FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 2
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First, some bureaucratic details.

e We will move to 380-F for Monday’s class.

e Please sign up on this sign-up sheet. I'm going to use it to announce important
things like room changes and problem sets.

e Problem sets will be due on Fridays, and I'll try to give them out at least a week in
advance. The first set will be out by tomorrow, on the class website. I'll announce
it by e-mail. The problems will all be from the notes, and almost all from the class.

e Jarod will be hosting problem sessions on Wednesdays from 5-6 pm, starting next
week, at a location to be announced later. This is a great chance to ask him lots of
questions, and to hear interesting questions from other people.

If you weren’t here last day, you can see the notes on-line. The main warning is that
this is going to be a hard class, and you should take it only if you really want to, and also
that you should ask me lots of questions, both during class and out of class. And you
should do lots of problems.

1. WHERE WE WERE

Last day, we begin by discussing some category theory. Keep in mind that our mo-
tivation in learning this is to formalize what we already know, so we can use it in new
contexts. Today we should finish with category theory, and we may even begin to discuss
sheaves.

The most important notion from last day was the fact that universal properties essen-
tially determine things up to unique isomorphism.
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For example, in any category, the product of two objects M and N is an object P, along
withmapsp: P — Mand~v: P — N, such that for any other object P’ with maps n’ : P’ - M
andv': P" — N, these maps must factor uniquely through P:

1)

Thus a product is a diagram

and not just a set P, although the maps p and v are often left implicit.

Another good example of a universal property construction is the notion of a tensor
product of A-modules. It is an A-module T along with an A-bilinear mapt: M x N = T,
such that any other such map factors through t: given any other t': M x N — T’, there is
auniquemap f: T — T’ such thatt’ =fot.

t

M x N

t/
i

T/

T

I gave you the exercise of showing that (T,t : M x N — T) (should it exist) is unique
up to unique isomorphism. You should really do this, because I'm going to use universal
property arguments a whole lot. If you know how to do one of these arguments, you'll
know how to do them all.

I then briefly gave other examples: initial objects, final objects, and zero-objects (=ini-
tial+final).

2. YONEDA’S LEMMA

2.1. Yoneda’s Lemma.

Suppose A is an object of category C. For any object C € C, we have a set of morphisms
Mor(C, A). If we have a morphism f : B — C, we get a map of sets
@) Mor(C, A) — Mor(B, A),

by composition: given a map from C to A, we get a map from B to A by precomposing
with f. Hence this gives a contravariant functor h* : C — Sets. Yoneda’s Lemma states
that the functor h* determines A up to unique isomorphism. More precisely:
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2.2. Yoneda’s lemma. — Given two objects A and A’, and bijections
3) ic: Mor(C,A) — Mor(C,A’)

that commute with the maps (2), then the ic must be induced from a unique isomorphism
A— A

2.A. IMPORTANT EXERCISE (THAT EVERYONE SHOULD DO ONCE IN THEIR LIFE). Prove
this. (Hint: This sounds hard, but it really is not. This statement is so general that there are
really only a couple of things that you could possibly try. For example, if you're hoping to
tind an isomorphism A — A’, where will you find it? Well, you're looking for an element
Mor(A, A’). So just plug in C = A to (3), and see where the identity goes. You'll quickly
tind the desired morphism; show that it is an isomorphism, then show that it is unique.)

2.3. Remark. There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A.

2.4. Remark: the full statement of Yoneda’s Lemma. It won’t matter so much for us (so I didn’t
say it in class), but it is useful to know the full statement of Yoneda’s Lemma. A covariant
tunctor F : A — Bis faithful if for all A, A’ € A, the map Mor 4(A,A’) — Morg(F(A), F(A'))
is injective, and full if it is surjective. A functor that is full and faithful is fully faithful. A
subcategory i : A — B is a full subcategory if i is full. If C is a category, consider the
contravariant functor

h:C — Sets®

where the category on the right is the “functor category” where the objects are contravari-
ant functors C — Sets. (What are the morphisms in this category? You will rediscover the
notion of natural transformation of functors.) This functor h sends A to h”*. Yoneda’s lemma
states that this is a fully faithful functor, called the Yoneda embedding.

