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1. THE INVERSE IMAGE SHEAF

We next describe a notion that is rather fundamental, but is still a bit intricate. We won't
need it (at least for a long while), so this may be best left for a second reading. Suppose we
have a continuous map f : X — Y. If F is a sheaf on X, we have defined the pushforward
or direct image sheaf f.F, which is a sheaf on Y. There is also a notion of inverse image
sheaf. (We won't call it the pullback sheaf, reserving that name for a later construction,
involving quasicoherent sheaves.) This is a covariant functor f~' from sheaves on Y to
sheaves on X. If the sheaves on Y have some additional structure (e.g. group or ring),
then this structure is respected by f~'.

1.1. Definition by adjoint: elegant but abstract. Here is a categorical definition of the inverse
image: f~' is left-adjoint to f..

This isn’t really a definition; we need a construction to show that the adjoint exists.
(Also, for pedants, this won’t determine f1F; it will only determine it up to unique iso-
morphism.) Note that we then get canonical maps f~'f,F — F (associated to the identity
in Mory(f.F, f.F)) and G — f.f~'G (associated to the identity in Morx(f~'G, f7'G)).

. . . . 1 T T
1.2. Construction: concrete but ugly. Define the temporary notation f—'GP™(U) = lim, _ fw Gg(Vv).

(Recall the explicit description of direct limit: sections are sections on open sets containing
f(U), with an equivalence relation.)
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1.A. EXERCISE. Show that this defines a presheaf on X.

Now define the inverse image of G by f7'G := (f1Grre)sh,

You will show that this construction satisfies the universal property in Exercise 1.F. For
the exercises before that, feel free to use either the adjoint description or the construction.

1.B. EXERCISE.  Show that the stalks of f~'G are the same as the stalks of G. More
precisely, if f(x) = y, describe a natural isomorphism G, = (f'G),. (Possible hint: use
the concrete description of the stalk, as a direct limit. Recall that stalks are preserved by
sheafification.)

1.C. EXERCISE (EASY BUT USEFUL). If Uisan opensubsetofY,i: U — Y is the inclusion,
and G is a sheaf on Y, show that i7'§ is naturally isomorphic to Gy.

1.D. EXERCISE (EASY BUT USEFUL). Ify € Y, 1i:{y} — Yis the inclusion, and §G is a sheaf
on Y, show thati~'(G) is naturally isomorphic to the stalk G,,.

1.E. EXERCISE.  Show that f~' is an exact functor from sheaves of abelian groups on
Y to sheaves of abelian groups on X. (Hint: exactness can be checked on stalks, and by
Exercise 1.B, the stalks are the same.) The identical argument will show that f —1isan exact
functor from Oy-modules (on Y) to f~'Oy-modules (on X), but don’t bother writing that
down. (Remark for experts: f~' is a left-adjoint, hence right-exact by abstract nonsense.
The left-exactness is true for “less categorical” reasons.)

1.F. IMPORTANT EXERCISE: THE CONSTRUCTION SATISFIES THE UNIVERSAL PROPERTY.
If f : X — Y is a continuous map, and F is a sheaf on X and G is a sheaf on Y, describe a
bijection

Morx(f7'G, F) & Mory(G, f.F).

Observe that your bijection is “natural” in the sense of the definition of adjoints.

1.G. EXERCISE.  (a) Suppose Z C Y is a closed subset, and i : Z — Y is the inclusion. If
F is a sheaf on Z, then show that the stalk (i), is a one element set ify ¢ Z, and F, if
y e’

(b) Important definition: Define the support of a sheaf F of sets, denoted Supp F, as the
locus where the stalks are not a one-element set:

Supp F :={x € X: |F| # 1}

(More generally, if the sheaf has value in some category, the support consists of points
where the stalk is not the final object. For sheaves of abelian groups, the support consists
of points with non-zero stalks.) Suppose Supp F C Z where Z is closed. Show that the
natural map F — 1,i7'F is an isomorphism. Thus a sheaf supported on a closed subset
can be considered a sheaf on that closed subset.
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2. RECOVERING SHEAVES FROM A “SHEAF ON A BASE”

Sheaves are natural things to want to think about, but hard to get one’s hands on. We
like the identity and gluability axioms, but they make proving things trickier than for
presheaves. We have discussed how we can understand sheaves using stalks. We now
introduce a second way of getting a hold of sheaves, by introducing the notion of a sheaf
on a base.

