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1. DECOMPOSITION INTO IRREDUCIBLE COMPONENTS, AND NOETHERIAN INDUCTION

At the end of last day, we defined irreducible component: If X is a topological space, and
Z is an irreducible closed subset not contained in any larger irreducible closed subset, Z
is said to be an irreducible component of X. We think of these as the “pieces of X” (see
Figure 1).

FIGURE 1. This closed subset of A? has six irreducible components

We saw the exercise: If A is any ring, show that the irreducible components of Spec A
are in bijection with the minimal primes of A.
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For example, the only minimal prime of k[x,y] is (0). What are the minimal primes of
klx, yl/(xy)?

1.1. Proposition. — Suppose X is a Noetherian topological space. Then every non-empty closed
subset Z can be expressed uniquely as a finite union Z = Z,U- - -UZ,, of irreducible closed subsets,
none contained in any other.

Translation: any non-empty closed subset Z has of a finite number of pieces.

As a corollary, this implies that a Noetherian ring A has only finitely many minimal
primes.

Proof. The following technique is often called Noetherian induction, for reasons that will
become clear. Justin prefers the phrase “Noetherian descent”.

Consider the collection of closed subsets of X that cannot be expressed as a finite union
of irreducible closed subsets. We will show that it is empty. Otherwise, let Y; be one
such. If it properly contains another such, then choose one, and call it Y,. If this one
contains another such, then choose one, and call it Y3, and so on. By the descending chain
condition, this must eventually stop, and we must have some Y, that cannot be written as
a finite union of irreducible closed subsets, but every closed subset contained in it can be
so written. But then Y, is not itself irreducible, so we can write Y, = Y'UY” where Y’ and Y”
are both proper closed subsets. Both of these by hypothesis can be written as the union of
a finite number of irreducible subsets, and hence so can Y,, yielding a contradiction. Thus
each closed subset can be written as a finite union of irreducible closed subsets. We can
assume that none of these irreducible closed subsets contain any others, by discarding
some of them.

We now show uniqueness. Suppose
Z=7,UZU---UZ,=2Z7UZ,J---UZ,

are two such representations. Then Z; C Z,UZ,U---UZ,,s0 Z; = (Z:NZ})U---U(Z.NZ}).
Now Z; is irreducible, so one of these is Z; itself, say (without loss of generality) Z; N Z;.
Thus Z; C Z;. Similarly, Z; C Z] for some a; but because Z; C Z; C Z], and Z] is
contained in no other Z!, we must have a = 1, and Z; = Z;. Thus each element of the list
of Z’s is in the list of Z"’s, and vice versa, so they must be the same list. O

2. THE FUNCTION I(-), TAKING SUBSETS OF Spec A TO IDEALS OF A

We now introduce a notion that is in some sense “inverse” to the vanishing set function
V(-). Given a subset S C Spec A, I(S) is the set of functions vanishing on S.

We make three quick observations:

e I(S) is clearly an ideal.
e I(S)=1(S).



FIGURE 2. The set S of Exercise/example 2.A, pictured as a subset of A?

e I(-) is inclusion-reversing: if S; C S, then I(S,) C I(Sy).

2.A. EXERCISE/EXAMPLE. Let A = k[x,yl. If S = {[(x)], [(x — 1,y)]} (see Figure 2), then
I(S) consists of those polynomials vanishing on the y axis, and at the point (1,0). Give
generators for this ideal.

2.B. TRICKY EXERCISE. Suppose X C A3 is the union of the three axes. (The x-axis is
defined by y = z = 0, and the y-axis and z-axis are deined analogously.) Give generators
for the ideal I(X). Be sure to prove it! Hint: We will see later that this ideal is not generated
by less than three elements.

2.C. EXERCISE. Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S. (Compare
this to Exercise 2.D below.)

Note that I(S) is always a radical ideal —if f € /I(S), then f™ vanishes on S for some
n > 0, so then f vanisheson S, so f € I(S).

2.D. EXERCISE. Prove thatif I C A is an ideal, then I(V(I)) = V1.

This exercise and Exercise 2.C suggest that V and I are “almost” inverse. More pre-
cisely:

2.1. Theorem. — V() and 1(-) give a bijection between closed subsets of Spec A and radical ideals
of A (where a closed subset gives a radical ideal by 1(-), and a radical ideal gives a closed subset by

V().

