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Last day: category theory in earnest. Universal properties. Limits and colimits. Ad-
joints.

Today: abelian categories: kernels, cokernels, and all that jazz.

Here are some additional comments on last day’s material. The details of Yoneda’s
lemma don’t matter so much; what matters most is that you understand how universal
properties determine objects up to unique isomorphism.

It doesn’t matter much, but limits and colimits needn’t be indexed only by categories
where there is at most one morphism between any two objects. I gave an example involv-
ing a G-action on a set X (where G is a finite group). The G-invariants can be interpreted
as limit.

Tony Licata gave a nice argument that ® is right-exact using a universal property argu-
ment.

1. KERNELS, COKERNELS, AND EXACT SEQUENCES: A BRIEF INTRODUCTION TO
ABELIAN CATEGORIES

Since learning linear algebra, you have been familiar with the notions and behaviors of
kernels, cokernels, etc. Later in your life you saw them in the category of abelian groups,
and later still in the category of A-modules. Each of these notions generalizes the previous
one. The notion of abelian category formalizes kernels etc.
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We now briefly introduce a few notions about abelian categories. We will soon define
some new categories (certain sheaves) that will have familiar-looking behavior, reminis-
cent of that of modules over a ring. The notions of kernels, cokernels, images, and more
will make sense, and they will behave “the way we expect” from our experience with
modules. This can be made precise through the notion of an abelian category. We will
see enough to motivate the definitions that we will see in general: monomorphism (and
subobject), epimorphism, kernel, cokernel, and image. But we will avoid having to show
that they behave “the way we expect” in a general abelian category because the examples
we will see will be directly interpretable in terms of modules over rings.

Abelian categories are the right general setting in which one can do “homological al-
gebra”, in which notions of kernel, cokernel, and so on are used, and one can work with
complexes and exact sequences.

Two key examples of an abelian category are the category Ab of abelian groups, and
the category Mod A of A-modules. As stated earlier, the first is a special case of the second
(just take A = Z). As we give the definitions, you should verify that Mod  is an abelian
category, and you should keep these examples in mind always.

We first define the notion of additive category. We will use it only as a stepping stone to
the notion of an abelian category.

1.1. Definition. A category C is said to be additive if it satisfies the following properties.

Ad1. For each A,B € C, Mor(A, B) is an abelian group, such that composition of mor-
phisms distributes over addition. (You should think about what this means — it
translates to two distinct statements).

Ad2. C has a zero-object, denoted 0. (Recall: this is an object that is simultaneously an
initial object and a final object.)

Ad3. It has products of two objects (a product A x B for any pair of objects), and hence
by induction, products of any finite number of objects.

In an additive category, the morphisms are often called homomorphisms, and Mor is
denoted by Hom. In fact, this notation Hom is a good indication that you're working
in an additive category. A functor between additive categories preserving the additive
structure of Hom, and sending the 0-object to the 0-object, is called an additive functor. (It
is a consequence of the definition that additive functors send 0-objects to 0-objects, and
preserve products.)

1.2. Remarks. It is a consequence of the definition of additive category that finite di-
rect products are also finite direct sums=coproducts (the details don’t matter to us). The
symbol @ is used for this notion.

One motivation for the name 0-object is that the O-morphism in the abelian group
Hom(A, B) is the composition A — 0 — B.



Real (or complex) Banach spaces are an example of an additive category. The category
Modx of A-modules is another example, but it has even more structure, which we now
formalize as an example of an abelian category.

1.3. Definition. Let C be an additive category. A kernel of a morphism f : B — Cis a
map i : A — B such that f oi = 0, and that is universal with respect to this property.

Diagramatically:
3t

v i
AP =€
0
(Note that the kernel is not just an object; it is a morphism of an object to B.) Hence it is
unique up to unique isomorphism by universal property nonsense. A cokernel is defined

dually by reversing the arrows — do this yourself. Notice that the kernel of f : B — C is
the limit

0

C

f

B——

and similarly the cokernel is a colimit.

