
FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 1

RAVI VAKIL

This set is due Monday, October 17. It covers classes 1 and 2. Hand in five of these
problems. If you are pressed for time, try more A problems. If you are ambitious, try
more B problems.

I intend there to be weekly problem sets, to be given out each Monday and handed in
the following Monday (although this set is an exception). If you are taking this course for
a grade, you’ll have to hand in all but one of the sets. These problems are not intended
to be (too) onerous, but they are intended to help you get practical experience with ideas
that may be new to you. Even if you are not taking the course for a grade, I strongly
encourage you to try these problems, and if you are handing in problems, I encourage you
to try more than the minimum number. Choose problems that stretch your knowledge,
and not problems that you already know how to do. Feedback on the problems would be
appreciated.

You are encouraged to talk to each other about the problems. (Write up your solutions
individually.) You are also encouraged to talk to me about them. Ideally, you should find
out who did problems that you didn’t do.

I will be away Wednesday, October 5 until Thursday, October 13. The next class after Monday,
October 3 will be Friday, October 14. The week after we will meet Monday, Wednesday, and
Friday (Oct. 17, 19, 21). Then we will be only one class behind.

A1. A category in which each morphism is an isomorphism is called a groupoid. A per-
verse definition of a group is: a groupoid with one element. Make sense of this. (The
notion of “groupoid” isn’t important for this course. The point of this exercise is to give
you some practice with categories, by relating them to an object you know well.)

A2 (if you haven’t seen tensor products before). Calculate Z/10 ⊗Z Z/12. (The point of
this exercise is to give you a very little hands-on practice with tensor products.)

A3. Interpret fibered product in the category of sets: If we are given maps from sets X and
Y to the set Z, interpret X ×Z Y. (This will help you build intuition about this concept.)

A4. A morphism f : X → Y is said to be a a monomorphism if any two morphisms
g1, g2 : Z → X such that f◦g1 = f◦g2 must satisfy g1 = g2. This is the generalization of an
injection of sets. Suppose X → Y is a monomorphism, and W, Z → X are two morphisms.
Show that W ×X Z and W ×Y Z are canonically isomorphic. (We will use this later when
talking about fibered products.)
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A5. Given X → Y → Z, show that there is a natural morphism X×Y X → X×ZX, assuming
these fibered products exist. (This is trivial once you figure out what it is saying. The
point of this exercise is to see why it is trivial.)

A6. Define coproduct in a category by reversing all the arrows in the definition of product.
Show that coproduct for sets is disjoint union.

A7. If Z is the final object in a category C, and X, Y ∈ C, then “X ×Z Y = X × Y” (“the”
fibered product over Z is canonically isomorphic to “the” product). (This is an exercise
about unwinding the definition.)

A8 (“A presheaf is the same as a contravariant functor”). Given any topological space
X, we can get a category, which I will call the “category of open sets”. The objects are the
open sets. The morphisms are the inclusions U ↪→ V . (What is the initial object? What is
the final object?) Verify that the data of a presheaf is precisely the data of a contravariant
functor from the category of open sets of X to the category of sets, plus the final object
axiom, that there is one section over ∅. (This exercise is intended for people wanting
practice with categories.)

A9. (a) Let X be a topological space, and S a set with more than one element, and define
F(U) = S for all open sets U. Show that this forms a presheaf (with the obvious restriction
maps), and even satisfies the identity axiom. Show that this needn’t form a sheaf. (Here
we need the axiom that F(∅) must be the final object, not S. Without this patch, the
constant presheaf is a sheaf.) This is called the constant presheaf with values in S. We will
denote this presheaf Spre.
(b) Now let F(U) be the maps to S that are locally constant, i.e. for any point x in U, there
is a neighborhood of x where the function is constant. (Better description is this: endow
S with the discrete topology, and let F(U) be the continuous maps U → S.) Show that
this is a sheaf. (Here we need F(∅) to be the final object again.) We will try to call this the
locally constant sheaf. (In the real world, this is called the constant sheaf. I don’t understand
why.) We will denote this sheaf S.

B1 (Yoneda’s lemma). Pick an object in your favorite category A ∈ C. For any object
C ∈ C, we have a set of morphisms Mor(C, A). If we have a morphism f : B → C, we get
a map of sets

(1) Mor(C, A) → Mor(B, A),

just by composition: given a map from C to A, we immediately get a map from B to A

by precomposing with f. Yoneda’s lemma, or at least part of it, says that this functor
determines A up to unique isomorphism. Translation: If we have two objects A and A ′,
and isomorphisms

(2) iC : Mor(C, A) → Mor(C, A ′)

that commute with the maps (1), then the iC must be induced from a unique isomorphism
A → A ′. Prove this.

B2. Prove that a morphism is a monomorphism if and only if the natural morphism X →
X ×Y X is an isomorphism. (We may then take this as the definition of monomorphism.)
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(Monomorphisms aren’t very central to future discussions, although they will come up
again. This exercise is just good practice.)

B3 (tensor product). (This will be important later!) Suppose T → R, S are two ring mor-
phisms. Let I be an ideal of R. Let Ie be the extension of I to R⊗T S. These are the elements∑

j ij ⊗ sj where ij ∈ I, sj ∈ S. Show that there is a natural isomorphism

R/I ⊗T S ∼= (R ⊗T S)/Ie.

Hence the natural morphism R ⊗T S → R/I ⊗T S is a surjection. As an application, we
can compute tensor products of finitely generated k algebras over k. For example,

k[x1, x2]/(x2
1 − x2) ⊗k k[y1, y2]/(y3

1 + y3
2)

∼= k[x1, x2, y1, y2]/(x2
1 − x2, y

3
1 + y3

2).