First, let me define the notion of a base of a topology. Suppose we have a topological
space X, i.e. we know which subsets of X are open {U;}. Then a base of a topology is a
subcollection of the open sets {B;} C {U;}, such that each U; is a union of the B;. There is
one example that you have seen early in your mathematical life. Suppose X = R™. Then
the way the usual topology is often first defined is by defining open balls B,(x) = {y € R™:
ly — x| < 1}, and declaring that any union of open balls is open. So the balls form a base
of the usual topology. Equivalently, we often say that they generate the usual topology.
As an application of how we use them, to check continuity of some map f : X — R™, you
need only think about the pullback of balls on R™

Now suppose we have a sheaf 7 on X, and a base {B;} on X. Then consider the informa-
tion ({F(By)}, {resg, 5, : F(Bi) — F(Bj)}), which is a subset of the information contained
in the sheaf — we are only paying attention to the information involving elements of the
base, not all open sets.

We can recover the entire sheaf from this information. Reason: we can determine the
stalks from this information, and we can determine when germs are compatible.

2.A. EXERCISE. Make this precise.

This suggests a notion, that of a sheaf on a base. A sheaf of sets (rings etc.) on a base
{Bi} is the following. For each B; in the base, we have a set F(B;). If Bi C Bj, we have
maps res;; : F(Bj) — F(Bi). (Things called B are always assumed to be in the base.) If
Bi C Bj C By, then resg, g, = resg, p, oresp, ;. So far we have defined a presheaf on a base.

We also require base identity: If B = UB;, then if f, g € F(B) such that resg g, f =resgp, ¢
for all i, then f = g.

We require base gluability too: If B = UB;, and we have f; € F(B;) such that f; agrees
with f; on any basic open set in B; N Bj (i.e. resg, p, fi = resg, p, fj for all By C B;N B;) then
there exist f € F(B) such that resg g, = f; for all i.

2.1. Theorem. — Suppose {Bi} is a base on X, and F is a sheaf of sets on this base. Then there
is a unique sheaf F extending F (with isomorphisms F(B;) = F(B;) agreeing with the restriction
maps).

Proof. We will define F as the sheaf of compatible germs of F.



Define the stalk of F at x € X by
Fy = lim F(By)

where the colimit is over all B; (in the base) containing x.

We'll say a family of germs in an open set U is compatible near x if there is a section s
of F over some B; containing x such that the germs over B; are precisely the germs of s.
More formally, define

F(U) :={(fx € Fx)xeu:Vx € U,IBwithx C B C U,s € F(B) : s, = f,Vy € B}

where each B is in our base.
This is a sheaf (for the same reasons as the sheaf of compatible germs was earlier).

I next claim that if U is in our base, the natural map F(B) — F(B) is an isomorphism.

2.B. TRICKY EXERCISE. Describe the inverse map F(B) — F(B), and verify that it is
indeed inverse. l

Thus sheaves on X can be recovered from their “restriction to a base”. This is a state-
ment about objects in a category, so we should hope for a similar statement about mor-
phisms.

2.C. IMPORTANT EXERCISE: MORPHISMS OF SHEAVES CORRESPOND TO MORPHISMS OF
SHEAF ON A BASE. Suppose {Bi} is a base for the topology of X.

(a) Verify that a morphism of sheaves is determined by the induced morphism of sheaves
on the base.

(b) Show that a morphism of sheaves on the base (i.e. such that the diagram

F(Bi) — G(B;y)

L

F(B;) — G(B;)

commutes for all B; — B;) gives a morphism of the induced sheaves.

2.D. IMPORTANT EXERCISE.  Suppose X = UU; is an open cover of X, and we have
sheaves F; on U; along with isomorphisms ¢y : Filu,ny; — Fjlu,ny; that agree on triple
overlaps (i.e. ¢y 0 djx = Py on Uy N Uy N Uy). Show that these sheaves can be glued
together into a unique sheaf F on X, such that F; = F|y,, and the isomorphisms over U;N
U; are the obvious ones. (Thus we can “glue sheaves together”, using limited patching
information.) (You can use the ideas of this section to solve this problem, but you don't
necessarily need to. Hint: As the base, take those open sets contained in some ;.)