A morphism i: A — B in C is monic if for all i o g = 0, where the tail of g is A, implies
g = 0. Diagramatically,

C

-

A——B
(Once we know what an abelian category is — in a few sentences — you may check that a
monic morphism in an abelian category is a monomorphism.) If i : A — B is monic, then
we say that A is a subobject of B, where the map 1i is implicit. Dually, there is the notion of
epi — reverse the arrows to find out what that is. The notion of quotient object is defined
dually to subobject.

An abelian category is an additive category satisfying three additional properties.

(1) Every map has a kernel and cokernel.
(2) Every monic morphism is the kernel of its cokernel.
(3) Every epi morphism is the cokernel of its kernel.

It is a non-obvious (and imprecisely stated) fact that every property you want to be true
about kernels, cokernels, etc. follows from these three.

The image of a morphism f : A — B is defined as im(f) = ker(coker f). It is the unique
factorization

A ep1 irn(f)monic B
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It is the cokernel of the kernel, and the kernel of the cokernel. The reader may want to
verify this as an exercise. It is unique up to unique isomorphism.

We will leave the foundations of abelian categories untouched. The key thing to re-
member is that if you understand kernels, cokernels, images and so on in the category of
modules over a ring Mod 5, you can manipulate objects in any abelian category. This is
made precise by Freyd-Mitchell Embedding Theorem. However, the abelian categories
we’ll come across will obviously be related to modules, and our intuition will clearly
carry over. For example, we'll show that sheaves of abelian groups on a topological space
X form an abelian category. The interpretation in terms of “compatible germs” will con-
nect notions of kernels, cokernels etc. of sheaves of abelian groups to the corresponding
notions of abelian groups.

1.4. Complexes, exactness, and homology.

If you aren’t familiar with these notions, you should definitely read this section
closely!

We say

1) A—>B—2-C

is a complex if g o f =0, and is exact if ker g = im f. If (1) is a complex, then its homology
is ker g/ im f. We say that ker g are the cycles, and im f are the boundaries. Homology (resp.
cohomology) is denoted by H, often with a subscript (resp. superscript), and it should be
clear from the context what the subscript means (see for example the discussion below).

An exact sequence

(2) A° - ..._>Ai—]i>Ai_]d>Ai+]i>...

can be “factored” into short exact sequences
0 —ker ft —> At —=ker f'*1 —0

which is helpful in proving facts about long exact sequences by reducing them to facts
about short exact sequences.

More generally, if (2) is assumed only to be a complex, then it can be “factored” into
short exact sequences

0 ker ft Al im ft 0

0 — imf! — ker ft —= H{(A®*) —=0

1.A. EXERCISE. Suppose

a0 al an—1 an




is a complex of k-vector spaces (often called A*® for short). Show that ) (—1)'dim A" =
> (=1)'*h*(A®). (Recall that h'(A®) = dimker(d')/im(d*").) In particular, if A® is exact,
then ) (—1)'dim A' = 0. (If you haven’t dealt much with cohomology, this will give you
some practice.)

1.B. IMPORTANT EXERCISE. Suppose C is an abelian category. Define the category Com,
as follows. The objects are infinite complexes

A° - ..._>Ai—]i>Ai_fi>Ai+]ﬂ>...
in C, and the morphisms A®* — B® are commuting diagrams

fi-1 fi £l

A°: ..._>Ai—]_>Ai_>Ai+l_>...
Be: ..._>Bi—1i>Bi_]d>Bi+]ﬂ>...

Show that Com¢ is an abelian category. Show that a short exact sequence of complexes

0: . 0 0 0
Ac: ce > AT il Al _1-") At fit1 o
Be: ”'—>Bi_1£>Bi—i>Bi+] git!
Ce: RS hi-1 ci hi Cit hit1 o
0: . 0 0 8
induces a long exact sequence in cohomology
H='(C*) —

HY{(A®) — H(B*) — H(C*) ——

Hi+1 (A. )

1.5. Exactness of functors. If F: A — B is a covariant additive functor from one abelian
category to another, we say that F is right-exact if the exactness of

A’ A A’ 0,

in A implies that
F(A') F(A) F(A") —=0




is also exact. Dually, we say that F is left-exact if the exactness of

0 Al A A implies

0——F(A) F(A) F(A") is exact.