B4 (direct limits). We say a partially ordered set I is a directed set if for i, j ∈ I, there is
some k ∈ I with i, j ≤ k. In this exercise, you will show that the direct limit of any system
of A-modules indexed by I exists, by constructing it. Say the system is given by Mi (i ∈ I),
and fij : Mi → Mj (i ≤ j in I). Let M = ⊕iMi, where each Mi is identified with its image
in M, and let R be the submodule generated by all elements of the form mi−fij(mi) where
mi ∈ Mi and i ≤ j. Show that M/R (with the projection maps from the Mi) is lim→ Mi.
You will notice that the same argument works in other interesting categories, such as:
sets; groups; and abelian groups. (This example came up in interpreting/defining stalks
as direct limits.)

B5 (practice with universal properties). The purpose of this exercise is to give you some
practice with “adjoints of forgetful functors”, the means by which we get groups from
semigroups, and sheaves from presheaves. Suppose R is a ring, and S is a multiplicative
subset. Then S−1R-modules are a fully faithful subcategory of the category of R-modules
(meaning: the objects of the first category are a subset of the objects of the second; and the
morphisms between any two objects of the second that are secretly objects of the first are
just the morphisms from the first). Then M → S−1M satisfies a universal property. Figure
out what the universal property is, and check that it holds. In other words, describe the
universal property enjoyed by M → S−1M, and prove that it holds.

(Here is the larger story. Let S−1R-Mod be the category of S−1R-modules, and R-Mod be
the category of R-modules. Every S−1R-module is an R-module, so we have a (covariant)
forgetful functor F : S−1R-Mod → R-Mod. In fact this is a fully faithful functor: it is
injective on objects, and the morphisms between any two S−1R-modules as R-modules are
just the same when they are considered as S−1R-modules. Then there is a functor G : R-
Mod → S−1R-Mod, which might reasonably be called “localization with respect to S”,
which is left-adjoint to the forgetful functor. Translation: If A is an R-module, and B is an
S−1R-module, then Hom(GA, B) (morphisms as S−1R-modules, which is incidentally the
same as morphisms as R-modules) are in natural bijection with Hom(A, FB) (morphisms
as R-modules).)

B6 (good examples of sheaves). Suppose Y is a topological space. Show that “continuous
maps to Y” form a sheaf of sets on X. More precisely, to each open set U of X, we associate
the set of continuous maps to Y. Show that this forms a sheaf.
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(b) Suppose we are given a continuous map f : Y → X. Show that “sections of f” form
a sheaf. More precisely, to each open set U of X, associate the set of continuous maps
s to Y such that f ◦ s = id|U. Show that this forms a sheaf. (A classical construction of
sheaves in general is to interpret them in precisely this way. See Serre’s revolutionary
article Faisceaux Algébriques Cohérents.)

B7 (an important construction, the pushforward sheaf). (a) Suppose f : X → Y is a
continuous map, and F is a sheaf on X. Then define f∗F by f∗F(V) = F(f−1(V)), where
V is an open subset of Y. Show that f∗F is a sheaf. This is called a pushforward sheaf. More
precisely, f∗F is called the pushforward of F by f.
(b) Assume F is a sheaf of sets (or rings or R-modules), so stalks exist. If f(x) = y, describe
the natural morphism of stalks (f∗F)y → Fx.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 2

This set is due Monday, October 24. It covers classes 3 and 4. Read all of these prob-
lems, and hand in six solutions. The problems are arranged roughly in “chronological
order”, not by difficulty. Try to solve problems on a range of topics. If you are pressed for
time, try more straightforward problems. If you are ambitious, push the envelope a bit.
You are encouraged to talk to each other about the problems. (Write up your solutions
individually.) You are also encouraged to talk to me about them. Ideally, you should find
out who did problems that you didn’t do.

1. Suppose

0
d0

// A1
d1

// · · ·
dn−1

// An dn
// // 0

is a complex of vector spaces (often called A• for short), i.e. di ◦ di−1 = 0. Show that∑
(−1)i dim Ai =

∑
(−1)ihi(A•). (Recall that hi(A•) = dim ker(di)/ im(di−1).) In particu-

lar, if A• is exact, then
∑

(−1)i dim Ai = 0. (If you haven’t dealt much with cohomology,
this will give you some practice. If you have, you shouldn’t do this problem.)

Problems on presheaves and sheaves

2. Suppose φ : F → G is a morphism of presheaves of abelian groups or OX-modules. If
H is defined by the collection of data H(U) = G(U)/φ(F(U)) for all open U, show that H
is a presheaf, and show that it is a cokernel in the category of presheaves. (I stated this as
a fact in class, but you aren’t allowed to appeal to authority.)

3. Suppose that 0 → F1 → F2 → · · · → Fn → 0 is an exact sequence of presheaves of groups
or OX-modules. Show that 0 → F1(U) → F2(U) → · · · → Fn(U) → 0 is also an exact
sequence for all U.

4. (This problem sounds more confusing than it is!) Show that the presheaf kernel of a
morphism of sheaves (of abelian groups, or OX-modules) is also sheaf. Show that it is the
sheaf kernel (a kernel in the category of sheaves) as well. (This is one reason that kernels
are easier than cokernels.)

5. The presheaf cokernel was defined in problem 2. Show that the sheafification of the
presheaf cokernel is in fact the sheaf cokernel, by verifying that it satisfies the universal
property.

6. Suppose f : F → G is a morphism of sheaves of abelian groups or OX-modules. Let im f

be the sheafification of the “presheaf image”. Show that there are natural isomorphisms
im f ∼= F/ ker f and coker f ∼= G/ im f. (This problem shows that this construction deserves
to be called the “image”.)

