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Last day: abelian categories: kernels, cokernels, and all that jazz. Definition of
(pre)sheaves.

A quick comment on last day’s material:

When you see a left-exact functor, you should always dream that you are seeing the
end of a long exact sequence. If

0-M-M-M"=0
is an exact sequence in abelian category A, and F : A — B is a left-exact functor, then
0—=FM" — FM — FM”

is exact, and you should always dream that it should continue in some natural way. For
example, the next term should depend only on M/, call it R"FM/, and if it is zero, then
FM — FM” is an epimorphism. This remark holds true for left-exact and contravariant
functors too. In good cases, such a continuation exists, and is incredibly useful. We’ll see
this when we come to cohomology.

1. MORPHISMS OF PRESHEAVES AND SHEAVES

Whenever one defines a new mathematical object, category theory has taught us to try to
understand maps between them. We now define morphisms of presheaves, and similarly
for sheaves. In other words, we will descibe the category of presheaves (of abelian groups,
etc.) and the category of sheaves.

A morphism of presheaves of sets (or indeed with values in any category) f : ¥ — G is
the data of maps f(U) : F(U) — G(U) for all U behaving well with respect to restriction:
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if U — V then

commutes. (Notice: the underlying space remains X.)

A morphism of sheaves is defined in the same way: the morphisms from a sheaf F
to a sheaf G are precisely the morphisms from F to G as presheaves. (Translation: The
category of sheaves on X is a full subcategory of the category of presheaves on X.)

An example of a morphism of sheaves is the map from the sheaf of differentiable func-
tions on R to the sheaf of continuous functions. This is a “forgetful map”: we are forget-
ting that these functions are differentiable, and remembering only that they are continu-
ous.

1.1. Side-remarks for category-lovers. If you interpret a presheaf on X as a contravariant
functor (from the category of open sets), a morphism of presheaves on X is a natural
transformation of functors. We haven’t defined natural transformation of functors, but
you might be able to guess the definition from this remark.

1.A. EXERCISE. Suppose f : X — Y is a continuous map of topological spaces (i.e. a
morphism in the category of topological spaces). Show that pushforward gives a functor
from { sheaves of sets on X } to { sheaves of sets on Y }. Here “sets” can be replaced by any
category. (Watch out for some possible confusion: a presheaf is a functor, and presheaves
form a category. It may be best to forget that presheaves form a functor for the time
being.)

1.B. IMPORTANT EXERCISE AND DEFINITION: “SHEAF Hom”. Suppose F and G are two
sheaves of abelian groups on X. (In fact, it will suffice that F is a presheaf.) Let Hom(F, G)
be the collection of data

Hom(F, G)(U) := Hom(Fly, Glu)-

(Recall the notation F|y, the restriction of the sheaf to the open set U, see last day’s notes.)
Show that this is a sheaf. This is called the “sheaf Hom”. Show that if G is a sheaf of
abelian groups, then Hom(F, G) is a sheaf of abelian groups.  (The same construction
will obviously work for sheaves with values in any category.)

1.2. Presheaves of abelian groups or Ox-modules form an abelian category.

We can make module-like constructions using presheaves of abelian groups on a topo-
logical space X. (In this section, all (pre)sheaves are of abelian groups.) For example, we
can clearly add maps of presheaves and get another map of presheaves: if f,g : F — G,
then we define the map f + g by (f + g)(V) = f(V) + g(V). (There is something small
to check here: that the result is indeed a map of presheaves.) In this way, presheaves
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of abelian groups form an additive category (recall: the morphisms between any two
presheaves of abelian groups form an abelian group; there is a 0-morphism; and one can
take finite products.) For exactly the same reasons, sheaves of abelian groups also form
an additive category.

If f: F — G is a morphism of presheaves, define the presheaf kernel kerp.f by
(kerpre T)(U) = ker f(UL).

1.C. EXERCISE. Show that kerp,. f is a presheaf. (Hint: if U < V, there is a natural map
resyu : G(V)/f(V)(F(V)) = G(U)/f(U)(F(U)) by chasing the following diagram:

00— kerpre f(V) - _7:(\/) - Q(V)
3! resy,u lresv,u

‘
0 — kerp, f(U) — F(U) —= G(U)

You should check that the restriction maps compose as desired.)

Define the presheaf cokernel coker,. f similarly. It is a presheaf by essentially the same
argument.

1.D. EXERCISE: THE COKERNEL DESERVES ITS NAME. Show that the presheaf cokernel
satisfies the universal property of cokernels in the category of presheaves.

Similarly, kerp,.f — F satisfies the unversal property for kernels in the category of
presheaves.