A contravariant functor is left-exact if the exactness of

Al A A 0 implies

0 — F(A") —F(A) —=F(A’) is exact.

The reader should be able to deduce what it means for a contravariant functor to be right-
exact.

A covariant or contravariant functor is exact if it is both left-exact and right-exact.

1.6. x Interactions of adjoints, (co)limits, and (left and right) exactness. There are some
useful properties of adjoints that make certain arguments quite short. This is intended
only for experts, and can be ignored by most people in the class, so this won’t be said
during class. We present them as three facts. Suppose (F:C — D,G: D — C) is a pair of
adjoint functors.

Fact 1. F commutes with colimits, and G commutes with limits.

We prove the second statement here. The first is the same, “with the arrows reversed”.
We begin with a useful fact.

1.C. EXERCISE: Mor(X,-) COMMUTES WITH LIMITS. Suppose A; (i € I) is a diagram
in D indexed by Z, and @Ai — Ay is its limit. Then for any X € D, Mor(X, m Ai) —
Mor(X, A;) is the limit @ Mor(X, Ay).

We are now ready to prove (one direction of) Fact 1.

1.7. Proposition (right-adjoints commute with limits). — Suppose (F : C — D,G : D — ()
is a pair of adjoint functors. If A = lim Ay is a limit in D of a diagram indexed by 1, then
GA = lim GA; (with the corresponding maps GA — GAy) is a limit in C.

Proof. We must show that GA — GA| satisfies the universal property of limits. Suppose
we have maps W — GA; commuting with the maps of Z. We wish to show that there
exists a unique W — GA extending the W — GA,. By adjointness of F and G, we can
restate this as: Suppose we have maps FW — A; commuting with the maps of Z. We
wish to show that there exists a unique FW — A extending the FW — A;. But this is
precisely the universal property of the limit. O
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Suppose now further that C and D are abelian categories, and F and G are additive func-
tors. Kernels are limits and cokernels are colimits (§1.3), so we have Fact 2. F commutes
with cokernels and G commutes with kernels.

Now suppose

M ——=M M 0

is an exact sequence in C, so M" = coker f. Then by Fact 2, FM” = coker Ff. Thus
M - FM - FM” =0

so: Fact 3. Left-adjoint additive functors are right-exact, and right-adjoint additive func-
tors are left-exact. For example, the fact that (- ®a N,Homa(N,-)) are an adjoint pair
(from the A-Mod to itself) imply that - ®a N is right-exact (an exercise from last week)
and Hom(N, -) is left-exact.

2. SHEAVES

It is perhaps suprising that geometric spaces are often best understood in terms of (nice)
functions on them. For example, a differentiable manifold that is a subset of R™ can be
studied in terms of its differentiable functions. Because geometric spaces can have few
functions, a more precise version of this insight is that the structure of the space can be
well understood by undestanding all functions on all open subsets of the space. This
information is encoded in something called a sheaf. We will define sheaves and describe
many useful facts about them. Sheaves were introduced by Leray in the 1940s. The reason
for the name is from an earlier, different perspective on the definition, which we shall not
discuss.

We will begin with a motivating example to convince you that the notion is not so
foreign.

One reason sheaves are often considered slippery to work with is that they keep track
of a huge amount of information, and there are some subtle local-to-global issues. There
are also three different ways of getting a hold of them.

e in terms of open sets (the definition §4) — intuitive but in some way the least
helpful

e in terms of stalks

e in terms of a base of a topology.

Knowing which idea to use requires experience, so it is essential to do a number of exer-
cises on different aspects of sheaves in order to truly understand the concept.

3. MOTIVATING EXAMPLE: THE SHEAF OF DIFFERENTIABLE FUNCTIONS.

We will consider differentiable functions on the topological X = R™, although you may
consider a more general manifold X. The sheaf of differentiable functions on X is the data
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of all differentiable functions on all open subsets on X; we will see how to manage this
data, and observe some of its properties. To each open set U C X, we have a ring of
differentiable functions. We denote this ring O(U).

