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1. MORE EXAMPLES OF THE UNDERLYING SETS OF AFFINE SCHEMES

We are in the midst of discussing the underlying set of an affine scheme. We are looking
at examples and learning how to draw pictures.

Example 7: A
2

C
= Spec C[x, y]. (As with Examples 1 and 2, discussion will apply with C

replaced by any algebraically closed field.) Sadly, C[x, y] is not a Principal Ideal Domain:
(x, y) is not a principal ideal. We can quickly name some prime ideals. One is (0), which
has the same flavor as the (0) ideals in the previous examples. (x − 2, y − 3) is prime,
and indeed maximal, because C[x, y]/(x − 2, y − 3) ∼= C, where this isomorphism is via
f(x, y) 7→ f(2, 3). More generally, (x−a, y−b) is prime for any (a, b) ∈ C2. Also, if f(x, y)
is an irreducible polynomial (e.g. y − x2 or y2 − x3) then (f(x, y)) is prime.

1.A. EXERCISE. (Feel free to skip this exercise, as we will see a different proof of this
later.) Show that we have identified all the prime ideals of C[x, y].

We can now attempt to draw a picture of this space. The maximal primes correspond
to the old-fashioned points in C2: [(x − a, y − b)] corresponds to (a, b) ∈ C2. We now
have to visualize the “bonus points”. [(0)] somehow lives behind all of the old-fashioned
points; it is somewhere on the plane, but nowhere in particular. So for example, it does
not lie on the parabola y = x2. The point [(y − x2)] lies on the parabola y = x2, but
nowhere in particular on it. You can see from this picture that we already want to think
about “dimension”. The primes (x − a, y − b) are somehow of dimension 0, the primes
(f(x, y)) are of dimension 1, and (0) is somehow of dimension 2. (All of our dimensions
here are complex or algebraic dimensions. The complex plane C2 has real dimension 4, but
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complex dimension 2. Complex dimensions are in general half of real dimensions.) We
won’t define dimension precisely until later, but you should feel free to keep it in mind
before then.

Note too that maximal ideals correspond to “smallest” points. Smaller ideals corre-
spond to “bigger” points. “One prime ideal contains another” means that the points
“have the opposite containment.” All of this will be made precise once we have a topol-
ogy. This order-reversal is a little confusing, and will remain so even once we have made
the notions precise.

We now come to the obvious generalization of Example 7, affine n-space.

Example 8: An

C
:= Spec C[x1, . . . , xn]. (More generally, An

A
is defined to be Spec A[x1, . . . , xn],

where A is an arbitrary ring.)

For concreteness, let’s consider n = 3. We now have an interesting question in algebra:
What are the prime ideals of C[x, y, z]? Analogously to before, (x−a, y−b, z−c) is a prime
ideal. This is a maximal ideal, with residue field C; we think of these as “0-dimensional
points”. We will often write (a, b, c) for [(x − a, y − b, z − c)] because of our geometric
interpretation of these ideals.

There are no more maximal ideals, by Hilbert’s Nullstellensatz. (This is sometimes
called the “weak version” of the Nullstellensatz.) You may have already seen this result.
We will prove it later (in a slightly stronger form), so we will content ourselves by stating
it here.

1.1. Hilbert’s Nullstellensatz. — Suppose A = k[x1, . . . , xn], where k is an algebraically closed
field. Then the maximal ideals are precisely those of the form (x1 −a1, . . . , xn −an), where ai ∈ k.

There are other prime ideals too. We have (0), which is corresponds to a “3-dimensional
point”. We have (f(x, y, z)), where f is irreducible. To this we associate the hypersurface
f = 0, so this is “2-dimensional” in nature. But we have not found them all! One clue:
we have prime ideals of “dimension” 0, 2, and 3 — we are missing “dimension 1”. Here
is one such prime ideal: (x, y). We picture this as the locus where x = y = 0, which is
the z-axis. This is a prime ideal, as the corresponding quotient C[x, y, z]/(x, y) ∼= C[z] is
an integral domain (and should be interpreted as the functions on the z-axis). There are
lots of one-dimensional primes, and it is not possible to classify them in a reasonable way.
It will turn out that they correspond to things that we think of as irreducible curves: the
natural answer to this algebraic question is geometric.