2.2. Remark for experts. This almost says that the “set” of sheaves forms a sheaf itself, but
not quite. Making this precise leads one to the notion of a stack.
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3. TOWARD SCHEMES

We are now ready to consider the notion of a scheme, which is the type of geometric
space considered by algebraic geometry. We should first think through what we mean by
“geometric space”. You have likely seen the notion of a manifold, and we wish to abstract
this notion so that it can be generalized to other settings, notably so that we can deal with
non-smooth and arithmetic objects.

The key insight behind this generalization is the following: we can understand a geo-
metric space (such as a manifold) well by understanding the functions on this space. More
precisely, we will understand it through the sheaf of functions on the space. If we are in-
terested in differentiable manifolds, we will consider differentiable functions; if we are
interested in smooth manifolds, we will consider smooth functions and so on.

Thus we will define a scheme to be the following data

o The set: the points of the scheme

e The topology: the open sets of the scheme

e The structure sheaf: the sheaf of “algebraic functions” (a sheaf of rings) on the
scheme.

Recall that a topological space with a sheaf of rings is called a ringed space.

We will try to draw pictures throughout, so our geometric intuition can guide the al-
gebra development (and, eventually, vice versa). Pictures can help develop geometric
intuition. Some readers will find the pictures very helpful, while others will find the
opposite.

3.1. Example: Differentiable manifolds. As motivation, we return to our example of
differentible manifolds, reinterpreting them in this light. We will be quite informal in this
section. Suppose X is a manifold. It is a topological space, and has a sheaf of differentiable
functions Ox (as described earlier). This gives X the structure of a ringed space. We have
observed that evaluation at p gives a surjective map from the stalk to R

OX,p — R)
so the kernel, the (germs of) functions vanishing at p, is a maximal ideal mx.

We could define a differentiable real manifold as a topological space X with a sheaf of
rings such that there is a cover of X by open sets such that on each open set the ringed
space is isomorphic to a ball around the origin in R™ with the sheaf of differentiable func-
tions on that ball. With this definition, the ball is the basic patch, and a general manifold
is obtained by gluing these patches together. (Admittedly, a great deal of geometry comes
from how one chooses to patch the balls together!) In the algebraic setting, the basic patch
is the notion of an affine scheme, which we will discuss soon.

Functions are determined by their values at points. This is an obvious statement, but won't
be true for schemes in general. We will see an example in Exercise 4.A(a).

5



Morphisms of manifolds. How can we describe differentiable maps of manifolds X — Y?
They are certainly continuous maps — but which ones? We can pull back functions along
continuous maps. Differentiable functions pull back to differentiable functions. More
formally, we have a map f'0y — Ox. (The inverse image sheaf f~! was defined in §1)
Inverse image is left-adjoint to pushforward, so we get a map f# : Oy — f,Ox.

Certainly given a differentiable map of manifolds, differentiable functions pullback to
differentiable functions. It is less obvious that this is a sufficient condition for a continuous
function to be differentiable.

3.A. IMPORTANT EXERCISE FOR THOSE WITH A LITTLE EXPERIENCE WITH MANIFOLDS.
Prove that a continuous function of differentiable manifolds f : X — Y is differentiable if
differentiable functions pull back to differentiable functions, i.e. if pullback by f gives a
map Oy — f,Ox. (Hint: check this on small patches. Once you figure out what you are
trying to show, you'll realize that the result is immediate.)

3.B. EXERCISE. Show that a morphism of differentiable manifolds f : X — Y with f(p) = q
induces a morphism of stalks f# : Oy, — Ox,p. Show that f#(my,) C mx,. In other
words, if you pull back a function that vanishes at g, you get a function that vanishes at
p — not a huge surprise.

Here is a little more for experts: Notice that this induces a map on tangent spaces
(mX,p/mi,p)v - (m\ﬂq/m%ﬂq)v

This is the tangent map you would geometrically expect. Again, it is interesting that the

cotangent map my,q/mg , — mx,/mx  is algebraically more natural than the tangent map.