2.E. IMPORTANT EXERCISE. Show that V() and I(-) give a bijection between irreducible
closed subsets of Spec A and prime ideals of A. From this conclude that in Spec A there
is a bijection between points of Spec A and irreducible closed subsets of Spec A (where a
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point determines an irreducible closed subset by taking the closure). Hence each irreducible
closed subset of Spec A has precisely one generic point — any irreducible closed subset Z can

be written uniquely as {z}.

3. DISTINGUISHED OPEN SETS

If f € A, define the distinguished open set D(f) = {[p] € SpecA : f ¢ p}. Itis the
locus where f doesn’t vanish. (I often privately write this as D(f # 0) to remind myself
of this. I also privately call this a “Doesn’t-vanish set” in analogy with V(f) being the
Vanishing set.) We have already seen this set when discussing Spec A¢ as a subset of
Spec A. For example, we have observed that the Zariski-topology on the distinguished
open set D(f) C Spec A coincides with the Zariski topology on Spec A+.

Here are some important but not difficult exercises to give you a feel for these important
open sets.

3.A. EXERCISE. Show that the distinguished open sets form a base for the Zariski topol-
ogy. (Hint: Given an ideal I, show that the complement of V(1) is U D(f).)

3.B. EXERCISE. Suppose f; € A as i runs over some index set J. Show that UicjD(f;) =
Spec A if and only if (f;) = A. (One of the directions will use the fact that any proper ideal
of A is contained in some maximal ideal.)

3.C. EXERCISE. Show that if Spec A is an infinite union U;cjD(f;), then in fact it is a union
of a finite number of these. (Hint: use the previous exercise 3.B.) Show that Spec A is
quasicompact.

3.D. EXERCISE. Show that D(f) N D(g) = D(fg).

3.E. EXERCISE. Show that if D(f) C D(g), if and only if f™ € (g) for some n if and only if
g is a unit in A. (Hint for the first equivalence: f € I(V((g))). We will use this shortly.

3.F. EXERCISE. Show that D(f) = @ if and only if f € 91.

4. THE STRUCTURE SHEAF

The final ingredient in the definition of an affine scheme is the structure sheaf Og. A,
which we think of as the “sheaf of algebraic functions”. As motivation, in A?, we expect
that on the open set D(xy) (away from the two axes), (3x* + y + 4)/x” should be an
algebraic function.



These functions will have values at points, but won’t be determined by their values
at points. But like all sheaves, they will indeed be determined by their germs. This is
discussed in Section 4.4.

It suffices to describe the structure sheaf as a sheaf (of rings) on the base of distin-
guished open sets. Our strategy is as follows. We will define the sections on the base

by
(1) OSpecA(D(f)) - Af
We need to make sure that this is well-defined, i.e. that we have a natural isomorphism
As — Agif D(f) = D(g). We will define the restriction maps respq) p(f) as follows. If
D(f) c D(g), then we have shown that D(fg) = D(f). There is a natural map Ay — Agq
given by r/g™ — (rf™)/(fg)™, and we will define

IeSp(g),D(fg)=D(f) - OSpec A(D (g) ) — OSpec A(D (fg ) )
to be this map. But it will be cleaner to state things a little differently.

If D(f) € D(g), then by Exercise 3.E, g is a unit in A¢ Thus by the universal property
of localization, there is a natural map Ay — A which we temporarily denote resq ¢, but
which we secretly think of as resp(g) p(r). If D(f) C D(g) C D(h), then these restriction
maps commute:

TeSh,g

() An Ag
res f

At

commutes. (The map Ay — Agis defined by universal property, and the composition
resg O Tesy g satisfies this universal property.)

In particular, if D(f) = D(g), then resg ¢ o res 4 is the identity on Ay, (take h = f in the
above diagram (2)), and similarly res¢ g oresg ¢ = ida,. Thus we can define Ogpec A(D(f)) =
Ay, and this is well-defined (independent of the choice of f).

By (2), we have defined a presheaf on the distinguished base.

We now come to a key theorem.