1.2. Important fact: Maps of rings induce maps of spectra (as sets). We now make
an observation that will later grow up to be morphisms of schemes. If φ : B → A is a
map of rings, and p is a prime ideal of A, then φ−1(p) is a prime ideal of B (check this!).
Hence a map of rings φ : B → A induces a map of sets Spec A → Spec B “in the opposite
direction”. This gives a contravariant functor from the category of rings to the category of

2



sets: the composition of two maps of rings induces the composition of the corresponding
maps of spectra.

We now describe two important cases of this: maps of rings inducing inclusions of sets.
There are two particularly useful ways of producing new rings from a ring A. One is by
taking the quotient by an ideal I. The other is by localizing at a multiplicative set. We’ll
see how Spec behaves with respect to these operations. In both cases, the new ring has a
Spec that is a subset of Spec of the old ring.

First important example (quotients): Spec B/I in terms of Spec B. As a motivating
example, consider Spec B/I where B = C[x, y], I = (xy). We have a picture of Spec B,
which is the complex plane, with some mysterious extra “higher-dimensional points”. It
is an important fact that the primes of B/I are in bijection with the primes of B containing
I. (If you do not know why this is true, you should prove it yourself.) Thus we can picture
Spec B/I as a subset of Spec B. We have the “0-dimensional points” (a, 0) and (0, b). We
also have two “1-dimensional points” (x) and (y).

We get a bit more: the inclusion structure on the primes of B/I corresponds to the
inclusion structure on the primes containing I. More precisely, if J1 ⊂ J2 in B/I, and Ki is
the ideal of B corresopnding to Ji, then K1 ⊂ K2. (Again, prove this yourself if you have
not seen it before.)

So the minimal primes of C[x, y]/(xy) are the “biggest” points we see, and there are
two of them: (x) and (y). Thus we have the intuition that will later be made precise: the
minimal primes of A correspond to the “components” of Spec A.

As an important motivational special case, you now have a picture of “complex affine
varieties”. Suppose A is a finitely generated C-algebra, generated by x1, . . . , xn, with
relations f1(x1, . . . , xn) = · · · = fr(x1, . . . , xn) = 0. Then this description in terms of
generators and relations naturally gives us an interpretation of Spec A as a subset of An

C
,

which we think of as “old-fashioned points” (n-tuples of complex numbers) along with
some “bonus” points. To see which subsets of the old-fashioned points are in Spec A, we
simply solve the equations f1 = · · · = fr = 0. For example, Spec C[x, y, z]/(x2 + y2 − z2)
may be pictured as shown in Figure 1. (Admittedly this is just a “sketch of the R-points”,
but we will still find it helpful later.) This entire picture carries over (along with the
Nullstellensatz) with C replaced by any algebraically closed field. Indeed, the picture of
Figure 1 can be said to represent k[x, y, z]/(x2+y2−z2) for most algebraically closed fields
k (although it is misleading in characteristic 2, because of the coincidence x2 + y2 − z2 =
(x + y + z)2).

1.B. EXERCISE. Ring elements that have a power that is 0 are called nilpotents. If I is an
ideal of nilpotents, show that Spec B/I → Spec B is a bijection. Thus nilpotents don’t affect
the underlying set. (We will soon see in Exercise 2.H that they won’t affect the topology
either — the difference will be in the structure sheaf.)

Second important example (localization): Spec S−1B in terms of Spec B, where S is a
multiplicative subset of B. There are two particularly important flavors of multiplicative
subsets. The first is B \ p, where p is a prime ideal. This localization S−1B is denoted Bp.
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FIGURE 1. A “picture” of Spec C[x, y, z]/(x2 + y2 − z2)

A motivating example is B = C[x, y], S = B − (x, y). The second is {1, f, f2, . . . }, where
f ∈ B. This localization is denoted Bf. (Notational warning: If p is a prime ideal, then Bp

means you’re allowed to divide by elements not in p. However, if f ∈ B, Bf means you’re
allowed to divide by f. This can be confusing. For example, if (f) is a prime ideal, then
Bf 6= B(f).) A motivating example is B = C[x, y], f = x.