Date: Monday, October 17, 2005. (Corrected version October 20, 2005.)
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7. Suppose OX is a sheaf of rings on X. Define (categorically) what we should mean by
tensor product of two presheaves or sheaves of OX-modules. Give an explicit construc-
tion, and show that it satisfies your categorical definition. Hint: take the “presheaf tensor
product” — which needs to be defined — and sheafify. (This is admittedly a vague prob-
lem. If it is confusing, just ask. But it is good practice to turn your rough intuition into
precise statements.)

8. Suppose 0 → F → G → H is an exact sequence of sheaves (of abelian groups) on X. If
f : X → Y is a continuous map, show that

0 → f∗F → f∗G → f∗H

is exact. Translation: pushforward is a left-exact functor. (The case of left-exactness of the
global section functor can be interpreted as a special case of this, in the case where Y is a
point.) Show that it needn’t be exact on the right, i.e. that f∗G → f∗H needn’t be surjective
(= an epimorphism). (Hint: see the previous parenthetical comment, and think of your
favorite short exact sequence of sheaves.)

The next three problems present some new concepts: gluing sheaves, sheaf homomor-
phisms, and flasque sheaves. I will feel comfortable using these concepts in class.

9. Suppose X = ∪Ui is an open cover of X, and we have sheaves Fi on Ui along with
isomorphisms φij : Fi|Ui∩Uj

→ Fj|Ui∩Uj
that agree on triple overlaps (i.e. φij ◦φjk = φij on

Ui ∩Uj ∩Uk). Show that these sheaves can be glued together into a unique sheaf F on X,
such that Fi = F |Ui

, and the isomorphisms over Ui ∩ Uj are the obvious ones. (Thus we
can “glue sheaves together”, using limited patching information.)

10. Suppose F and G are two sheaves on X. Let Hom(F ,G) be the collection of data

Hom(F ,G)(U) := Hom(F |U,G|U).

Show that this is a sheaf. (This is called the “sheaf Hom”. If F and G are sheaves of
sets, Hom(F ,G) is a sheaf of sets. If G is a sheaf of abelian groups, then Hom(F ,G) is a
sheaf of abelian groups.) I’ve decided to call this Hom rather than Hom because of the
convention that “underlining often denotes sheaf”. (Of course, the calligraphic font also
often denotes sheaf.)

11. A sheaf F is said to be flasque if for every U ⊂ V , the restriction map resV,U : F(V) →
F(U) is surjective. In other words, every section over U extends to a section over V . This
is a very strong condition, but it comes up surprisingly often.
(a) Show that 0 → F ′ → F → F ′′ → 0 is exact, and F ′ and F ′′ are flasque, then so is F .
(b) Suppose f : X → Y is a continuous map, and F is a flasque sheaf on X. Show that f∗F

is a flasque sheaf on Y.
(If 0 → F ′ → F → F ′′ → 0 is exact, and F ′ is flasque, then 0 → F ′(U) → F(U) →
F ′′(U) → 0 is exact, i.e. the global section functor is exact here, even on the right. Simi-
larly, for any continuous map f : X → Y, 0 → f∗F

′ → f∗F → f∗F
′′ → 0 is exact. I haven’t

thought about how hard this is yet, so I haven’t made this part of the exercise. But it is
good to know, and gives a reason to like flasque sheaves.)

Understanding sheaves via stalks
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12. Prove that a section of a sheaf is determined by its germs, i.e.

F(U) →
∐

x∈U

Fx

is injective. Hint: you won’t use the gluability axiom. So this is true of morphisms of
“separated presheaves”. (This exercise is important, as you’ve seen!) Corollary: If a sheaf
has all stalks 0, then it is the 0-sheaf.

13. Show that a morphism of sheaves on a topological space X induces a morphism of
stalks. More precisely, if φ : F → G is a morphism of sheaves on X, describe a natural
map φx : Fx → Gx.

14. Show that morphisms of sheaves are determined by morphisms of stalks. Hint # 1:
you won’t use the gluability axiom. Hint # 2: study the following diagram.

(1) F(U) //

_�

��

G(U)
_�

��∏
x∈UFx

//
∏

x∈UGx

15. Show that a morphism of sheaves is an isomorphism if and only if it induces an
isomorphism of all stalks. Hint: Use (1). Injectivity of F(U) → G(U) uses the previous
exercise. Surjectivity requires gluability. (I largely did this in class, so you should try this
mainly if you want to make sure you are clear on the concept.)

16. Show that problems 12, 14, and 15 are false for presheaves in general. (Hint: take a
2-point space with the discrete topology, i.e. every subset is open.)

17. Show that for any morphism of presheaves φ : F → G, we get a natural induced
morphism of sheaves φsh : Fsh → Gsh.

18. Show that the stalks of Fsh are the same as (“are naturally isomorphic to”) the stalks
of F . Hint: Use the concrete description of the stalks.

Sheaves on a nice base

19. Suppose {Bi} is a “nice base” for the topology of X.
(a) Verify that a morphism of sheaves is determined by the induced morphism of sheaves
on the base.
(b) Show that a morphism of sheaves on the base (i.e. such that the diagram

Γ(Bi,F) //

��

Γ(Bi,G)

��

Γ(Bj,F) // Γ(Bj,G)

commutes for all Bj ↪→ Bi) gives a morphism of the induced sheaves.

The inverse image sheaf
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Suppose we have a continuous map f : X → Y. If F is a sheaf on X, we have defined the
pushforward f∗F , which is a sheaf on Y. There is also a notion of inverse image. If G is a
sheaf on Y, then there is a sheaf on X, denoted f−1G. This gives a covariant functor from
sheaves on Y to sheaves on X. For example, if we have a morphism of sheaves on Y, we’ll
get an induced morphism of their inverse image sheaves on X.

Here is a concrete but unmotivated (and frankly unpleasant) definition: temporarily
define f−1Gpre(U) = lim→V⊃f(U)G(V). (Recall explicit description of direct limit: sections
are sections on open sets containing f(U), with an equivalence relation.)