4.1. Theorem. — The data just described gives a sheaf on the distinguished base, and hence
determines a sheaf on the topological space Spec A.

This sheaf is called the structure sheaf, and will be denoted Ogec A, Or sometimes O
if the scheme in question is clear from the context. Such a topological space, with sheaf,
will be called an affine scheme. The notation Spec A will hereafter denote the data of a
topological space with a structure sheaf.

Proof. We first check identity on the base. We deal with the case of a cover of the entire
space A, and let you verify that essentially the same argument holds for a cover of some
A¢. Suppose that Spec A = UicD(f;) where i runs over some index set I. Then there
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is some finite subset of I, which we name {1,...,n}, such that SpecA = U*,D(f;), i.e.
(f1,...,fn) = A (quasicompactness of Spec A, Exercise 3.C). Suppose we are given s € A
such that resgpec A, p(f,) s = 0in Ay, for all i. (We wish to show that s = 0.) Hence there
is some m such that for each i € {1,...,n}, f*s = 0. Now (fI*,...,f}) = A (SpecA =
UD(f;) = UD(f™), so there are ; € A with 3 ' mif™ = 1in A, from which

s = <Z rif{“) s = Zri(f{“s) =0.

Thus we have checked the “base identity” axiom for Spec A. (Serre has described this as
a “partition of unity” argument, and if you look at it in the right way, his insight is very
enlightening.)

4.A. EXERCISE. Make the tiny changes to the above argument to show base identity for
any distinguished open D(f). (Possible strategy: show that the argument is the same as
the previous argument for Spec Ay.)

We next show base gluability. As with base identity, we deal with the case where we
wish to glue sections to produce a section over Spec A. As before, we leave the general
case where we wish to glue sections to produce a section over D(f) to the reader (Exer-
cise 4.B).

Suppose UiciD(fi) = Spec A, where I is a index set (possibly horribly uncountably
infinite). Suppose we are given elements in each Ay, that agree on the overlaps Ay,y,.
(Note that intersections of distinguished opens are also distinguished opens.)

Aside: experts might realize that we are trying to show exactness of

0—-A— HAfi —>HAfifj.
i iA

(What is the right-hand map?) Base identity corresponds to injectivity at A. The compo-
sition of the right two morphisms is trivially zero, and gluability is verifying exactness at

Hi Af,.

Choose a finite subset {1,...,n} C I with (f;,...,f,) = A (i.e. use quasicompactness
of Spec A to choose a finite subcover by D(f;)). We have elements a;/ f}i € Ay, agreeing
on overlaps Ar ;. Letting gi = f?, using D(f;) = D(gi), we can simplify notation by
considering our elements as of the form a;/g; € Ag,.

The fact that ai/g; and a;/g; “agree on the overlap” (i.e. in A4 4) means that for some
myj,
(9i9;)™ (9501 — gia;) =0
in A. By taking m = max my; (here we use the finiteness of I), we can simplify notation:
(9i95)™(gjai — gia;) =0

for alli,j. Let b; = a;g™ for alli, and h; = g™ (so D(h;) = D(gi)). Then we can simplify
notation even more: on each D(h;), we have a function b;/h;, and the overlap condition
is hjbi — hib]‘ =0



Now U;D(hy) = A, implying that T = } ", rih; for some 1; € A. Define r = ) rib;.
This will be the element of A that restricts to each b;/h;. Indeed,

Th]' — bj = Z Tibihj - Z bjrihi — Z Ti(bihj — bjhi) = 0.

We are not quite done! We are supposed to have something that restricts to a;/f} for

alli € I, notjusti = 1,...,n. But a short trick takes care of this. We now show that for
any « € I —{1,...,n}, r restricts to the desired element a, Ay,. Repeat the entire process
above with {1,...,n, o} in place of {1,...,n}, to obtain r’ € A which restricts to o for

i € {1,...,n, «}. Then by base identity, v’ = r. (Note that we use base identity to prove
base gluability. This is an example of how base identity is “prior” to base gluability.)
Hence r restricts to a,/fl as desired.

4.B. EXERCISE. Alter this argument appropriately to show base gluability for any distin-
guished open D(f).

We have now completed the proof of Theorem 4.1.