1.3. Essential algebra fact (to review and know). The map Spec S−1B → Spec B gives an
order-preserving bijection of the primes of S−1B with the primes of B that don’t meet the
multiplicative set S.

So if S = B − p where p is a prime ideal, the primes of S−1B are just the primes of B

contained in p. If S = {1, f, f2, . . . }, the primes of S−1B are just those primes not containing
f (the points where “f doesn’t vanish” — draw a picture of Spec C[x]x2−x to see how this
works).

1.4. Warning. sometimes localization is first introduced in the special case where B is
an integral domain. In this example, B ↪→ Bf, but this isn’t true when one inverts zero-
divisors. (A zero-divisor of a ring B is an element a such that there is a non-zero element
b with ab = 0. The other elements of B are called non-zero-divisors.) One definition of
localization is as follows. The elements of S−1B are of the form a/s where r ∈ B and s ∈ S,
and (a1/s1)× (a2/s2) = (a1a2/s1s2), and (a1/s1) + (a2/s2) = (a1s2 + s1a2)/(s1s2). We say
that a1/s1 = a2/s2 if for some s ∈ S s(a1s2 − a2s1) = 0. So for example, B[1/0] ∼= 0.

1.5. Important comment: functions are not determined by their values at points. We
are developing machinery that will let us bring our geometric intuition to algebra. There
is one point where your intuition will be false, so you should know now, and adjust
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your intuition appropriately. Suppose we have a function (ring element) vanishing at all
points. Then it is not necessarily the zero function! The translation of this question is: is
the intersection of all prime ideals necessarily just 0? The answer is no, as is shown by the
example of the ring of dual numbers k[ε]/ε2: ε 6= 0, but ε2 = 0. (We saw this scheme in
an exercise in class 5.) Any function whose power is zero certainly lies in the intersection
of all prime ideals. The converse is also true: the intersection of all the prime ideals
consists of functions for which some power is zero, otherwise known as the nilradical N.
(You should check that the nilpotents indeed form an ideal. For example, the sum of two
nilpotents is always nilpotent.)

1.6. Theorem. The nilradical N(A) is the intersection of all the primes of A.

1.C. EXERCISE. If you don’t know this theorem, then look it up, or even better, prove
it yourself. (Hint: one direction is easy. The other will require knowing that any proper
ideal of A is contained in a maximal ideal, which requires the axiom of choice.)

In particular, although it is upsetting that functions are not determined by their values
at points, we have precisely specified what the failure of this intuition is: two functions
have the same values at points if and only if they differ by a nilpotent. And if there are no
non-zero nilpotents — if N = 0 — then functions are determined by their values at points.

2. THE ZARISKI TOPOLOGY: THE UNDERLYING TOPOLOGICAL SPACE OF AN AFFINE
SCHEME

We next introduce the Zariski topology on the spectrum of a ring. At first it seems like an
odd definition, but in retrospect it is reasonable. For example, consider A2

C
= Spec C[x, y],

the complex plane (with a few extra points). In algebraic geometry, we will only be al-
lowed to consider algebraic functions, i.e. polynomials in x and y. The locus where a
polynomial vanishes should reasonably be a closed set, and the Zariski topology is de-
fined by saying that the only sets we should consider closed should be these sets, and
other sets forced to be closed by these. In other words, it is the coarsest topology where
these sets are closed.

In particular, although topologies are often described using open subsets, it will more
convenient for us to define this topology in terms of closed subsets. If S is a subset of a
ring A, define the Vanishing set of S by

V(S) := {[p] ∈ Spec A : S ⊂ p}.

It is the set of points on which all elements of S are zero. (It should now be second nature
to equate “vanishing at a point” with “contained in a prime”.) We declare that these (and
no other) are the closed subsets.