It is not too tedious to verify that presheaves of abelian groups form an abelian category,
and the reader is free to do so. (The key idea is that all abelian-categorical notions may be
defined and verified open set by open set.) Hence we can define terms such as subpresheaf,
image presheaf, quotient presheaf, cokernel presheaf, and they behave the way one expect. You
construct kernels, quotients, cokernels, and images open set by open set. Homological
algebra (exact sequences etc.) works, and also “works open set by open set”. In particular:

1.E. EXERCISE. If0 — F; — F, — .-+ — F,, — 0 is an exact sequence of presheaves of
abelian groups, then 0 — F;(U) — F(U) — --- — F,(U) — 0is also an exact sequence
for all U, and vice versa.

The above discussion carries over without any change to presheaves with values in any
abelian category.

However, we are interested in more geometric objects, sheaves, where things are can
be understood in terms of their local behavior, thanks to the identity and gluing axioms.
We will soon see that sheaves of abelian groups also form an abelian category, but a com-
plication will arise that will force the notion of sheafification on us. Sheafification will be
the answer to many of our prayers. We just don’t realize it yet.

3



Kernels work just as with presheaves:

1.E. IMPORTANT EXERCISE. Suppose f : 7 — G is a morphism of sheaves. Show that the
presheaf kernel ker,. f is in fact a sheaf. Show that it satisfies the universal property of
kernels. (Hint: the second question follows immediately from the fact that ker . f satisfies
the universal property in the category of presheaves.)

Thus if f is a morphism of sheaves, we define

ker f := kerp, f.

The problem arises with the cokernel.

1.G. IMPORTANT EXERCISE. Let X be C with the classical topology, let Z be the locally
constant sheaf on X with group Z, Ox the sheaf of holomorphic functions, and F the
presheaf of functions admitting a holomorphic logarithm. (Why is F not a sheaf?) Con-
sider

fimexp 27if

0 Z Ox F 0

where Z — Ox is the natural inclusion. Show that this is an exact sequence of presheaves.
Show that F is not a sheaf. (Hint: F does not satisfy the gluability axiom. The problem
is that there are functions that don’t have a logarithm that locally have a logarithm.) This
will come up again in Example 2.8.

We will have to put our hopes for understanding cokernels of sheaves on hold for a
while. We will first take a look at how to understand sheaves using stalks.

2. PROPERTIES DETERMINED AT THE LEVEL OF STALKS

In this section, we’ll see that lots of facts about sheaves can be checked “at the level of
stalks”. This isn’t true for presheaves, and reflects the local nature of sheaves. We will
flag each case of a property determined by stalks.

2.A. IMPORTANT EXERCISE (sections are determined by stalks). Prove that a section of
a sheaf is determined by its germs, i.e. the natural map

(1) Fu) = ][+
xelu

is injective. (Hint # 1: you won’t use the gluability axiom, so this is true for separated
presheaves. Hint # 2: it is false for presheaves in general, see Exercise 2.F, so you will use
the identity axiom.)

This exercise suggests an important question: which elements of the right side of (1)
are in the image of the left side?



2.1. Important definition. We say that an element | [, _,, sx of therightside [ [ ., Fx of (1)
consists of compatible germs if for all x € U, there is some representative (U, s, € I'(Uy, F))
for s, (where x € U, C U) such that the germ of s} atall y € U, is s,. You'll have to think
about this a little. Clearly any section s of F over U gives a choice of compatible germs
for U — take (U,,s,) = (U,s).

2.B. IMPORTANT EXERCISE. Prove that any choice of compatible germs for F over U is
the image of a section of F over U. (Hint: you will use gluability.)

We have thus completely described the image of (1), in a way that we will find useful.

2.2. Remark. This perspective is part of the motivation for the agricultural terminology
“sheaf”: it is the data of a bunch of stalks, bundled together appropriately.

Now we throw morphisms into the mix.

2.C. EXERCISE. Show a morphism of (pre)sheaves (of sets, or rings, or abelian groups, or
Ox-modules) induces a morphism of stalks. More precisely, if ¢ : F — G is a morphism
of (pre)sheaves on X, and x € X, describe a natural map ¢ : Fx — Gy.

2.D. EXERCISE (morphisms are determined by stalks). Show that morphisms of sheaves
are determined by morphisms of stalks. Hint: consider the following diagram.

(2) F(U) g(u)
[
[LeuFx — T xeu Y

2.E. TRICKY EXERCISE (isomorphisms are determined by stalks). Show thata morphism
of sheaves is an isomorphism if and only if it induces an isomorphism of all stalks. (Hint:
Use (2). Injectivity uses the previous exercise 2.D. Surjectivity will use gluability, and is
more subtle.)

2.F. EXERCISE. (a) Show that Exercise 2.A is false for general presheaves.