20. Show that this defines a presheaf on X.

Now define the inverse image sheaf f−1G := (f−1Gpre)sh.

21. Show that the stalks of f−1G are the same as the stalks of G. More precisely, if f(x) = y,
describe a natural isomorphism Gy

∼= (f−1G)x. (Hint: use the concrete description of the
stalk, as a direct limit.)

22. Show that f−1 is an exact functor from sheaves of abelian groups on Y to sheaves
of abelian groups on X. (Hint: exactness can be checked on stalks, and by the previous
exercise, stalks are the same.) The identical argument will show that f−1 is an exact functor
from sheaves of OY-modules on Y to sheaves of f−1OY-modules on X, but don’t bother
writing that down.

Here is a categorical definition of inverse image: it is left-adjoint to f∗. More precisely,
suppose f : X → Y is a continuous map (= morphism) of topological spaces, and F is
a sheaf of sets on X, and G is a sheaf of sets on Y. There is a natural bijection between
Hom(f−1(G),F) and Hom(G, f∗F). (The same argument will apply for sheaves of abelian
groups etc.)

23. Show that the explicit definition of inverse image satisfies this universal property.
(Just describe the bijection. One should also check that this bijection is natural, i.e. that
for any F1 → F2, the diagram

Hom(f−1(G),F2) //

��

Hom(G, f∗F2)

��

Hom(f−1(G),F1) // Hom(G, f∗F1)

commutes, and something similar for the “left argument”, but don’t worry about that.)
This problem requires some elbow grease.

A small exercise on a small affine scheme

24. Describe the set Spec k[x]/x2. This seems like a very boring example, but it will grow
up to be very important indeed! (This is not hard.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 3

RAVI VAKIL

This set is due Monday, October 31. It covers classes 5, 6, and 7. Read all of these
problems, and hand in six solutions. Try to solve problems on a range of topics. If you
are pressed for time, try more straightforward problems. If you are ambitious, push the
envelope a bit. You are encouraged to talk to each other about the problems. (Write up
your solutions individually.) You are also encouraged to talk to me about them. Ideally,
you should find out who did problems that you didn’t do. Make sure you read all the
problems, because we will be be making use of many of these results.

Facts we’ll use (short proofs)

Three of these count for one problem.

A1. Show that if (S) is the ideal generated by S, then V(S) = V((S)). Thus when looking
at vanishing sets, it suffices to consider vanishing sets of ideals.

A2. (a) Show that ∅ and Spec R are both open.
(b) (The intersection of two open sets is open.) Check that V(I1I2) = V(I1) ∪ V(I2).
(c) (The union of any collection of open sets is open.) If Ii is a collection of ideals (as i runs
over some index set), check that V(

∑
i Ii) = ∩iV(Ii).

A3. If I ⊂ R is an ideal, show that V(
√

I) = V(I).

A4. Show that if R is an integral domain, then Spec R is an irreducible topological space.
(Hint: look at the point [(0)].)

A5. Show that the closed points of Spec R correspond to the maximal ideals.

A6. If X = Spec R, show that [p] is a specialization of [q] if and only if q ⊂ p.

A7. If X is a finite union of quasicompact spaces, show that X is quasicompact.

A8. Suppose fi ∈ R for i ∈ I. Show that ∪i∈ID(fi) = Spec R if and only if (fi) = R.

A9. Show that D(f) ∩ D(g) = D(fg). Hence the distinguished base is a nice base.

A10. Show that if D(f) ⊂ D(g), then fn ∈ (g) for some n.

A11. Show that f ∈ N if and only if D(f) = ∅.

Date: Friday, October 21, 2005. (Last update: November 7, 2005.)
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A12. Suppose f ∈ R. Show that under the identification of D(f) in Spec R with Spec Rf,
there is a natural isomorphism of sheaves (D(f),OSpecR|D(f)) ∼= (Spec Rf,OSpec Rf

).

A13. Show that the disjoint union of a finite number of affine schemes is also an affine
scheme. (Hint: say what the ring is.)

A14. An infinite disjoint union of (non-empty) affine schemes is not an affine scheme.
(One-word hint: quasicompactness.)

A15. If X is a scheme, and U is any open subset, then prove that (U,OX|U) is also a scheme.

A16. Show that if X is a scheme, then the affine open sets form a base for the Zariski
topology. (Warning: they don’t form a nice base, as we’ll see in a different exercise on this
problem set.) However, in “most nice situations” this will be true, as we will later see,
when we define the analogue of “Hausdorffness”, called separatedness.)

Facts we’ll use

B1. Show that Spec R is quasicompact.

B2. Suppose that I, S ⊂ R are an ideal and multiplicative subset respectively. Show that
the Zariski topology on Spec R/I (resp. Spec S−1R) is the subspace topology induced by
inclusion in Spec R. (Hint: compare closed subsets.)

B3. (a) Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S. (b) Show that if I ⊂ R

is an ideal, then I(V(I)) =
√

I.

B4. (Important!) Show that V and I give a bijection between irreducible closed subsets of
Spec R and prime ideals of R. From this conclude that in Spec R there is a bijection between
points of Spec R and irreducible closed subsets of Spec R (where a point determines an
irreducible closed subset by taking the closure). Hence each irreducible closed subset has
precisely one generic point.

B5. (Important!) Show that the distinguished opens form a base for the Zariski topology.