For example, consider V(xy, xz) ⊂ A3 = Spec C[x, y, z]. Which points are contained
in this locus? We think of this as solving xy = yz = 0. Of the “old-fashioned” points
(interpreted as ordered triples of complex numbers, thanks to the Hilbert’s Nullstellen-
satz 1.1), we have the points where y = 0 or x = z = 0: the xz-plane and the y-axis
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respectively. Of the “new” points, we have the generic point of the xz-plane (also known
as the point [(y)]), and the generic point of the y-axis (also known as the point [(x, z)]).
You might imagine that we also have a number of “one-dimensional” points contained in
the xz-plane.

2.A. EASIER EXERCISE. Check that the x-axis is contained in this set.

Let’s return to the general situation. The following exercise lets us restrict attention to
vanishing sets of ideals.

2.B. EASIER EXERCISE. Show that if (S) is the ideal generated by S, then V(S) = V((S)).

We define the Zariski topology by declaring that V(S) is closed for all S. Let’s check
that this is a topology. We have to check that the empty set and the total space are open;
the union of an arbitrary collection of open sets are open; and the intersection of two open
sets are open.

2.C. EXERCISE. (a) Show that ∅ and Spec A are both open.
(b) Show that V(I1) ∪ V(I2) = V(I1I2). Hence show that the intersection of any finite
number of open sets is open.
(c) (The union of any collection of open sets is open.) If Ii is a collection of ideals (as i runs
over some index set), check that ∩iV(Ii) = V(

∑
i
Ii).

2.1. Properties of “vanishing set” function V(·). The function V(·) is obviously inclusion-
reversing: If S1 ⊂ S2, then V(S2) ⊂ V(S1). Warning: We could have equality in the second
inclusion without equality in the first, as the next exercise shows.

2.D. EXERCISE/DEFINITION. If I ⊂ R is an ideal, then define its radical by
√

I := {r ∈ R : rn ∈ I for some n ∈ Z
≥0}.

For example, the nilradical N (§1.5) is
√

(0). Show that V(
√

I) = V(I). We say an ideal is
radical if it equals its own radical.

Here are two useful consequences. As (I∩ J)2 ⊂ IJ ⊂ I∩ J, we have that V(IJ) = V(I∩ J)
(= V(I) ∪ V(J) by Exercise 2.C(b)). Also, combining this with Exercise 2.B, we see V(S) =

V((S)) = V(
√

(S)).

2.E. EXERCISE (PRACTICE WITH THE CONCEPT). If I1, . . . , In are ideals of a ring A, show
that

√

∩n

i=1
Ii = ∩n

i=1

√
Ii. (We will use this property without referring back to this exercise.)

2.F. EXERCISE FOR FUTURE USE. Show that
√

I is the intersection of all the prime ideals
containing I. (Hint: Use Theorem 1.6 on an appropriate ring.)
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2.2. Examples. Let’s see how this meshes with our examples from the previous section.

Recall that A1

C
, as a set, was just the “old-fashioned” points (corresponding to maxi-

mal ideals, in bijection with a ∈ C), and one “new” point (0). The Zariski topology on
A1

C
is not that exciting: the open sets are the empty set, and A1

C
minus a finite number

of maximal ideals. (It “almost” has the cofinite topology. Notice that the open sets are
determined by their intersections with the “old-fashioned points”. The “new” point (0)
comes along for the ride, which is a good sign that it is harmless. Ignoring the “new”
point, observe that the topology on A1

C
is a coarser topology than the analytic topology.)

The case Spec Z is similar. The topology is “almost” the cofinite topology in the same
way. The open sets are the empty set, and Spec Z minus a finite number of “ordinary”
((p) where p is prime) primes.

2.3. Closed subsets of A2

C
. The case A2

C
is more interesting. You should think through

where the “one-dimensional primes” fit into the picture. In Exercise 1.A, we identified all
the primes of C[x, y] (i.e. the points of A

2

C
) as the maximal ideals (x−a, y−b) (a, b ∈ C), the

“one-dimensional points” (f(x, y)) (f(x, y) irreducible), and the “two-dimensional point”
(0).