(b) Show that Exercise 2.D is false for general presheaves.

(c) Show that Exercise 2.E is false for general presheaves.

(General hint for finding counterexamples of this sort: consider a 2-point space with the
discrete topology, i.e. every subset is open.)

2.3. Sheafification.



Every sheaf is a presheaf (and indeed by definition sheaves on X form a full subcategory
of the category of presheaves on X). Just as groupification gives a group that best approx-
imates a semigroup, sheafification gives the sheaf that best approximates a presheaf, with
an analogous universal property.

2.4. Definition. If F is a presheaf on X, then a morphism of presheaves sh : F — F*"
on X is a sheafification of F if F*" is a sheaf, and for any other sheaf G, and any presheaf
morphism g : F — G, there exists a unique morphism of sheaves f : 75" — G making the
diagram

f_5h>f'sh
\lf
9
g

commute.

2.G. EXERCISE.  Show that sheafification is unique up to unique isomorphism. Show

that if  is a sheaf, then the sheafification is F —%> F . (This should be second nature by
Nnow.)

2.5. Construction. We next show that any presheaf has a sheafification. Suppose F is a
presheaf. Define F*"* by defining F*"(U) as the set of compatible germs of the presheaf F
over U. Explicitly:

FMUW i={(fx € Fxeu:Vx €U, Ix eV U,s € F(V):s, =f, Yy € V%

(Those who want to worry about the empty set are welcome to.)

2.H. EASY EXERCISE. Show that F*"* (using the tautological restriction maps) forms a
sheaf.

2.I. EASY EXERCISE. Describe a natural map sh : 7 — Fs™.
2.J. EXERCISE. Show that the map sh satisfies the universal property 2.4 of sheafification.

2.K. EXERCISE. Use the universal property to show that for any morphism of presheaves
¢ : F — G, we get a natural induced morphism of sheaves ¢*" : 7" — G". Show that
sheafification is a functor from presheaves to sheaves.

2.L. USEFUL EXERCISE FOR CATEGORY-LOVERS. Show that the sheafification functor is
left-adjoint to the forgetful functor from sheaves on X to presheaves on X.

2.M. EXERCISE. Show F — F*"induces an isomorphism of stalks. (Possible hint: Use
the concrete description of the stalks. Another possibility: judicious use of adjoints.)
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2.6. Unimportant remark.  Sheafification can be defined in a topological way, via the
“espace étalé” construction, see Hartshorne I1.1.13, and likely Serre’s totemic FAC. This is
essentially the same construction as the one given here. Another construction is described
in Eisenbud-Harris.

2.7. Subsheaves and quotient sheaves.

2.N. EXERCISE. Suppose ¢ : F — G is a morphism of sheaves (of sets) on at topological
space X. Show that the following are equivalent.

(@) ¢ is a monomorphism in the category of sheaves.

(b) ¢ is injective on the level of stalks: ¢, : F, — G injective for all x € X.

(c) ¢ isinjective on the level of opensets: ¢(U) : F(U) — G(U) is injective for all open
ucX

(Possible hints: for (b) implies (a), recall that morphisms are determined by stalks, Ex-
ercise 2.D. For (a) implies (b), judiciously choose a skyscraper sheaf. For (a) implies (c),
judiciously the “indicator sheaf” with one section over every open set contained in U, and
no section over any other open set.)

If these conditions hold, we say that F is a subsheaf of G (where the “inclusion” ¢ is
sometimes left implicit).

2.0. EXERCISE. Continuing the notation of the previous exercise, show that the following
are equivalent.

(@) ¢ is a epimorphism in the category of sheaves.
(b) ¢ is surjective on the level of stalks: ¢ : Fx — Gy surjective for all x € X.

If these conditions hold, we say that G is a quotient sheaf of F.

Thus monomorphisms and epimorphisms — subsheafiness and quotient sheafiness
— can be checked at the level of stalks.

Both exercises generalize immediately to sheaves with values in any category, where
“injective” is replaced by “monomorphism” and “surjective” is replaced by “epimor-
phism”.

Notice that there was no part (c) to the previous exercise, and here is an example show-
ing why.

2.8. Example. Let X = C with the usual (analytic) topology, and define Ox to be the sheaf
of holomorphic functions, and O to be the sheaf of invertible (nowhere zero) holomor-
phic functions. This is a sheaf of abelian groups under multiplication. We have maps of
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sheaves

(3) 0 Z X 27t OX exp O;k( 1

where Z is the locally constant sheaf associated to Z. (You can figure out what the sheaves
0 and 1T mean; they are isomorphic, and are written in this way for reasons that may be
clear). We will soon interpret this as an exact sequence of sheaves of abelian groups (the
exponential exact sequence), although we don’t yet have the language to do so.