Experts are now free to try to interpret other differential-geometric information using
only the map of topological spaces and map of sheaves. For example: how can one check
if f is a submersion? How can one check if f is an immersion? (We will see that the
algebro-geometric version of these notions are smooth morphisms and locally closed immer-
sion.)

3.2. Side Remark. — Manifolds are covered by disks that are all isomorphic. Schemes
(or even complex algebraic varieties) will not have isomorphic open sets. (We'll see an
example later.) Informally, this is because in the topology on schemes, all non-empty
open sets are “huge” and have more “structure”.

4. THE UNDERLYING SET OF AFFINE SCHEMES

For any ring A, we are going to define something called Spec A, the spectrum of A. In
this section, we will define it as a set, but we will soon endow it with a topology, and
later we will define a sheaf of rings on it (the structure sheaf). Such an object is called an
affine scheme. In the future, Spec A will denote the set along with the topology. (Indeed,
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it will often implicitly include the data of the structure sheaf.) But for now, as there is no
possibility of confusion, Spec A will just be the set.

The set Spec A is the set of prime ideals of A. The point of Spec A corresponding to the
prime ideal p will be denoted [p].

We now give some examples. Here are some temporary definitions to help us under-
stand these examples. Elements a € A will be called functions on Spec A, and their value
at the point [p] will be a (mod p). “An element a of the ring lying in a prime ideal p”
translates to “a function a that is 0 at the point [p]” or “a function a vanishing at the point
[p]”, and we will use these phrases interchangeably. Notice that if you add or multiply
two functions, you add or multiply their values at all points; this is a translation of the
fact that A — A/p is a homomorphism of rings. These translations are important — make
sure you are very comfortable with them!

Example 1: Al := Spec C[x]. This is known as “the affine line” or “the affine line over
C”. Let’s find the prime ideals. As C[x] is an integral domain, 0 is prime. Also, (x — a) is
prime, where a € C: it is even a maximal ideal, as the quotient by this ideal is field:

fisf(a)
0 — (x —a) — Clx] C 0

(This exact sequence should remind you of 0 — m, — O, — R — 0 in our motivating
example of manifolds.)

We now show that there are no other prime ideals. We use the fact that C[x] has a
division algorithm, and is a unique factorization domain. Suppose p is a prime ideal. If
p # 0, then suppose f(x) € p is a non-zero element of smallest degree. It is not constant, as
prime ideals can’t contain 1. If f(x) is not linear, then factor f(x) = g(x)h(x), where g(x)
and h(x) have positive degree. Then g(x) € p or h(x) € p, contradicting the minimality of
the degree of f. Hence there is a linear element x — a of p. Then I claim that p = (x — a).
Suppose f(x) € p. Then the division algorithm would give f(x) = g(x)(x — a) + m where
m € C. Thenm = f(x) — g(x)(x —a) € p. f m # 0, then 1 € p, giving a contradiction.

Thus we have a picture of Spec C[x] (see Figure 1). There is one point for each complex
number, plus one extra point. The point [(x — a)] we will reasonably associate to a € C.
Where should we picture the point [(0)]? Where is it? The best way of thinking about it is
somewhat zen. It is somewhere on the complex line, but nowhere in particular. Because
(0) is contained in all of these primes, we will somehow associate it with this line passing
through all the other points. [(0)] is called the “generic point” of the line; it is “generically
on the line” but you can’t pin it down any further than that. We’ll place it far to the right
for lack of anywhere better to put it. You will notice that we sketch A} as one-dimensional
in the real sense; this is to later remind ourselves that this will be a one-dimensional space,
where dimensions are defined in an algebraic (or complex-geometric) sense.

To give you some feeling for this space, let me make some statements that are currently
undefined, but suggestive. The functions on A/. are the polynomials. So f(x) = x*—3x+1
is a function. What is its value at [(x — 1)], which we think of as the point T € C? Answer:
f(1)! Or equivalently, we can evalute f(x) modulo x — 1 — this is the same thing by the
division algorithm. (What is its value at (0)? Itis f(x) (mod 0), which is just f(x).)
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(x) (x—1) (x—a) (0)

FIGURE 1. A picture of Al = Spec C[x]

FIGURE 2. A “picture” of Spec Z, which looks suspiciously like Figure 1

Here is a more complicated example: g(x) = (x —3)3/(x — 2) is a “rational function”. It
is defined everywhere but x = 2. (When we know what the structure sheaf is, we will be
able to say that it is an element of the structure sheaf on the open set Al —{2}.) g(x) has a
triple zero at 3, and a single pole at 2.