Given a differentiable function on an open set, you can restrict it to a smaller open set,
obtaining a differentiable function there. In other words, if U C V is an inclusion of open
sets, we have a map resyy : O(V) — O(U).

Take a differentiable function on a big open set, and restrict it to a medium open set,
and then restrict that to a small open set. The result is the same as if you restrict the
differentiable function on the big open set directly to the small open set. In other words,
if U — V — W, then the following diagram commutes:

O(W) ey o(V)

Next take two differentiable functions f; and f, on a big open set U, and an open cover
of U by some U;. Suppose that f; and f, agree on each of these U;. Then they must
have been the same function to begin with. In other words, if {U;}ic1 is a cover of U, and
f1,f2 € O(U), and resy y, f1 = resy,u, T2, then f; = f,. Thus I can identify functions on an
open set by looking at them on a covering by small open sets.

Finally, given the same U and cover U;, take a differentiable function on each of the U;
— a function f; on U;, a function f; on U,, and so on — and they agree on the pairwise
overlaps. Then they can be “glued together” to make one differentiable function on all of
U. In other words, given f; € O(U;) for all 1, such that resy, u;,ny; fi = resy; u,ny; fj for all
i,j, then there is some f € O(U) such that resy y, f = f; for all i.

The entire example above would have worked just as well with continuous function,
or smooth functions, or just functions. Thus all of these classes of “nice” functions share
some common properties; we will soon formalize these properties in the notion of a sheaf.

3.1. Motivating example continued: the germ of a differentiable function. Before we
do, we first point out another definition, that of the germ of a differentiable function at a
point x € X. Intuitively, it is a shred of a differentiable function at x. Germs are objects of
the form {(f,open U) : x € U, f € O(U)} modulo the relation that (f, U) ~ (g, V) if there
is some open set W C U,V containing x where f|\y = glw (or in our earlier language,
resywf = resywg). In other words, two functions that are the same in a neighborhood
of x but (but may differ elsewhere) have the same germ. We call this set of germs O,.
Notice that this forms a ring: you can add two germs, and get another germ: if you have
a function f defined on U, and a function g defined on V, then f + g is defined on U N V.
Moreover, f + g is well-defined: if f’ has the same germ as f, meaning that there is some
open set W containing x on which they agree, and g’ has the same germ as g, meaning
they agree on some open W' containing x, then f’ 4 g’ is the same function as f + g on
unvnwnw’.



Notice also that if x € U, you get a map O(U) — O,. Experts may already see that this
is secretly a colimit.

We can see that O, is a local ring as follows. Consider those germs vanishing at x, which
we denote m, C Oy. They certainly form an ideal: m, is closed under addition, and when
you multiply something vanishing at x by any other function, the result also vanishes at
x. Anything not in this ideal is invertible: given a germ of a function f not vanishing at x,
then f is non-zero near x by continuity, so 1/f is defined near x. We check that this ideal
is maximal by showing that the quotient map is a field:

0 — m = ideal of germs vanishing at x Oxfb—) f(x) R 0

3.A. EXERCISE (FOR THOSE FAMILIAR WITH DIFFERENTIABLE FUNCTIONS). Show that
this is the only maximal ideal of O,.

Note that we can interpret the value of a function at a point, or the value of a germ at
a point, as an element of the local ring modulo the maximal ideal. (We will see that this
doesn’t work for more general sheaves, but does work for things behaving like sheaves of
functions. This will be formalized in the notion of a locally ringed space, which we will see
only briefly later.)

Side fact for those with more geometric experience. Notice that m/m? is a module over
Ox/m =R, i.e. it is a real vector space. It turns out to be naturally (whatever that means)
the cotangent space to the manifold at x. This insight will prove handy later, when we
define tangent and cotangent spaces of schemes.