Then the closed subsets are of the following form:

(a) the entire space, and
(b) a finite number (possibly zero) of “curves” (each of which is the closure of a “one-

dimensional point”) and a finite number (possibly zero) of closed points.

2.4. Important fact: Maps of rings induce continuous maps of topological spaces. We
saw in §1.2 that a map of rings φ : B → A induces a map of sets π : Spec A → Spec B.

2.G. IMPORTANT EXERCISE. By showing that closed sets pull back to closed sets, show
that π is a continuous map.

Not all continuous maps arise in this way. Consider for example the continuous map
on A1

C
that is the identity except 0 and 1 (i.e. [(x)] and [(x − 1)] are swapped); there is no

polynomial that can manage this.

In §1.2, we saw that Spec B/I and Spec S−1B are naturally subsets of Spec B. It is natural
to ask if the Zariski topology behaves well with respect to these inclusions, and indeed it
does.

2.H. IMPORTANT EXERCISE. Suppose that I, S ⊂ B are an ideal and multiplicative sub-
set respectively. Show that Spec B/I is naturally a closed subset of Spec B. Show that the
Zariski topology on Spec B/I (resp. Spec S−1B) is the subspace topology induced by inclu-
sion in Spec B. (Hint: compare closed subsets.)
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In particular, if I ⊂ N is an ideal of nilpotents, the bijection Spec B/I → Spec B (Exer-
cise 1.B) is a homeomorphism. Thus nilpotents don’t affect the topological space. (The
difference will be in the structure sheaf.)

2.I. USEFUL EXERCISE FOR LATER. Suppose I ⊂ B is an ideal. Show that f vanishes on
V(I) if and only if fn ∈ I for some n.

2.J. EXERCISE. Describe the topological space Spec k[x](x).

3. TOPOLOGICAL DEFINITIONS

We now describe various properties that it will be useful to have names for.

A topological space is said to be irreducible if it is not the union of two proper closed
subsets. In other words, X is irreducible if whenever X = Y ∪ Z with Y and Z closed, we
have Y = X or Z = X.

3.A. EASY EXERCISE. Show that on an irreducible topological space, any nonempty open
set is dense. (The moral of this is: unlike in the classical topology, in the Zariski topology,
non-empty open sets are all “very big”.)

3.B. EXERCISE. Show that Spec A is irreducible if and only if A has only one minimal
prime. (Minimality is with respect to inclusion.) In particular, if A is an integral domain,
then Spec A is irreducible.

A point of a topological space x ∈ X is said to be closed if {x} is a closed subset. In the
old-fashioned topology on Cn, all points are closed.

3.C. EXERCISE. Show that the closed points of Spec A correspond to the maximal ideals.

Thus Hilbert’s Nullstellensatz lets us associate the closed points of An

C
with n-tuples

of complex numbers. Hence from now on we will say “closed point” instead of “old-
fashioned point” and “non-closed point” instead of “bonus” or “new-fangled” point when
discussing subsets of An

C
.

Given two points x, y of a topological space X, we say that x is a specialization of y,
and y is a generization of x, if x ∈ {y}. This now makes precise our hand-waving about
“one point contained another”. It is of course nonsense for a point to contain another.
But it is not nonsense to say that the closure of a point contains another. For example,
in A2

C
= Spec C[x, y], [(y − x2)] is a generization of (2, 4) = [(x − 2, y − 4)], and (2, 4) is a

specialization of [(y − x2)].
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3.D. EXERCISE. If X = Spec A, show that [p] is a specialization of [q] if and only if q ⊂ p.
Verify to your satisfaction that we have made our intuition of “containment of points”
precise: it means that the one point is contained in the closure of another.

We say that a point x ∈ X is a generic point for a closed subset K if {x} = K.

3.E. EXERCISE. Verify that [(y − x2)] ∈ A2 is a generic point for V(y − x2).

We will soon see that there is a natural bijection between points of Spec A and irre-
ducible closed subsets of Spec A. You know enough to show this now, although we’ll
wait until we have developed some convenient terminology.