O

The proof of Theorem 4.1 immediately generalizes, as the following exercise shows.
This exercise will be essential for the definition of a quasicoherent sheaf later on [say
where].

4.C. IMPORTANT EXERCISE/DEFINITION. Suppose M is an A-module. Show that the fol-
lowing construction describes a sheaf M on the distinguished base. To D(f) we associate
M = M ®a Ay; the restriction map is the “obvious” one. This is an Ogpe. A-module! This
sort of sheaf M will be very important soon; it is an example of a quasicoherent sheaf.

Here is a useful fact for later: As a consequence, note that if (f;,...,f;) = A, we have
identified M with a specific submodule of My, x --- x My,. Even though M — My, may
not be an inclusion for any f;, M — My, x --- x My, is an inclusion. We don’t care yet,
but we’ll care about this later, and I'll invoke this fact. (Reason: we’ll want to show that if
M has some nice property, then M does too, which will be easy. We'll also want to show
that if (fy,...,f,) = R, then if My, have this property, then M does too.)

4.2. Definition. We can now define scheme in general. First, define an isomorphism
of ringed spaces (X, Ox) and (Y,Oy) as (i) a homeomorphism f : X — Y, and (ii) an
isomorphism of sheaves Ox and Oy, considered to be on the same space via f. (Condition
(i), more precisely: an isomorphism Ox — 'Oy of sheaves on X, or f,Ox — Oy of
sheaves on Y.) In other words, we have a correspondence of sets, topologies, and structure
sheaves. An affine scheme is a ringed space that is isomorphic to (Spec A, Ogpeca). A
scheme (X, Ox) is a ringed space such that any point x € X has a neighborhood U such
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that (U, Ox|u) is an affine scheme. The scheme can be denoted (X, Ox), although it is often
denoted X, with the structure sheaf implicit.

An isomorphism of two schemes (X, Ox) and (Y,Oy) is an isomorphism as ringed
spaces.

4.3. Remark. From this definition of the structure sheaf on an affine scheme, several
things are clear. First of all, if we are told that (X, Ox) is an affine scheme, we may recover
its ring (i.e. find the ring A such that Spec A = X) by taking the ring of global sections, as
X =D(1), so:

NX,0x) = T(D(1),0speca) asD(1) =SpecA
Ay (i.e.allow 1’s in the denominator) by definition
= A.

(You can verify that we get more, and can “recognize X as the scheme Spec A”: we get
a natural isomorphism f : (SpecT'(X, Ox), Ogspecrix,0x)) — (X, Ox). For example, if m is a
maximal ideal of I'(X, Ox), f([m]) = V(m).) More generally, given f € A, I'(D(f), OgpecA) =
A¢. Thus under the natural inclusion of sets Spec Ay — Spec A, the Zariski topology
on Spec A restricts to give the Zariski topology on Spec A¢ (as we’ve seen in an earlier
Exercise), and the structure sheaf of Spec A restricts to the structure sheaf of Spec Ay, as
the next exercise shows.

4.D. IMPORTANT BUT EASY EXERCISE. Suppose f € A. Show that under the identification
of D(f) in Spec A with Spec Ay, there is a natural isomorphism of sheaves (D(f), Ogpec Aln(f))
(Spec Af» OSpec As )

~

4.E. EXERCISE. Show that if X is a scheme, then the affine open sets form a base for the
Zariski topology.

4.F. EXERCISE. If X is a scheme, and U is any open subset, prove that (U, Ox|y) is also a
scheme.

(U, Ox|u) is called an open subscheme of U. If U is also an affine scheme, we often say U
is an affine open subset, or an affine open subscheme, or sometimes informally just an affine
open. For an example, D(f) is an affine open subscheme of Spec A.

4.4. Stalks of the structure sheaf: germs, and values at a point. Like every sheaf, the
structure sheaf has stalks, and we shouldn’t be surprised if they are interesting from an
algebraic point of view. In fact, we have seen them before.

4.G. IMPORTANT EXERCISE. Show that the stalk of Ogpe. A at the point [p] is the ring A,,.