4. DEFINITION OF SHEAF AND PRESHEAF

We now formalize these notions, by defining presheaves and sheaves. Presheaves are
simpler to define, and notions such as kernel and cokernel are straightforward — they
are defined “open set by open set”. Sheaves are more complicated to define, and some
notions such as cokernel require more thought (and the notion of sheafification). But we
like sheaves are useful because they are in some sense geometric; you can get information
about a sheaf locally.

4.1. Definition of sheaf and presheaf on a topological space X.

To be concrete, we will define sheaves of sets. However, Sets can be replaced by any
category, and other important examples are abelian groups Ab, k-vector spaces, rings,
modules over a ring, and more. Sheaves (and presheaves) are often written in calligraphic
font, or with an underline. The fact that F is a sheaf on a topological space X is often
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written as

4.2. Definition: Presheaf. A presheaf F on a topological space X is the following data.

e To each open set U C X, we have a set 7 (U) (e.g. the set of differentiable functions).
(Notational warning: Several notations are in use, for various good reasons: F(U) =
MU, F) = H°(U, F). We will use them all.) The elements of F(U) are called sections of F
over L.

e For each inclusion U — V of open sets, we have a restriction map resyy : F(V) —
F(U) (just as we did for differentiable functions).

e The map resy y is the identity: resy,y = idz(u)-

o If U — V — W are inclusions of open sets, then the restriction maps commute, i.e.

commutes.

4.A. INTERESTING EXERCISE FOR CATEGORY-LOVERS: “A PRESHEAF IS THE SAME AS A
CONTRAVARIANT FUNCTOR”.  Given any topological space X, we can get a category,
called the “category of open sets” (discussed last week), where the objects are the open
sets and the morphisms are inclusions. Verify that the data of a presheaf is precisely the
data of a contravariant functor from the category of open sets of X to the category of sets.
(This interpretation is suprisingly useful.)

4.3. Definition: Stalks and germs. We define the stalk of a sheaf at a point in two
different ways. In essense, one will be hands-on, and the other will be categorical using
universal properties (as a colimit).

4.4. We will define the stalk of F at x to be the set of germs of a presheaf F at a point x, F,
as in the example of §3.1. Elements are {(f,open U) : x € U, f € O(U)} modulo the relation
that (f, U) ~ (g, V) if there is some open set W C U, V where resy w f = resyw g. Elements
of the stalk correspond to sections over some open set containing x. Two of these sections
are considered the same if they agree on some smaller open set.
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4.5. A useful (and better) equivalent definition of a stalk is as a colimit of all 7(U) over
all open sets U containing x:

fx:li_r>n}"(U).

(Those having thought about the category of open sets will have a warm feeling in their
stomachs.) The index category is a directed set (given any two such open sets, there is a
third such set contained in both), so these two definitions are the same. It would be good
for you to think this through. Hence by that Remark/Exercise, we can have stalks for
sheaves of sets, groups, rings, and other things for which direct limits exist for directed
sets.

Elements of the stalk F, are called germs. If x € U, and f € F(U), then the image of f in
Fi is called the germ of f.

I repeat that it is useful to think of stalks in both ways, as colimits, and also explicitly:
a germ at p has as a representative a section over an open set near p.

If F is a sheaf of rings, then F, is a ring, and ditto for rings replaced by abelian groups
(or indeed any category in which colimits exist).

(Warning: the value at a point of a section doesn’t make sense.)

4.6. Definition: Sheaf. A presheaf is a sheaf if it satisfies two more axioms, which will
use the notion of when some open sets cover another.

Identity axiom. If {U;}ic is an open cover of U, and f;,f, € F(U), and resy,y, f1 =
resu,u; fz, then f] = fz.

(A presheaf satisfying the identity axiom is sometimes called a separated presheaf, but
we will not use that notation in any essential way.)

Gluability axiom. If {Ui}ic; is a open cover of U, then given f; € F(U;) for all 1,
such that resy, u,nu; fi = resy; uny; fj for all 1,j, then there is some f € F(U) such that
resy,y, f = fi forall i.

(For experts, and scholars of the empty set only: an additional axiom sometimes in-
cluded is that F(@) is a one-element set, and in general, for a sheaf with values in a cate-
gory, F(@) is required to be the final object in the category. As pointed out by Kirsten, this
actually follows from the above definitions, assuming that the empty product is appro-
priately defined as the final object.)