3.F. LESS IMPORTANT EXERCISE. (a) Suppose I = (wz−xy, wy−x2, xz−y2) ⊂ k[w, x, y, z].
Show that Spec k[w, x, y, z]/I is irreducible, by showing that I is prime. (One possible
approach: Show that the quotient ring is a domain, by showing that it is isomorphic to
the subring of k[a, b] including only monomials of degree divisible by 3. There are other
approaches as well, some of which we will see later. This is an example of a hard question:
how do you tell if an ideal is prime?) We will later see this as the cone over the twisted
cubic curve.
(b) Note that the ideal of part (a) may be rewritten as

rank

(

w x y

x y z

)

= 1,

i.e. that all determinants of 2 × 2 submatrices vanish. Generalize this to the ideal of rank
1 2 × n matrices. This notion will correspond to the cone over the degree n rational normal
curve.

3.1. Noetherian conditions.

In the examples we have considered, the spaces have naturally broken up into some
obvious pieces. Let’s make that a bit more precise.

A topological space X is called Noetherian if it satisfies the descending chain condition
for closed subsets: any sequence Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ · · · of closed subsets eventually
stabilizes: there is an r such that Zr = Zr+1 = · · · .

The following exercise may be enlightening.

3.G. EXERCISE. Show that any decreasing sequence of closed subsets of A2

C
= Spec C[x, y]

must eventually stabilize. Note that it can take arbitrarily long to stabilize. (The closed
subsets of A2

C
were described in §2.3.)

3.2. It turns out that all of the spectra we have considered have this property, but that
isn’t true of the spectra of all rings. The key characteristic all of our examples have had
in common is that the rings were Noetherian. Recall that a ring is Noetherian if every
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ascending sequence I1 ⊂ I2 ⊂ · · · of ideals eventually stabilizes: there is an r such that
Ir = Ir+1 = · · · . (This is called the ascending chain condition on ideals.)

Here are some quick facts about Noetherian rings. You should be able to prove them
all.

• Fields are Noetherian. Z is Noetherian.
• If A is Noetherian, and I is any ideal, then A/I is Noetherian.
• If A is Noetherian, and S is any multiplicative set, then S−1A is Noetherian.
• In a Noetherian ring, any ideal is finitely generated.
• Any submodule of a finitely generated module over a Noetherian ring is finitely

generated. (Hint: prove it for An, and use the next exercise.)

3.H. EXERCISE. Suppose 0 → M ′ → M → M ′′ → 0, and M ′ and M ′′ satisfy the ascending
chain condition for modules. Show that M does too. (The converse also holds; we won’t
use this, but you can show it if you wish.)

The next fact is non-trivial.

3.3. The Hilbert basis theorem. — If A is Noetherian, then so is A[x].

Using these results, then any polynomial ring over any field, or over the integers, is
Noetherian — and also any quotient or localization thereof. Hence for example any
finitely-generated algebra over k or Z, or any localization thereof is Noetherian. Most
“nice” rings are Noetherian, but not all rings are Noetherian, e.g. k[x1, x2, . . . ] because
m = (x1, x2, . . . , ) is not finitely generated.

3.I. EXERCISE. If A is Noetherian, show that Spec A is a Noetherian topological space.

3.J. LESS IMPORTANT EXERCISE. Show that the converse is not true: if Spec A is a Noe-
therian topological space, A need not be Noetherian. Describe a ring A such that Spec A

is not a Noetherian topological space.

I discussed how the finiteness of the game of Chomp is a consequence of the Hilbert
basis theorem.

If X is a topological space, and Z is an irreducible closed subset not contained in any
larger irreducible closed subset, Z is said to be an irreducible component of X. (I drew a
picture.)

3.K. EXERCISE. If A is any ring, show that the irreducible components of Spec A are in
bijection with the minimal primes of A.
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For example, the only minimal prime of k[x, y] is (0). What are the minimal primes of
k[x, y]/(xy)?

E-mail address: vakil@math.stanford.edu
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