Essentially the same argument will show that the stalk of the sheaf M, defined in Ex-
ercise 4.C at [p] is M,. Here is an interesting consequence, or if you prefer, a geometric
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interpretation of an algebraic fact. A section is determined by it stalks (an earlier Exer-
cise), meaning that M — [], M, is an inclusion. So for example an A-module is zero if
and only if all its localizations at primes are zero.

The residue field of a scheme at a point is the local ring modulo its maximal ideal.

So now we can make some of our vague discussion earlier precise. Suppose [p] is a
point in some open set U of Spec A. For example, say A = k[x, y], p = [(x)] [draw picture],
and U = A% —(0,0).

Then a function on U, i.e. a section of Ogpec o Over U, has a germ near [p], which is an
element of A,. This stalk A, is a local ring, with maximal ideal pA,. In our example,
consider the function (3x* + x% + xy +vy?)/(3x? + xy + y? + 1), which is defined on the
open set D(3x% + xy + y? + 1). Because there are no factors of x in the denominator, it is
indeed in A,,

A germ has a value at [p], which is an element of A, /pA,. This is isomorphic to FF(A /p),
the fraction field of the quotient domain. It is useful to note that localization at p and
taking quotient by p “commute”, i.e. the following diagram commutes.

Ay

/
A Ap/pAp = FF(A/p)
\A/ A
p

So the value of a function at a point always takes values in a field. In our example, to see
the value of our germ at x = 0, we simply set x = 0. So we get the value y2/(y* + 1),
which is certainly in FF(k[y]). (If you think you care only about complex schemes, and
hence only about algebraically closed fields, let this be a first warning: A,/pA, won't be
algebraically closed in general, even if A is a finitely generated C-algebra!)

We say that the germ vanishes at p if the value is zero. In our example, the germ doesn’t
vanish at p.

If anything makes you nervous, you should make up an example to assuage your ner-
vousness. (Example: 27/4 is a regular function on Spec Z—{[(2)], [(7)]}. What s its value at
[(5)]? Answer: 2/(—1) = —2 (mod 5). What is its value at the generic point [(0)]? Answer:
27/4. Where does it vanish? At [(3)].)

We now give three extended examples. Our short term goal is to see that we can re-
ally work with this sheaf, and can compute the ring of sections of interesting open sets
that aren’t just distinguished open sets of affine schemes. Our long-term goal is to see
interesting examples that will come up repeatedly in the future. All three examples are
non-affine schemes, so these examples are genuinely new to us.
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4.5. Example: The plane minus the origin. Inow want to work through an example
with you, to show that this distinguished base is indeed something that you can work
with. Let A = k[x,yl, so Spec A = A{. If you want, you can let k be C, but that won’t be
relevant. Let’s work out the space of functions on the open set U = A% — (0, 0).

It is a non-obvious fact that you can’t cut out this set with a single equation, so this
isn’t a distinguished open set. We’ll see why fairly soon [where?]. But in any case, even if
we're not sure that this is a distinguished open set, we can describe it as the union of two
things which are distinguished open sets. If I throw out the x axis, i.e. the sety = 0, I get
the distinguished open set D (y). If I throw out the y axis, i.e. x = 0, I get the distinguished
open set D(x). So U = D(x) UD(y). (Remark: U = A% — V(x,y) and U = D(x) U D(y).
Coincidence? I think not!) We will find the functions on U by gluing together functions
on D(x) and D(y).

What are the functions on D(x)? They are, by definition, A, = k[x,y, 1/x]. In other
words, they are things like this: 3x? 4+ xy + 3y/x + 14/x*. What are the functions on D(y)?
They are, by definition, A, = k[x,y, 1/y]. Note that A — A, A,. This is because x and
y are not zero-divisors. (A is an integral domain — it has no zero-divisors, besides 0 —
so localization is always an inclusion.) So we are looking for functions on D(x) and D(y)
that agree on D(x) N D(y) = D(xy), i.e. they are just the same Laurent polynomial. Which
things of this first form are also of the second form? Just old-fashioned polynomials —

3) MU, Ou2) = k[x,yl.

In other words, we get no extra functions by throwing out this point. Notice how easy
that was to calculate!