B6. (a) Recall that sections of the structure sheaf on the base were defined byOSpec R(D(f)) =
Rf. Verify that this is well-defined, i.e. if D(f) = D(f ′) then Rf

∼= Rf′ .
(b) Recall that restriction maps on the base were defined as follows. If D(f) ⊂ D(g), then
we have shown that fn ∈ (g), i.e. we can write fn = ag, so there is a natural map Rg → Rf

given by r/gm 7→ (ram)/(fmn), and we define

resD(g),D(f) : OSpec R(D(g)) → OSpec R(D(f))

to be this map. Show that resD(g),D(f) is well-defined, i.e. that it is independent of the
choice of a and n, and if D(f) = D(f ′) and D(g) = D(g ′), then

Rg

∼

��

resD(g),D(f)
// Rf

∼

��

Rg′

resD(g),D(f)
// Rf′

2



commutes.

B7. Show that the structure sheaf satisfies “identity on the distinguished base”. Show that
it satisfies “gluability on the distinguished base”. (We used this to show that the structure
sheaf is actually a sheaf.)

B8. Suppose M is an R-module. Show that the following construction describes a sheaf

M̃ on the distinguished base. To D(f) we associate Mf = M ⊗R Rf; the restriction map is
the “obvious” one.

B9. Show that the stalk of OSpec R at the point [p] is the ring Rp. (Hint: use distinguished
open sets in the direct limit you use to define the stalk. In the course of doing this, you’ll
discover a useful principle. In the concrete definition of stalk, the elements were sections
of the sheaf over some open set containing our point, and two sections over different open
sets were considered the same if they agreed on some smaller open set. In fact, you can
just consider elements of your base when doing this. I think this is called a cofinal system
in the directed set, but I might be mistaken.) This is yet another reason to like the notion
of a sheaf on a base.

B10. (Important!) Figure out how to define projective n-space P
n
k. Glue together n + 1

opens each isomorphic to A
n
k. Show that the only global sections of the structure sheaf

are the constants, and hence that P
n
k is not affine if n > 0. (Hint: you might fear that you

will need some delicate interplay among all of your affine opens, but you will only need
two of your opens to see this. There is even some geometric intuition behind this: the
complement of the union of two opens has codimension 2. But “Hartogs’ Theorem” says
that any function defined on this union extends to be a function on all of projective space.
Because we’re expecting to see only constants as functions on all of projective space, we
should already see this for this union of our two affine open sets.)

Practice with the concepts

C1. Verify that [(y − x2)] ∈ A
2
k is a generic point for V(y − x2).

C2. Suppose X ⊂ A
3
k is the union of the three axes. Give generators for the ideal I(X).

C3. Describe a natural isomorphism (k[x, y]/(xy))x
∼= k[x]x.

C4. Suppose we have a polynomial f(x) ∈ k[x]. Instead, we work in k[x, ε]/ε2. What
then is f(x + ε)? (Do a couple of examples, and you will see the pattern. For example, if
f(x) = 3x3 + 2x, we get f(x + ε) = (3x3 + 2x) + ε(9x2 + 2). Prove the pattern!) Useful tip:
the dual numbers are a good source of (counter)examples, being the “smallest ring with
nilpotents”. They will also end up being important in defining differential information.

C5. Show that the affine base of the Zariski topology isn’t necessarily a nice base. (Hint:
look at the affine plane with the doubled origin.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 4

RAVI VAKIL

This set is due Monday, November 7. It covers (roughly) classes 8 and 9. Read all of
these problems, and hand in six solutions. Two A problems count for one solution. One
B problem counts for one solution. Try to solve problems on a range of topics. If you
are pressed for time, try more straightforward problems. If you are ambitious, push the
envelope a bit. You are encouraged to talk to each other about the problems. (Write up
your solutions individually.) You are also encouraged to talk to me about them. Ideally,
you should find out who did problems that you didn’t do. Make sure you read all the
problems, because we will be be making use of many of these results.

A1. Show that Pn
k is irreducible.

A2. You showed earlier that for affine schemes, there is a bijection between irreducible
closed subsets and points. Show that this is true of schemes as well.

A3. Prove the following. If R is Noetherian, then Spec R is a Noetherian topological space.
If X is a scheme that has a finite cover X = ∪n

i=1 Spec Ri where Ri is Noetherian, then X is
a Noetherian topological space. Thus Pn

k and Pn
Z

are Noetherian topological spaces: we
built them by gluing together a finite number of Spec’s of Noetherian rings.

A4. If R is any ring, show that the irreducible components of Spec R are in bijection with
the minimal primes of R. (Here minimality is with respect to inclusion.)

A5. Show that an irreducible topological space is connected.

A6. Show that a finite union of affine schemes is quasicompact. (Hence Pn
k is quasicom-

pact.) Show that every closed subset of an affine scheme is quasicompact. Show that
every closed subset of a quasicompact scheme is quasicompact.

A7. Show that a scheme is reduced if and only if none of the stalks have nilpotents. Hence
show that if f and g are two functions on a reduced scheme that agree at all points, then
f = g.

A8. Show that an affine scheme Spec R is integral if and only if R is an integral domain.

A9. Show that a scheme X is integral if and only if it is irreducible and reduced.

A10. Suppose X is an integral scheme. Then X (being irreducible) has a generic point
η. Suppose Spec R is any non-empty affine open subset of X. Show that the stalk at η,

Date: Hallowe’en, 2005. Updated Nov. 12, 2005.
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OX,η, is naturally FracR. This is called the function field of X. It can be computed on any
non-empty open set of X (as any such open set contains the generic point).

A11. Suppose X is an integral scheme. Show that the restriction maps resU,V : OX(U) →

OX(V) are inclusions so long as V 6= ∅. Suppose Spec R is any non-empty affine open
subset of X (so R is an integral domain). Show that the natural map OX(U) → OX,η =
FracR (where U is any non-empty open set) is an inclusion.

A12. Suppose f(x, y) and g(x, y) are two complex polynomials (f, g ∈ C[x, y]). Suppose f

and g have no common factors. Show that the system of equations f(x, y) = g(x, y) = 0

has a finite number of solutions.