Example. If U and V are disjoint, then F(U U V) = F(U) x F(V). (Here we use the fact
that F(@) is the final object.)

The stalk of a sheaf at a point is just its stalk as a presheaf; the same definition applies.

Philosophical note. In mathematics, definitions often come paired: “at most one” and “at
least one”. In this case, identity means there is at most one way to glue, and gluability
means that there is at least one way to glue.
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4.B. UNIMPORTANT EXERCISE FOR CATEGORY-LOVERS. The gluability axiom may be
interpreted as saying that F(UiciU;) is a certain limit. What is that limit?

We now give a number of examples of sheaves.

4.7. Example. (a) Verify that the examples of §3 are indeed sheaves (of differentiable
functions, or continuous functions, or smooth functions, or functions on a manifold or
R™).

(b) Show that real-valued continuous functions on (open sets of) a topological space X
form a sheaf.

4.8. Important Example: Restriction of a sheaf. Suppose F is a sheaf on X, and U C is an
open set. Define the restriction of F to U, denoted F|y, to be the collection F[y(V) = F(V)
for all V C U. Clearly this is a sheaf on U.

4.9. Important Example: skyscraper sheaf. Suppose X is a topological space, with x € X,
and S is a set. Then S, defined by F(U) = Sif x € U and F(U) = {e} if x ¢ U forms a
sheaf. Here {e} is any one-element set. (Check this if it isn’t clear to you.) This is called
a skyscraper sheaf, because the informal picture of it looks like a skyscraper at x. There
is an analogous definition for sheaves of abelian groups, except F(U) = {0} if x € U;
and for sheaves with values in a category more generally, 7(U) should be a final object.
(Warning: the notation Sy is not ideal, as the subscript of a point will also used to denote
a stalk.)

4.C. IMPORTANT EXERCISE: CONSTANT PRESHEAF AND LOCALLY CONSTANT SHEAF. (a)
Let X be a topological space, and S a set with more than one element, and define 7(U) = S
for all open sets U. Show that this forms a presheaf (with the obvious restriction maps),
and even satisfies the identity axiom. We denote this presheaf S?**. Show that this needn’t
form a sheaf. This is called the constant presheaf with values in S.

(b) Now let F(U) be the maps to S that are locally constant, i.e. for any point x in U, there
is a neighborhood of x where the function is constant. Show that this is a sheaf. (A better
description is this: endow S with the discrete topology, and let () be the continuous
maps U — S. Using this description, this follows immediately from Exercise 4.E below.)
We will call this the locally constant sheaf. This is usually called the constant sheaf. =~ We
denote this sheaf S.

4.D. UNIMPORTANT EXERCISE: MORE EXAMPLES OF PRESHEAVES THAT ARE NOT SHEAVES.
Show that the following are presheaves on C (with the usual topology), but not sheaves:
(a) bounded functions, (b) holomorphic functions admitting a holomorphic square root.

4.E. EXERCISE. Suppose Y is a topological space. Show that “continuous maps to Y”
form a sheaf of sets on X. More precisely, to each open set U of X, we associate the set of
continuous maps to Y. Show that this forms a sheaf. (Example 4.7(b), with Y = R, and
Exercise 4.C(b), with Y = S with the discrete topology, are both special cases.)
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4.F. EXERCISE. This is a fancier example of the previous exercise.

(a) Suppose we are given a continuous map f : Y — X. Show that “sections of f” form a
sheaf. More precisely, to each open set U of X, associate the set of continuous maps s to Y
such that f o s = id|y. Show that this forms a sheaf. (For those who have heard of vector
bundles, these are a good example.)

(b) (This exercise is for those who know what a topological group is. If you don’t know
what a topological group is, you might be able to guess.) Suppose that Y is a topological
group. Show that maps to Y form a sheaf of groups. (Example 4.7(b), with Y = R, is a
special case.)

