

OX,p
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is an injection.

We define a rational function on a locally Noetherian scheme to be an element of the
image of Γ(U,OU) in (2) for some U containing all the associated points. The rational
functions form a ring, called the total fraction ring of X, denoted FF(X). If X = Spec A is
affine, then this ring is called the total fraction ring of A, FF(A). Note that if X is integral,
this is the function field FF(X), so this extends our earlier definition 2.F of FF(·). It can be
more conveniently interpreted as follows, using the injectivity of (2). A rational function
is a function defined on an open set containing all associated points, i.e. and ordered pair
(U, f), where U is an open set containing all associated points, and f ∈ Γ(U,OX). Two such
data (U, f) and (U ′, f ′) define the same open rational function if and only if the restrictions
of f and f ′ to U ∩ U ′ are the same. If X is reduced, this is the same as requiring that they
are defined on an open set of each of the irreducible components. A rational function
has a maximal domain of definition, because any two actual functions on an open set (i.e.
sections of the structure sheaf over that open set) that agree as “rational functions” (i.e. on
small enough open sets containing associated points) must be the same function, by the
injectivity of (2). We say that a rational function f is regular at a point p if p is contained
in this maximal domain of definition (or equivalently, if there is some open set containing
p where f is defined).

The previous facts are intimately related to the following one.

(4) A function on X is a zero divisor if and only if it vanishes at an associated point of X.

Motivated by the above four properties, when sketching (locally Noetherian) schemes,
we will draw the irreducible components (the closed subsets corresponding to maximal
associated points), and then draw “additional fuzz” precisely at the closed subsets corre-
sponding to embedded points. All of our earlier sketches were of this form.

Let’s now get down to business of defining associated points, and showing that they
the desired properties (1) through (4).

We say an ideal I ⊂ A in a ring is primary if I 6= A and if xy ∈ I implies either x ∈ I or
yn ∈ I for some n > 0.

It is useful to interpret maximal ideals as “the quotient is a field”, and prime ideals as
“the quotient is an integral domain”. We can interpret primary ideals similarly as “the
quotient is not 0, and every zero-divisor is nilpotent”.

5.A. EXERCISE. Show that if q is primary, then √
q is prime. If p =

√
q, we say that q is

p-primary. (Caution: √q can be prime without q being primary — consider our example
(y2, xy) in k[x, y].)

5.B. EXERCISE. Show that if q and q ′ are p-primary, then so is q ∩ q ′.

5.C. EXERCISE (REALITY CHECK). Find all the primary ideals in Z. (Answer: (0) and
(pn).)

13



FIGURE 3. V(x, z) ⊂ Spec k[x, y, z]/(xy − z2) is a ruling on a cone; (x, z)2 is
not (x, z)-primary.

5.1. ? Unimportant warning for experts (all others should skip this). A prime power need not
be primary. For example, let A = k[x, y, z]/(xy − z2), and p = (x, z). Then p is prime
but p2 is not primary. (Verify this — the algebra is easy! Why is (x2, xz, z2, xy − z2) not
primary in k[x, y, z]?) We will soon be able to interpret Spec A as a “cone”, and V(x, z) as
the “ruling” of the cone, see Figure 3, and the corresponding picture gives a geometric
hint that there is something going on. We’ll come back to this at a later date.

5.2. Primary decompositions.

A primary decomposition of an ideal I ⊂ A is an expression of the ideal as a finite
intersection of primary ideals.

I = ∩n
i=1qi

If there are “no redundant elements” (the √
qi are all distinct, and for no i is qi ⊃ ∩j6=iqj),

we say that the decomposition is minimal. Clearly any ideal with a primary decomposi-
tion has a minimal primary decomposition (using Exercise 5.B).

5.D. IMPORTANT EXERCISE (EXISTENCE OF PRIMARY DECOMPOSITION FOR NOETHERIAN
RINGS). Suppose A is a Noetherian ring. Show that every proper ideal I ⊂ A has a
primary decomposition. (Hint: mimic the Noetherian induction argument we saw last
week.)

5.E. IMPORTANT EXERCISE. (a) Find a minimal primary decomposition of (y2, xy). (b)
Find another one. (Possible hint: see Figure 1. You might be able to draw sketches of
your different primary decompositions.)
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In order to study these objects, we’ll need a useful fact and a definition.

5.F. ESSENTIAL EXERCISE. (a) If p, p1, . . . , pn are prime ideals, and p = ∩pi, show that
p = pi for some i. (Hint: assume otherwise, choose fi ∈ pi − p, and consider

∏
fi.)

(b) If p ⊃ ∩pi, then p ⊃ pi for some i.
(c) Suppose I ⊆ ∪n

i=1pi. (The right side is not an ideal!) Show that I ⊂ pi for some i.
(Hint: by induction on n. Don’t look in the literature — you might find a much longer
argument!)

Parts (a) and (b) are “geometric facts”; try to draw pictures of what they mean.

If I ⊂ A is an ideal, and x ∈ A, then define the colon ideal (I : x) := {a ∈ A : ax ∈ I}.
(We will use this terminology only for this section.) For example, x is a zero-divisor if
(0 : x) 6= 0.

5.3. Theorem (“uniqueness” of primary decomposition). — Suppose I ⊂ A has a minimal primary
decomposition

I = ∩n
i=1qi.

(For example, this is always true if A is Noetherian.) Then the √qi are precisely the prime ideals
that are of the form

√

(I : x)

for some x ∈ A. Hence this list of primes is independent of the decomposition.

These primes are called the associated primes of the ideal I. The associated primes of
A are the associated primes of 0.

Proof. We make a very useful observation: for any x ∈ A,
(I : x) = (∩qi : x) = ∩(qi : x),

from which
(3)

√

(I : x) = ∩
√

(qi : x) = ∩x/∈qj
pj.

Now we prove the result.

Suppose first that
√

(I : x) is prime, say p. Then p = ∩x/∈qj
pj by (3), and by Exer-

cise 5.F(a), p = pj for some j.

Conversely, given qi, we find an x such that
√

(I : x) =
√

qi (= pi). Take x ∈ ∩j6=iqj −
qi (which is possible by minimality of the primary decomposition). Then by (3), we’re
done. �
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