2.5. Example: Fibered products. (This notion of fibered product will be important for us
later.) Suppose we have morphisms X, Y — Z (in any category). Then the fibered product is
an object Xx 7Y along with morphisms to X and Y, where the two compositions Xx ;Y — Z
agree, such that given any other object W with maps to X and Y (whose compositions to
Z agree), these maps factor through some unique W — X xz Y:

Y%
lg
L .7

By a universal property argument, if it exists, it is unique up to unique isomorphism.
(You should think this through until it is clear to you.) Thus the use of the phrase “the
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tibered product” (rather than “a fibered product”) is reasonable, and we should reason-
ably be allowed to give it the name X x;z Y. We know what maps to it are: they are
precisely maps to X and maps to Y that agree on maps to Z.

The right way to interpret this is first to think about what it means in the category of
sets.

2.B. EXERCISE. Show that in Sets,
XxzY={xeXyecY):f(x) =gy

More precisely, describe a natural isomorphism between the left and right sides. (This
will help you build intuition for fibered products.)

2.C. EXERCISE. If X is a topological space, show that fibered products always exist in
the category of open sets of X, by describing what a fibered product is. (Hint: it has a
one-word description.)

2.D. EXERCISE. If Z is the final object in a category C, and X|Y € C, then “X xz Y =
X x Y”: “the” fibered product over Z is canonically isomorphic to “the” product. (This is
an exercise about unwinding the definition.)

2.E. UNIMPORTANT EXERCISE.  Show that in the category Ab of abelian groups, the
kernel K of f : A — B can be interpreted as a fibered product:

K—A

|

0——B
We make a definition to set up an exercise.

2.6. Definition. A morphism f : X — Y is a monomorphism if any two morphisms
g1,92 : Z — Xsuch that f o g = f o g must satisfy g1 = g». This a generalization of of
an injection of sets. In other words, there is a unique way of filling in the dotted arrow so
that the following diagram commutes.

Z

Sl\
v

X ——~.

Intuitively, it is the categorical version of an injective map, and indeed this notion gener-
alizes the familiar notion of injective maps of sets.

2.7. Remark. The notion of an epimorphism is “dual” to this diagramatic definition,
where all the arrows are reversed. This concept will not be central for us, although it is
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necessary for the definition of an abelian category. Intuitively, it is the categorical version
of a surjective map.

2.F. EXERCISE. Prove a morphism is a monomorphism if and only if the natural mor-
phism X — X xy X is an isomorphism. (What is this natural morphism?!) We may then
take this as the definition of monomorphism. (Monomorphisms aren’t very central to
future discussions, although they will come up again. This exercise is just good practice.)

2.G. EXERCISE. Suppose X — Y is a monomorphism, and W, Z — X are two morphisms.
Show that W xx Z and W Xy Z are canonically isomorphic. We will use this later when
talking about fibered products. (Hint: for any object V, give a natural bijection between
maps from V to the first and maps from V to the second.)

2.H. EXERCISE. Given X — Y — Z, show that there is a natural morphism X xy X —
X x z X, assuming that both fibered products exist. (This is trivial once you figure out what
it is saying. The point of this exercise is to see why it is trivial.)

2.I. UNIMPORTANT EXERCISE. Define coproduct in a category by reversing all the arrows
in the definition of product. Show that coproduct for Sets is disjoint union.

2.J. EXERCISE. Suppose C — A, B are two ring morphisms, so in particular A and B are C-
modules. Define a ring structure A ® ¢ B with multiplication given by (a; ®b;)(a,®b,) =
(a1az) ® (byby). There is a natural morphism A — A ®¢ B given by a — (a, 1). (Warning:
This is not necessarily an inclusion.) Similarly, there is a natural morphism B — A ®c¢ B.
Show that this gives a coproduct on rings, i.e. that

A@CB<—B
A C

satisfies the universal property of coproduct.

2.K. IMPORTANT EXERCISE FOR LATER. We continue the notation of the previous exer-
cise. Let I be an ideal of A. Let I€ be the extension of I to A ®¢ B. (These are the elements
> ;1@ b; where {j € 1, b € B.) Show that there is a natural isomorphism

(A/T) ®c B = (A ®cB)/I".
(Hint: consider I - A — A/I — 0, and use the right exactness of ®¢B.)

Hence the natural morphism B — B ®¢ (A/I) is a surjection. As an application, we can
compute tensor products of finitely generated k algebras over k. For example, we have a
canonical isomorphism

kbx1, %)/ (x7 — x2) @« kly1,y21/(y3 +v3) = klx1,x2, 91,21/ (x] —x2,U3 +v3).
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3. LIMITS AND COLIMITS

Limits and colimits provide two important examples defined by universal properties.
They generalize a number of familiar constructions. I'll give the definition first, and then
show you why it is familiar. (For example, we’ll see that the p-adics are a limit, and
fractions are a colimit.)