4.6. (Aside: Notice that any function on A%— (0, 0) extends over all of A2, This is an analog
of Hartogs” Lemma in complex geometry: you can extend a holomorphic function defined
on the complement of a set of codimension at least two on a complex manifold over the
missing set. This will work more generally in the algebraic setting: you can extend over
points in codimension at least 2 not only if they are smooth, but also if they are mildly
singular — what we will call normal. We will make this precise later. This fact will be very
useful for us.)

We can now verify an interesting fact: (U, O,:]y) is a scheme, but it is not an affine
scheme. Here’s why: otherwise, if (U, Ox2|y) = (Spec A, Ogpec A), then we can recover A
by taking global sections:

A= r(u> OA2|U)>

which we have already identified in (3) as k[x, y]. So if U is affine, then U = A{. But we
get more: we can recover the points of Spec A by taking the primes of A. In particular,
the prime ideal (x,y) of A should cut out a point of Spec A. Buton U, V(x) N V(y) = @.
Conclusion: U is not an affine scheme. (If you are ever looking for a counterexample to
something, and you are expecting one involving a non-affine scheme, keep this example
in mind!)
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You've seen two examples of non-affine schemes: an infinite disjoint union of non-
empty schemes (Exercise 4.M), and now A? — (0,0). I want to give you two more impor-
tant examples. They are important because they are the first examples of fundamental
behavior, the first pathological, and the second central.

First, I need to tell you how to glue two schemes together. And before that, you should
review how to glue topological spaces together along isomorphic open sets. Given two
topological spaces X and Y, and open subsets U C X and V C Y along with a homeomor-
phism U = V, we can create a new topological space W, that we think of as gluing X and
Y together along U = V. It is the quotient of the disjoint union X [ [ Y by the equivalence
relation U = V, where the quotient is given the quotient topology. Then X and Y are natu-
rally (identified with) open subsets of W, and indeed cover W. Can you restate this with
an arbitrary number of topological spaces glued together?

Now that we have discussed gluing topological spaces, let’s glue schemes together.
Suppose you have two schemes (X, Ox) and (Y, Oy), and open subsets U C Xand V C Y,

along with a homeomorphism f: U ——V, and an isomorphism of structure sheaves
Ox = *Oy (i.e. an isomorphism of schemes (U, Ox|ly) = (V,Oyly)). Then we can glue
these together to get a single scheme. Reason: let W be X and Y glued together using the
isomorphism U = V. Then an earlier exercise on gluing sheaves shows that the structure
sheaves can be glued together to get a sheaf of rings. Note that this is indeed a scheme:
any point has a neighborhood that is an affine scheme. (Do you see why?)

4.H. EXERCISE. For later reference, show that you can glue together an arbitrary number
of schemes together. Suppose we are given:

schemes X; (as i runs over some index set I, not necessarily finite),

open subschemes Xi; C X;,

iSOl’l’lOI‘phiSl’l’lS fi]' : Xi]' — in

such that the isomorphisms “agree along triple intersections”, i.e. fik’xijmxik =
fjk’ul'iﬂujk o f‘-L]-|XijﬂXik'

Show that there is a unique scheme X (up to unique isomorphism) along with open subset
isomorphic to X; respecting this gluing data in the obvious sense.

I'll now give you two non-affine schemes. In both cases, I will glue together two copies
of the affine line A]. Again, if it makes you feel better, let k = C, but it really doesn’t
matter.

Let X = Speck[t],and Y = Speck[u]. Let U = D(t) = Speck[t,1/t] C Xand V =D(u) =
Specklu, 1/u] C Y. We will get both examples by gluing X and Y together along U and V.
The difference will be in how we glue.

4.7. Extended example: the affine line with the doubled origin. Consider the isomor-
phism U = V via the isomorphism k[t, 1/t] = k[u, 1/u] given by t < u. Let the resulting
scheme be X. This is called the affine line with doubled origin. Figure 3 is a picture of it.
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FIGURE 3. The affine line with doubled origin

FIGURE 4. Gluing two affine lines together to get P’

As the picture suggests, intuitively this is an analogue of a failure of Hausdorffness. A’
itself is not Hausdorff, so we can’t say that it is a failure of Hausdorffness. We see this
as weird and bad, so we’ll want to make up some definition that will prevent this from
happening. This will be the notion of separatedness. This will answer other of our prayers
as well. For example, on a separated scheme, the “affine base of the Zariski topology” is
nice — the intersection of two affine open sets will be affine.