A13. If R is a finitely generated domain over k, show that dim R[x] = dim R + 1. (In fact
this is true if R is Noetherian. You’re welcome to try to prove that. We’ll prove it later in
the class, and you may use this fact in later problem sets.)

A14. Show that the underlying topological space of a Noetherian scheme is Noetherian.
Show that a Noetherian scheme has a finite number of irreducible components.

A15. Suppose X is an integral scheme, that can be covered by open subsets of the form
Spec R where R is a finitely generated domain over k. Then dim X is the transcendence
degree of the function field (the stalk at the generic point) OX,η over k. Thus (as the generic
point lies in all non-empty open sets) the dimension can be computed in any open set of
X.

A16. What is the dimension of Spec k[w, x, y, z]/(wx − yz, x17 + y17)? (Be careful to check
the hypotheses before invoking Krull!)

A17. Suppose that R is a finitely generated domain over k, and p is a prime ideal. Show
that dim Rp = dim R − dim R/p.

A18. Show that all open subsets of a Noetherian topological space (hence of a Noetherian
scheme) are quasicompact.

A19. Check that our new definition of reduced (in terms of affine covers) agrees with our
earlier definition. This definition is advantageous: our earlier definition required us to
check that the ring of functions over any open set is nilpotent free. This lets us check in an
affine cover. Hence for example An

k and Pn
k are reduced.

A20. If R is a unique factorization domain, show that R is integrally closed (in its fraction
field Frac(R)). Hence An

k and Pn
k are both normal.

A21. Suppose R is a ring, and (f1, . . . , fn) = R. Show that if R has no nonzero nilpotents
(i.e. 0 is a radical ideal), then Rfi

also has no nonzero nilpotents. Show that if no Rfi
has a

nonzero nilpotent, then neither does R.

A22. Suppose R is an integral domain. Show that if R is integrally closed, then so is Rf.

2



A23. Suppose X is a quasicompact scheme, and f is a function vanishing on all the points
of X. Show that fn = 0 for some n. Show that this can be false without the quasicompact
hypothesis.

B1. Show that
(

k[x, y]/(xy, x2)
)

y
has no nilpotents. (Hint: show that it is isomorphic to

another ring, by considering the geometric picture.)

B2. Give (with proof!) an example of a scheme that is connected but reducible.

B3. Show that dim A1
Z

= 2.

B4. Suppose that R is a Unique Factorization Domain containing 1/2, f ∈ R has no re-
peated prime factors, and z2 − f is irreducible in R[z]. Show that Spec R[z]/(z2 − f) is
normal. (Hint: one of Gauss’ Lemmas.) Show that the following schemes are normal:
Spec Z[x]/(x2−n) where n is a square-free integer congruent to 3 (mod 4); Spec k[x1, . . . , xn]/x2

1+

x2
2 + · · · + x2

m where char k 6= 2, m ≥ 3; Spec k[w, x, y, z]/(wx − yz) where char k 6= 2 and
k is algebraically closed. Show that if f has repeated prime factors, then Spec R[z]/(z2 − f)
is not normal.

B5. Show that Spec k[w, x, y, z]/(wz − xy, wy − x2, xz − y2) is an irreducible surface. (It
is no harder to show that it is an integral surface.) We will see next week that this is the
affine cone over the twisted cubic.

B6. Suppose X = Spec R where R is a Noetherian domain, and Z is an irreducible compo-
nent of V(r1, . . . , rn), where r1, . . . , rn ∈ R. Show that the height of (the prime associated
to) Z is at most n. Conversely, suppose X = Spec R where R is a Noetherian domain, and
Z is an irreducible subset of height n. Show that there are f1, . . . , fn ∈ R such that Z is an
irreducible component of V(f1, . . . , fn).

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 5

RAVI VAKIL

This set is due Monday, November 14. It covers (roughly) classes 10, 11, and 12.

As you might have noticed, last week there were a lot of interesting problems worth
trying — too many to do! (This is just because we’ve gone far enough that we can really
explore interesting questions.) So please read all of the problems, and ask me about any
statements that you are unsure of, even of the many problems you won’t try. Hand in
six solutions. If you are ambitious (and have the time), go for more. Problems marked
with “-” count for half a solution. Problems marked with “+” may be harder or more
fundamental, but still count for one solution. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems.

Class 8:

1. (a) Use dimension theory to prove a microscopically stronger version of the weak
Nullstellensatz: Suppose R = k[x1, . . . , xn]/I, where k is an algebraically closed field and I

is some ideal. Then the maximal ideals are precisely those of the form (x1−a1, . . . , xn−an),
where ai ∈ k.
(b) Suppose R = k[x1, . . . , xn]/I where k is not necessarily algebraically closed. Show that
every maximal ideal of R has a residue field that is a finite extension of k. [Hint for both:
the maximal ideals correspond to dimension 0 points, which correspond to transcendence
degree 0 extensions of k, i.e. finite extensions of k. If k is algebraically closed, the maximal
ideals correspond to surjections f : k[x1, . . . , xn] → k. Fix one such surjection. Let ai =

f(xi), and show that the corresponding maximal ideal is (x1 − a1, . . . , xn − an).]

Class 10:

2+. Suppose R is a ring, and (f1, . . . , fn) = R. Suppose A is a ring, and R is an A-algebra.
Show that if each Rfi

is a finitely-generated A-algebra, then so is R.

3. Show that an irreducible homogeneous polynomial in n + 1 variables (over a field k)
describes an integral scheme of dimension n − 1. We think of this as a “hypersurface in
Pn

k
”.

4. Show that wx = yz, x2 = wy, y2 = xz describes an irreducible curve in P3
k

(the twisted
cubic!).