4.10. * The espace étalé of a (pre)sheaf. Depending on your background, you may prefer
the following perspective on sheaves, which we will not discuss further. Suppose F is
a presheaf (e.g. a sheaf) on a topological space X. Construct a topological space Y along
with a continuous map to X as follows: as a set, Y is the disjoint union of all the stalks of
X. This also describes a natural set map Y — X. We topologize Y as follows. Each section
s of F over an open set U determines a section of Y — X over U, sending s to each of its
germs for each x € U. The topology on Y is the weakest topology such that these sections
are continuous. This is called the espace étalé of the Then the reader may wish to show
that (a) if F is a sheaf, then the sheaf of sections of Y — X (see the previous exercise 4.F(a)
can be naturally identified with the sheaf F itself. (b) Moreover, if F is a presheaf, the
sheaf of sections of Y — X is the sheafification of F (to be defined later).

4.G. IMPORTANT EXERCISE: THE DIRECT IMAGE SHEAF OR PUSHFORWARD SHEAF. Sup-
pose f : X — Y is a continuous map, and F is a sheaf on X. Then define f,F by
f.F(V) = F(f7(V)), where V is an open subset of Y. Show that f.F is a sheaf. This
is called a direct image sheaf of pushforward sheaf. More precisely, f.F is called the pushfor-
ward of F by f.

The skyscraper sheaf (Exercise 4.9) can be interpreted as follows as the pushforward of
the constant sheaf S on a one-point space x, under the morphism f : {x} — X.

Once we realize that sheaves form a category, we will see that the pushforward is a
functor from sheaves on X to sheaves on Y.

4.H. EXERCISE (PUSHFORWARD INDUCES MAPS OF STALKS). Suppose F is a sheaf of sets
(or rings or A-modules). If f(x) =y, describe the natural morphism of stalks (f,F), — Fx.
(You can use the explicit definition of stalk using representatives, §4.4, or the universal
property, §4.5. If you prefer one way, you should try the other.)

4.11. Important Example: Ringed spaces, and Ox-modules.. Suppose Ox is a sheaf of
rings on a topological space X (i.e. a sheaf on X with values in the category of Rings).
Then (X, Ox) is called a ringed space. The sheaf of rings is often denoted by Ox; this is
pronounced “oh-of-X”. This sheaf is called the structure sheaf of the ringed space. We
now define the notion of an Ox-module. The notion is analagous to one we’ve seen before:
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just as we have modules over a ring, we have Ox-modules over the structure sheaf (of
rings) Ox.

There is only one possible definition that could go with this name. An Ox-module is a
sheaf of abelian groups F with the following additional structure. For each U, F(U) is a
Ox(U)-module. Furthermore, this structure should behave well with respect to restriction
maps. This means the following. If U C V, then

(3) Ox(V) x F(V) =28 7 (V)

lresvyu l resy,u

Ox(U) x F(U) % 7 (1)

commutes. (You should convince yourself that  haven’t forgotten anything.)

Recall that the notion of A-module generalizes the notion of abelian group, because
an abelian group is the same thing as a Z-module. Similarly, the notion of Ox-module
generalizes the notion of sheaf of abelian groups, because the latter is the same thing as
a Z-module, where Z is the locally constant sheaf with values in Z. Hence when we are
proving things about Ox-modules, we are also proving things about sheaves of abelian
groups.

4.12. For those who know about vector bundles. The motivating example of Ox-modules is
the sheaf of sections of a vector bundle. If X is a differentiable manifold, and t: V — X
is a vector bundle over X, then the sheaf of differentiable sections ¢ : X — V is an Ox-
module. Indeed, given a section s of 7w over an open subset U C X, and a function f on
U, we can multiply s by f to get a new section fs of w over U. Moreover, if V is a smaller
subset, then we could multiply f by s and then restrict to V, or we could restrict both f
and s to V and then multiply, and we would get the same answer. That is precisely the
commutativity of (3).

Next day: We know about presheaves and sheaves, so we naturally ask about mor-
phisms between presheaves and morphisms of presheaves.

E-mail address: vakil@math.stanford.edu
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