4.1. EXERCISE. Show that X is not affine. Hint: calculate the ring of global sections, and
look back at the argument for A% — (0, 0).

4.J. EXERCISE. Do the same construction with A replaced by AZ%. You’ll have defined the
affine plane with doubled origin. Use this example to show that the affine base of the Zariski
topology isn’t a nice base, by describing two affine open sets whose intersection is not
affine.

4.8. Example 2: the projective line. Consider the isomorphism U = V via the isomor-
phism k[t, 1/t] = k[u,1/u] given by t < 1/u. Figure 4 is a suggestive picture of this
gluing. Call the resulting scheme the projective line over the field k, P}.

Notice how the points glue. Let me assume that k is algebraically closed for conve-
nience. (You can think about how this changes otherwise.) On the first affine line, we
have the closed (= “old-fashioned”) points [(t — a)], which we think of as “a on the t-
line”, and we have the generic point. On the second affine line, we have closed points
that are “b on the u-line”, and the generic point. Then a on the t-line is glued to 1/a on
the u-line (if a # 0 of course), and the generic point is glued to the generic point (the
ideal (0) of k[t] becomes the ideal (0) of k[t, 1/t] upon localization, and the ideal (0) of
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k[u] becomes the ideal (0) of k[u,1/u]. And (0) in k[t, 1/t] is (0) in k[u, 1/u] under the
isomorphism t < 1/u).

We can interpret the closed (“old-fashioned”) points of P! in the following way, which
may make this sound closer to the way you have seen projective space defined earlier.
The points are of the form [a; b], where a and b are not both zero, and [a; b] is identified
with [ac;bc] where ¢ € k*. Then if b # 0, this is identified with a/b on the t-line, and if
a # 0, this is identified with b/a on the u-line.

4.9. Proposition. — P is not affine.
Proof. We do this by calculating the ring of global sections.

The global sections correspond to sections over X and sections over Y that agree on the
overlap. A section on X is a polynomial f(t). A section on Y is a polynomial g(u). If I
restrict f(t) to the overlap, I get something I can still call f(t); and ditto for g(u). Now we
want them to be equal: f(t) = g(1/t). How many polynomials in t are at the same time
polynomials in 1/t? Not very many! Answer: only the constants k. Thus I'(P!, Op1) = k.
If P! were affine, then it would be Spec I'(P', Op1 ) = Speck, i.e. one point. But it isn’t — it
has lots of points. O

Note that we have proved an analog of a theorem: the only holomorphic functions on
CP' are the constants!

4 K. IMPORTANT EXERCISE. Figure out how to define projective n-space P}. Glue to-
gether n + 1 opens each isomorphic to A}. Show that the only global sections of the
structure sheaf are the constants, and hence that P} is not affine if n > 0. (Hint: you
might fear that you will need some delicate interplay among all of your affine opens,
but you will only need two of your opens to see this. There is even some geometric in-
tuition behind this: the complement of the union of two opens has codimension 2. But
“Hartogs” Theorem” (to be stated rigorously later) says that any function defined on this
union extends to be a function on all of projective space. Because we’re expecting to see
only constants as functions on all of projective space, we should already see this for this
union of our two affine open sets.)

4.L. EXERCISE. Show that if k is algebraically closed, the closed points of P} may be
interpreted in the same way as we interpreted the points of P. (The points are of the form
[ao;...;an], where the a; are not all zero, and [ay;. . .; a,] is identified with [cay;...;ca.]
where ¢ € k*.)

We will later give another definition of projective space . Your definition (from Exer-
cise 4.K) will be handy for computing things. But there is something unnatural about it
— projective space is highly symmetric, and that isn’t clear from your point of view.
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Note that your definition will give a definition of P} for any ring A. This will be useful
later.