3.1. Limits. We say that a category is an index category (a technical condition intended
only for experts) the objects form a set. An example is a partially ordered set (in which
there in particular there is only one morphism between objects), and indeed all of our ex-
amples will be partially ordered sets. Suppose 7 is any index category (such as a partially
ordered set), and C is any category. Then a functor F : Z — C (i.e. with an object A; € C for
each element i € 7, and appropriate commuting morphisms dictated by 7) is said to be a
diagram indexed by 7. Commuting squares can be interpreted in this way.

Then the limit is an object lim_A; of C along with morphisms f; : lim_A; such that if
m:1i— jisamorphism in 7, then

yinz A

£
£ l \
F(m)

i j

commutes, and this object and maps to each A; is universal (final) respect to this property.
(The limit is sometimes called the inverse limit or projective limit.) By the usual universal
property argument, if the limit exists, it is unique up to unique isomorphism.

3.2. Examples: products. For example, if 7 is the partially ordered set
[ J
-

we obtain the fibered product.

If7is

we obtain the product.

If 7 is a set (i.e. the only morphisms are the identity maps), then the limit is called the
product of the A;, and is denoted [ [, Ai. The special case where 7 has two elements is the
example of the previous paragraph.

3.3. Example: the p-adics. The p-adic numbers, Z,, are often described informally (and
somewhat unnaturally) as being of the form Z, = ? + ?p + ?p? + ?p> + - - -. They are an
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example of a limit in the category of rings:

Ly

N

——=1L/p> —=ZL/p* —=1L/p

Limits do not always exist. For example, there is no limit of --- — Z/p® — Z/p* —
Z/p — 0in the category of finite rings.

However, you can often easily check that limits exist if the elements of your category
can be described as sets with additional structure, and arbitrary products exist (respecting
the set structure).

3.A. EXERCISE. Show that in the category Sets,

{(ai)ier € [ JA:: F(m)(as) = q; forall [m : i — j] € Mor(Z)},

along with the projection maps to each A, is the limit lim  A;.

This clearly also works in the category Mod A of A-modules, and its specializations such
as Vecy and Ab.

From this point of view, 2 + 3p + 2p% + --- € Z, can be understood as the sequence
(2,2+3p,2+3p +2p?,...).

3.4. Colimits. More immediately relevant for us will be the dual of the notion of
inverse limit. We just flip all the arrows in that definition, and get the notion of a direct
limit. Again, if it exists, it is unique up to unique isomorphism. (The colimit is sometimes
called the direct limit or injective limit.)

A limit maps to all the objects in the big commutative diagram indexed by Z. A colimit
has a map from all the objects.

Even though we have just flipped the arrows, somehow colimits behave quite differ-
ently from limits.

3.5. Example. The ring 5-*°Z of rational numbers whose denominators are powers of 5 is
a colimit lim 571Z. More precisely, 57 is the colimit of

Z_>5712_>5722_>...

The colimit over an index set I is called the coproduct, denoted [ [; Ai, and is the dual
notion to the product.



3.B. EXERCISE. (a) Interpret the statement “Q = h_Irg %Z”. (b) Interpret the union of some
subsets of a given set as a colimit. (Dually, the intersection can be interpreted as a limit.)

Colimits always exist in the category of sets:

3.C. EXERCISE. Consider the set {(i € Z, a; € A;)} modulo the equivalence generated by:
if m:1— jisanarrow in Z, then (i, a;) ~ (j, F(m)(ai)). Show that this set, along with the
obvious maps from each Aj;, is the colimit.

Thus in Example 3.5, each element of the direct limit is an element of something up-
stairs, but you can’t say in advance what it is an element of. For example, 17/125 is an
element of the 573Z (or 57%Z, or later ones), but not 5%Z.

3.6. Example: colimits of A-modules. A variant of this construction works in a number of
categories that can be interpreted as sets with additional structure (such as abelian groups,
A-modules, groups, etc.). While in the case of sets, the direct limit is a quotient object of
the direct sum (= disjoint union) of the A;, in the case of A-modules (for example), the
direct limit is a quotient object of the direct sum of rings. thus the direct limit is ©A;
modulo a; — F(m)(a;) for every m:1 — jinZ.

3.D. EXERCISE. Verify that the A-module described above is indeed the colimit.

3.7. Summary. One useful thing to informally keep in mind is the following. In a
category where the objects are “set-like”, an element of a colimit can be thought of (“has a
representative that is”) an element of a single object in the diagram. And an element of a
limit can be thought of as an element in each object in the diagram, that are “compatible”.
Even though the definitions of limit and colimit are the same, just with arrows reversed,
these interpretations are quite different.