5. Suppose S∗ is a graded ring (with grading Z≥0). It is automatically a module over S0.
Now S+ := ⊕i>0Si is an ideal, which we will call the irrelevant ideal; suppose that it is a
finitely generated ideal. Show that S∗ is a finitely-generated S0-algebra.

Date: November 7, 2005. Small update December 19, 2005.
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6+. Recall the definition of the distinguished open subset D(f) on Proj S∗, where f is
homogeneous of positive degree. Show that

(D(f),OProjS∗
) ∼= Spec(Sf)0

defines a sheaf on ProjS∗. (We used this to define the structure sheaf OProj S∗
on Proj S∗.)

7-. Show that Proj k[x0, . . . , xn] is isomorphic to our earlier definition of Pn.

8-. Show that Y = P2 − (x2 + y2 + z2 = 0) is affine, and find its corresponding ring (= find
its ring of global sections).

Class 11:

9-. Show that P0
A

= Proj A[T ] ∼= A. Thus “Spec A is a projective A-scheme”.

10. Show that all projective A-schemes are quasicompact. (Translation: show that any
projective A-scheme is covered by a finite number of affine open sets.) Show that Proj S∗

is finite type over A = S0. If S0 is a Noetherian ring, show that Proj S∗ is a Noetherian
scheme, and hence that Proj S∗ has a finite number of irreducible components. Show that
any quasiprojective scheme is locally of finite type over A. If A is Noetherian, show that
any quasiprojective A-scheme is quasicompact, and hence of finite type over A.

11. Give an example of a quasiprojective A-scheme that is not quasicompact (necessarily
for some non-Noetherian A).

12-. Show that Pn
k

is normal. More generally, show that Pn
R

is normal if R is a Unique
Factorization Domain.

13+. Show that the projective cone of Proj S∗ has an open subscheme D(T) that is the
affine cone, and that its complement V(T) can be identified with Proj S∗ (as a topological
space). (More precisely, setting T = 0 “cuts out” a scheme isomorphic to Proj S∗ — see if
you can make that precise.)

14. If S∗ is a finitely generated domain over k, and Proj S∗ is non-empty show that
dim Spec S∗ = dim Proj S∗ + 1.

15. Show that the irreducible subsets of dimension n−1 of Pn
k

correspond to homogeneous
irreducible polynomials modulo multiplication by non-zero scalars.

16+.

(a) Suppose I is any homogeneous ideal, and f is a homogeneous element. Suppose
f vanishes on V(I). Show that fn ∈ I for some n. (Hint: Mimic the proof in the
affine case.)

(b) If Z ⊂ Proj S∗, define I(·). Show that it is a homogeneous ideal. For any two
subsets, show that I(Z1 ∪ Z2) = I(Z1) ∩ I(Z2).

(c) For any homogeneous ideal I with V(I) 6= ∅, show that I(V(I)) =
√

I.
(d) For any subset Z ⊂ Proj S∗, show that V(I(Z)) = Z.

2



17. Show that the following are equivalent. (a) V(I) = ∅ (b) for any fi (i in some index set)

generating I, ∪D(fi) = Proj S∗ (c)
√

I ⊃ S+.

18+. Show that Proj Sn· is isomorphic to Proj S∗.

For problems 19-21, suppose S∗ = k[x, y] (with the usual grading).

19. Show that S2·
∼= k[u, v, w]/(uw− v2). (Thus the 2-uple Veronese embedding of P1 is as

a conic in P2.)

20. Show that Proj S3· is the twisted cubic “in” P3. (The equations of the twisted cubic turn
up in problems 4 and 39.)

21+. Show that Proj Sd· is given by the equations that
(

y0 y1 · · · yd−1

y1 y2 · · · yd

)

is rank 1 (i.e. that all the 2 × 2 minors vanish). This is called the degree d rational normal
curve “in” Pd.

22. Find the equations cutting out the Veronese surface Proj S2· where S∗ = k[x0, x1, x2],
which sits naturally in P5.

23. Show that P(m, n) is isomorphic to P1. Show that P(1, 1, 2) ∼= Proj k[u, v, w, z]/(uw −

v2). Hint: do this by looking at the even-graded parts of k[x0, x1, x2]. (Picture: this is a
projective cone over a conic curve.)

24+. (This is a handy exercise for later.) (a) (Hypersurfaces meet everything of dimension at
least 1 in projective space — unlike in affine space.) Suppose X is a closed subset of Pn

k
of

dimension at least 1, and H a nonempty hypersurface in Pn
k

. Show that H meets X. (Hint:
consider the affine cone, and note that the cone over H contains the origin. Use Krull’s
Principal Ideal Theorem.)
(b) (Definition: Subsets in Pn cut out by linear equations are called linear subspaces. Di-
mension 1, 2 linear subspaces are called lines and planes respectively.) Suppose X ↪→ Pn

k
is

a closed subset of dimension r. Show that any codimension r linear space meets X. (Hint:
Refine your argument in (a).)
(c) Show that there is a codimension r + 1 complete intersection (codimension r + 1 set
that is the intersection of r + 1 hypersurfaces) missing X. (The key step: show that there
is a hypersurface that doesn’t contain every generic point of X.) If k is infinite, show that
there is a codimension r + 1 linear subspace missing X. (The key step: show that there is
a hyperplane not containing any generic point of a component of X.)

25. Describe all the lines on the quadric surface wx − yz = 0 in P3
k
. (Hint: they come in

two “families”, called the rulings of the quadric surface.)

26. (This is intended for people who already know what derivations are.) In differen-
tial geometry, the tangent space at a point is sometimes defined as the vector space of
derivations at that point. A derivation is a function that takes in functions near the point
that vanish at the point, and gives elements of the field k, and satisfies the Leibniz rule
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(fg) ′ = f ′g + g ′f. Show that this agrees with our definition of tangent space. (One direc-
tion was shown in class 11.)