4.10. Fun aside: The Chinese Remainder Theorem is a geometric fact. 1 want to
show you that the Chinese Remainder theorem is embedded in what we’ve done, which
shouldn’t be obvious to you. I'll show this by example. The Chinese Remainder Theorem
says that knowing an integer modulo 60 is the same as knowing an integer modulo 3, 4,
and 5. Here’s how to see this in the language of schemes. What is SpecZ/(60)? What
are the primes of this ring? Answer: those prime ideals containing (60), i.e. those primes
dividing 60, i.e. (2), (3), and (5). So here is my picture of the scheme [picture of 3 dots].
They are all closed points, as these are all maximal ideals, so the topology is the discrete
topology. What are the stalks? You can check that they are Z/4, Z/3, and Z/5. My picture
is actually like this [draw a bit of one-dimensional fuzz on (2)]: the scheme has nilpotents
here (22 = 0 (mod 4)). I indicate nilpotents with “fuzz”. So what are global sections on
this scheme? They are sections on this open set (2), this other open set (3), and this third
open set (5). In other words, we have a natural isomorphism of rings

7.)60 — 7.)4 x 7./3 x 7./5.

On a related note:

4.M. EXERCISE. (a) Show that the disjoint union of a finite number of affine schemes is
also an affine scheme. (Hint: say what the ring is.)

(b) Show that an infinite disjoint union of (non-empty) affine schemes is not an affine
scheme.

4.11. x Example. Here is an example of a function on an open subset of a scheme that is a
bit surprising. On X = Spec k[w, x, y, z|]/(wx —yz), consider the open subset D (y) UD(w).
Show that the function x/y on D(y) agrees with z/w on D(w) on their overlap D(y) N
D(w). Hence they glue together to give a section. You may have seen this before when
thinking about analytic continuation in complex geometry — we have a “holomorphic”
function which has the description x/y on an open set, and this description breaks down
elsewhere, but you can still “analytically continue” it by giving the function a different
definition on different parts of the space.

Follow-up for curious experts: This function has no “single description” as a well-
defined expression in terms of w, x,y, z! There is lots of interesting geometry here. This
example will be a constant source of interesting examples for us. We will later recognize it
as the cone over the quadric surface. Here is a glimpse, in terms of words we have not yet
defined. Speck[w,x,y,z] is A%, and is, not surprisingly, 4-dimensional. We are looking
at the set X, which is a hypersurface, and is 3-dimensional. It is a cone over a smooth
quadric surface in P3. D(y) is X minus some hypersurface, so we are throwing away a
codimension 1 locus. D(z) involves throwing another codimension 1 locus. You might
think that their intersection is then codimension 2, and that maybe failure of extending
this weird function to a global polynomial comes because of a failure of our Hartogs’-type
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theorem, which will be a failure of normality. But that’s not true — V(y) N V(z) is in fact
codimension 1 — so no Hartogs-type theorem holds. Here is what is actually going on.
V(y) involves throwing away the (cone over the) union of two lines 1 and m;, one in each
“ruling” of the surface, and V(z) also involves throwing away the (cone over the) union of
two lines 1 and m;. The intersection is the (cone over the) line 1, which is a codimension 1
set. Neat fact: despite being “pure codimension 17, it is not cut out even set-theoretically
by a single equation. (It is hard to get an example of this behavior. This example is the
simplest example I know.) This means that any expression f(w,x,u,z)/g(w,x,y, z) for
our function cannot correctly describe our function on D(y) U D(z) — at some point of
D(y) U D(z) it must be 0/0. Here’s why. Our function can’t be defined on V(y) N V(z), so
g must vanish here. But g can’t vanish just on the cone over | — it must vanish elsewhere
too. (For the experts among the experts: here is why the cone over 1 is not cut out set-
theoretically by a single equation. If 1 = V(f), then D(f) is affine. Let 1’ be another line
in the same ruling as 1, and let C(1) (resp. 1) be the cone over 1 (resp. 1’). Then C(1l’) can
be given the structure of a closed subscheme of Speck[w,x,y,zl, and can be given the
structure of A% Then C(l') N V(f) is a closed subscheme of D(f). Any closed subscheme
of an affine scheme is affine. But L N1’ = &, so the cone over | intersects the cone over 1’
in a point, so C(1') N V(f) is A% minus a point, which we’ve seen is not affine, so we have
a contradiction.)

We concluded with some initial discussion of properties of schemes, including irre-
ducible, closed point, specialization, generization, generic point, connected component,
and irreducible component.
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