Example 2: A] := Speck[x] where k is an algebraically closed field. This is called the affine
line over k. All of our discussion in the previous example carries over without change.
We will use the same picture, which is after all intended to just be a metaphor.

Example 3: Spec Z. One amazing fact is that from our perspective, this will look a lot like
the affine line. This is another unique factorization domain, with a division algorithm.
The prime ideals are: (0), and (p) where p is prime. Thus everything from Example 1
carries over without change, even the picture. Our picture of Spec Z is shown in Figure 2.

Let’s blithely carry over our discussion of functions on this space. 100 is a function on
Spec Z. It’s value at (3) is “1T (mod 3)”. It's value at (2) is “0 (mod 2)”, and in fact it has a
double zero. 27/4 is a rational function on Spec Z, defined away from (2). It has a double
pole at (2), a triple zero at (3). Its value at (5) is

27x47=2x(=1)=3 (mod5).

Example 4: stupid examples. Spec k where k is any field is boring: only one point. Spec0,
where 0 is the zero-ring, is the empty set, as 0 has no prime ideals.

4.A. A SMALL EXERCISE ABOUT SMALL SCHEMES. (a) Describe the set Spec k[e]/e?. This
is called the ring of dual numbers, and will turn out to be quite useful. You should think
of € as a very small number, so small that its square is 0 (although it itself is not 0).

(b) Describe the set Spec k[x] (). (We will see this scheme again later.)

In Example 2, we restricted to the case of algebraically closed fields for a reason: things
are more subtle if the field is not algebraically closed.

Example 5: R[x]. Using the fact that R[x] is a unique factorization domain, we see that
the primes are (0), (x—a) where a € R, and (x*+ax+b) where x*+ ax+b is an irreducible
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quadratic. The latter two are maximal ideals, i.e. their quotients are fields. For example:
RX]/(x —3) =R, R[x]/(x*+ 1) =C.

4.B. UNIMPORTANT EXERCISE. Show that for the last type of prime, of the form (x* +
ax + b), the quotient is always isomorphic to C.

So we have the points that we would normally expect to see on the real line, corre-
sponding to real numbers; the generic point 0; and new points which we may interpret as
conjugate pairs of complex numbers (the roots of the quadratic). This last type of point
should be seen as more akin to the real numbers than to the generic point. You can
picture A} as the complex plane, folded along the real axis. But the key point is that
Galois-conjugate points are considered glued.

Let’s explore functions on this space; consider the function f(x) = x> — 1. Its value at
the point [(x —2)] is f(x) = 7, or perhaps better, 7 (mod x —2). How about at (x*+ 1)? We
get

x>—1=x—1 (modx*+1),
which may be profitably interpreted as i — 1.

One moral of this example is that we can work over a non-algebraically closed field if
we wish. It is more complicated, but we can recover much of the information we wanted.

4.C. EXERCISE. Describe the set Aj,. (This is harder to picture in a way analogous to Aj;
but the rough cartoon of points on a line, as in Figure 1, remains a reasonable sketch.)

Example 6: Fy[x]. As in the previous examples, this has a division algorithm, so the
prime ideals are of the form (0) or (f(x)) where f(x) € FF,[x] is an irreducible polyno-
mials, which can be of any degree. Irreducible polynomials correspond to sets of Galois
conjugates in F,,.

Note that Spec F,,[x] has p points corresponding to the elements of I, but also (infin-
itely) many more. This makes this space much richer than simply p points. For example,
a polynomial f(x) is not determined by its values at the p elements of IF,,, but it is deter-
mined by its values at the points of SpecF,,. (As we have mentioned before, this is not
true for all schemes.)

You should think about this, even if you are a geometric person — this intuition will
later turn up in geometric situations. Even if you think you are interested only in working
over an algebraically closed field (such as C), you will have non-algebraically closed fields
(such as C(x)) forced upon you.
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