2.P. EXERCISE. Show that Oy —> 0% describes 0% as a quotient sheaf of Ox. Show
that it is not surjective on all open sets.

This is a great example to get a sense of what “surjectivity” means for sheaves. Nonzero
holomorphic functions locally have logarithms, but they need not globally.

3. SHEAVES OF ABELIAN GROUPS, AND Ox-MODULES, FORM ABELIAN CATEGORIES

We are now ready to see that sheaves of abelian groups, and their cousins, Ox-modules,
form abelian categories. In other words, we may treat them in the same way we treat
vector spaces, and modules over a ring. In the process of doing this, we will see that this
is much stronger than an analogy; kernels, cokernels, exactness, etc. can be understood at
the level of germs (which are just abelian groups), and the compatibility of the germs will
come for free.

The category of sheaves of abelian groups is clearly an additive category. In order to
show that it is an abelian category, we must show that any morphism ¢ : 7 — G has
a kernel and a cokernel. We have already seen that ¢ has a kernel (Exercise 1.F): the
presheaf kernel is a sheaf, and is a kernel.

3.A. EXERCISE. Show that the stalk of the kernel is the kernel of the stalks: there is a
natural isomorphism

(ker(F — G))x = ker(Fyx — Gy).

So we next address the issue of the cokernel. Now ¢ : F — G has a cokernel in the
category of presheaves; call it HP"® (where the superscript is meant to remind us that this

is a presheaf). Let #Pre ™ be its sheafification. Recall that the cokernel is defined
using a universal property: it is the colimit of the diagram

PR
0
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in the category of presheaves. We claim that 7 is the cokernel of ¢ in the category of
sheaves, and show this by proving the universal property. Given any sheaf £ and a com-
mutative diagram

We construct

&

We show that there is a unique morphism ‘H — £ making the diagram commute. As H?"®
is the cokernel in the category of presheaves, there is a unique morphism of presheaves
HP™® — € making the diagram commute. But then by the universal property of sheafi-
fication (Defn. 2.4), there is a unique morphism of sheaves H — £ making the diagram
commute.

3.B. EXERCISE. Show that the stalk of the cokernel is naturally isomorphic to the cokernel
of the stalk.

We have now defined the notions of kernel and cokernel, and verified that they may
be checked at the level of stalks. We have also verified that the qualities of a morphism
being monic or epi are also determined at the level of stalks (Exercises 2.N and 2.0).
Hence sheaves of abelian groups on X form an abelian category.

We see more: all structures coming from the abelian nature of this category may be
checked at the level of stalks. For example, exactness of a sequence of sheaves may be
checked at the level of stalks. A fancy-sounding consequence: taking stalks is an exact
functor from sheaves of abelian groups on X to abelian groups.

3.C. EXERCISE (LEFT-EXACTNESS OF THE GLOBAL SECTION FUNCTOR). Suppose U C X
is an open set, and 0 — F — G — H is an exact sequence of sheaves of abelian groups.
Show that

0— F(U) — g(U) — H(U)
is exact. Give an example to show that the global section functor is not exact. (Hint: the
exponential exact sequence (3).)

3.D. EXERCISE: LEFT-EXACTNESS OF PUSHFORWARD. Suppose 0 — F — G — H is an
exact sequence of sheaves of abelian groups on X. If f : X — Y is a continuous map, show
that

0—f,F =16 —fH
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is exact. (The previous exercise, dealing with the left-exactness of the global section func-
tor can be interpreted as a special case of this, in the case where Y is a point.)

3.E. EXERCISE. Suppose ¢ : F — G is a morphism of sheaves of abelian groups. Show
that the image sheaf im ¢ is the sheafification of the image presheaf. (You must use the
definition of image in an abelian category. In fact, this gives the accepted definition of
image sheaf for a morphism of sheaves of sets.)

3.F. EXERCISE. Show that if (X, Ox) is a ringed space, then Ox-modules form an abelian
category. (There isn’t much more to check!)

We end with a useful construction using some of the ideas in this section.

3.G. IMPORTANT EXERCISE: TENSOR PRODUCTS OF Ox-MODULES. (a) Suppose Ox is a
sheaf of rings on X. Define (categorically) what we should mean by tensor product of
two Ox-modules. Give an explicit construction, and show that it satisfies your categorical
definition. Hint: take the “presheaf tensor product” — which needs to be defined — and
sheafify. Note: ®¢, is often written ® when the subscript is clear from the context.

(b) Show that the tensor product of stalks is the stalk of tensor product.

I then said a very little about where we are going. The last two things we’ll dis-
cuss about sheaves in particular are the inverse image sheaf and sheaves on a base of a

topology.
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