4. ADJOINTS

Here is another example of a construction closely related to universal properties. We
now define adjoint functors. Two covariant functors F : A — Band G : B — A are adjoint
if there is a natural bijection for all A € Aand B € B

Tas : Mors(F(A), B) — Mor (A, G(B)).

In this instance, let me make precise what “natural” means. For all f : A — A’ in A, we
require

(4) Morg(F(A'), B) —~ Morg(F(A), B)
Mor4(A’, G(B)) ——= Mor4(A, G(B))
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to commute, and for all g : B — B’ in B we want a similar commutative diagram to
commute. (Here f* is the map induced by f : A — A’, and Ff* is the map induced by
Ff:L(A) = L(A’).)

4.A. EXERCISE. Write down what this diagram should be. (Hint: do it by extending
diagram (4) above.)

You've actually seen this before, in linear algebra, when you have seen adjoint matrices.
Here is another example.

4.B. EXERCISE. Suppose M, N, and P are A-modules. Describe a natural bijection
Mora(M ®@a N, P) = Mora(M, Mora(N, P)). (Hint: try to use the universal property.) If
you wanted, you could check that - ©4 N and Mora (N, -) are adjoint functors. (Checking
adjointness is never any fun!)

4.1. Example: groupification. Here is another motivating example: getting an abelian
group from an abelian semigroup. An abelian semigroup is just like a group, except
you don’t require an inverse. One example is the non-negative integers 0, 1,2, ... under
addition. Another is the positive integers under multiplication 1,2, .... From an abelian
semigroup, you can create an abelian group, and this could be called groupification. Here
is a formalization of that notion. If S is a semigroup, then its groupification is a map of
semigroups 7t : S — G such that G is a group, and any other map of semigroups from S to
a group G' factors uniquely through G.

4.C. EXERCISE. Define groupification H from the category of abelian semigroups to the
category of abelian groups. (One possibility of a construction: given an abelian semigroup
S, the elements of its groupification H(S) are (a, b), which you may think of as a —b, with
the equivalence that (a,b) ~ (c,d) if a + d = b + c. Describe addition in this group,
and show that it satisfies the properties of an abelian group. Describe the semigroup map
S — H(S).) Let F be the forgetful morphism from the category of abelian groups Ab to
the category of abelian semigroups. Show that H is left-adjoint to F.

(Here is the general idea for experts: We have a full subcategory of a category. We
want to “project” from the category to the subcategory. We have Mor aegory (S, H) =
Morgubeategory (G, H) automatically; thus we are describing the left adjoint to the forgetful
functor. How the argument worked: we constructed something which was in the small
category, which automatically satisfies the universal property.)

4.D. EXERCISE. Show that if a semigroup is already a group then groupification is the
identity morphism, by the universal property.
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4.E. EXERCISE.  The purpose of this exercise is to give you some practice with “ad-
joints of forgetful functors”, the means by which we get groups from semigroups, and
sheaves from presheaves. Suppose A is a ring, and S is a multiplicative subset. Then
S~TA-modules are a fully faithful subcategory of the category of A-modules (meaning:
the objects of the first category are a subset of the objects of the second; and the mor-
phisms between any two objects of the second that are secretly objects of the first are just
the morphisms from the first). Then M — S~'M satisfies a universal property. Figure
out what the universal property is, and check that it holds. In other words, describe the
universal property enjoyed by M — S™'M, and prove that it holds.

(Here is the larger story. Let S7'A-Mod be the category of S~'A-modules, and A-Mod
be the category of A-modules. Every S~'A-module is an A-module, and this is an injective
map, so we have a (covariant) forgetful functor F : S7'A-Mod — A-Mod. In fact this is a
fully faithful functor: it is injective on objects, and the morphisms between any two S~ A-
modules as A-modules are just the same when they are considered as S~'A-modules. Then
there is a functor G : A-Mod — S~'A-Mod, which might reasonably be called “localization
with respect to S”, which is left-adjoint to the forgetful functor. Translation: If M is an
A-module, and N is an S7'A-module, then Mor(GM, N) (morphisms as S~'A-modules,
which is incidentally the same as morphisms as A-modules) are in natural bijection with
Mor(M, FN) (morphisms as A-modules).)

4.2. Useful comment for experts. Here is one last useful comment intended only for peo-
ple who have seen adjoints before. If (F, G) is an adjoint pair of functors, then F preserves
all colimits, and G preserves all limits.

E-mail address: vakil@math.stanford.edu
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