27+. (Nakayama’s lemma version 3) Suppose R is a ring, and I is an ideal of R contained in all
maximal ideals. Suppose M is a finitely generated R-module, and N ⊂ M is a submodule.
If N/IN ↪→ M/IM an isomorphism, then M = N.

28+. (Nakayama’s lemma version 4) Suppose (R, m) is a local ring. Suppose M is a finitely-
generated R-module, and f1, . . . , fn ∈ M, with (the images of) f1, . . . , fn generating M/mM.
Then f1, . . . , fn generate M. (In particular, taking M = m, if we have generators of m/m2,
they also generate m.)

Class 12:

29-. Show that if A is a Noetherian local ring, then A has finite dimension. (Warning:
Noetherian rings in general could have infinite dimension.)

30+. (the Jacobian criterion for checking nonsingularity) Suppose k is an algebraically closed
field, and X is a finite type k-scheme. Then locally it is of the form Spec k[x1, . . . , xn]/(f1, . . . , fr).
Show that the Zariski tangent space at the closed point p (with residue field k, by the Null-
stellensatz) is given by the cokernel of the Jacobian map kr

→ kn given by the Jacobian
matrix

(1) J =







∂f1

∂x1
(p) · · · ∂fr

∂x1
(p)

...
. . .

...
∂f1

∂xn
(p) · · · ∂fr

∂xn
(p)






.

(This is just making precise our example of a curve in A3 cut out by a couple of equations,
where we picked off the linear terms .) Possible hint: “translate p to the origin,” and
consider linear terms.

31. Show that the singular closed points of the hypersurface f(x1, . . . , xn) = 0 in An
k

are
given by the equations f = ∂f

∂x1
= · · · = ∂f

∂xn
= 0.

32. Show that A1 and A2 are nonsingular. (Make sure to check nonsingularity at the
non-closed points! Fortunately you know what all the points of A2 are; this is trickier
for A3.) You are not allowed to use the fact that regular local rings remain regular under
localization.

33. Show that Spec Z is a nonsingular curve.

34. Note that Z[i] is dimension 1, as Z[x] has dimension 2 (problem set exercise), and is a
domain, and x2 + 1 is not 0, so Z[x]/(x2 + 1) has dimension 1 by Krull. Show that Spec Z[i]

is a nonsingular curve. (This exercise is intended for people who know about the primes
in the Gaussian integers Z[i].)

35. Show that there is one singular point of Spec Z[2i], and describe it.
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36. (the Euler test for projective hypersurfaces) There is an analogous Jacobian criterion for
hypersurfaces f = 0 in Pn

k
. Show that the singular closed points correspond to the locus

f = ∂f

∂x1
= · · · = ∂f

∂xn
= 0. If the degree of the hypersurface is not divisible by the char-

acteristic of any of the residue fields (e.g. if we are working over a field of characteristic
0), show that it suffices to check ∂f

∂x1
= · · · = ∂f

∂xn
= 0. (Hint: show that f lies in the ideal

( ∂f

∂x1
, . . . , ∂f

∂xn
)). (Fact: this will give the singular points in general. I don’t want to prove

this, and I won’t use it.)

37-. Suppose k is algebraically closed. Show that y2z = x3 − xz2 in P2
k

is an irreducible
nonsingular curve. (This is for practice.) Warning: I didn’t say char k = 0.

38-. Find all the singular closed points of the following plane curves. Here we work over
a field of characteristic 0 for convenience.

(a) y2 = x2 + x3. This is called a node.
(b) y2 = x3. This is called a cusp.
(c) y2 = x4. This is called a tacnode.

39. Show that the twisted cubic Proj k[w, x, y, z]/(wz−xy, wy−x2, xz−y2) is nonsingular.
(You can do this by using the fact that it is isomorphic to P1. I’d prefer you to do this with
the explicit equations, for the sake of practice.)

40-. Show that the only dimension 0 Noetherian regular local rings are fields. (Hint:
Nakayama.)

41-. Consider the following two examples:
(i) (the 5-adic valuation) K = Q, v(r) is the “power of 5 appearing in r”, e.g. v(35/2) = 1,
v(27/125) = −3.
(ii) K = k(x), v(f) is the “power of x appearing in f.
Describe the valuation rings in those two examples.

42. Show that 0 ∪ {x ∈ K∗ : v(x) ≥ 1} is the unique maximal ideal of the valuation ring.
(Hint: show that everything in the complement is invertible.) Thus the valuation ring is
a local ring.

43+. Show that every discrete valuation ring is a Noetherian regular local ring of dimen-
sion 1. (This was part of our long theorem showing that many things were equivalent.)

44-. Suppose R is a Noetherian local domain of dimension 1. Show that R is a principal
ideal domain if and only if it is a discrete valuation ring.

45-. Show that there is only one discrete valuation on a discrete valuation ring.

46. Suppose X is a regular integral Noetherian scheme, and f ∈ Frac(Γ(X,OX))∗ is a non-
zero element of its function field. Show that f has a finite number of zeros and poles.

47+. Suppose A is a subring of a ring B, and x ∈ B. Suppose there is a faithful A[x]-module
M that is finitely generated as an A-module. Show that x is integral over A. (Hint: look
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carefully at the proof of Nakayama’s Lemma version 1 in the Class 11 notes, and change
a few words.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 6

RAVI VAKIL

This set is due Wednesday, November 30. It covers (roughly) classes 13 and 14.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in six solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. I’m happy to give hints, and some of these problems
require hints!

Class 13:

1. Show that (x, z) ⊂ k[w, x, y, z]/(wz − xy) is a height 1 ideal that is not principal. (Make
sure you have a picture of this in your head!)

2. Suppose X is an integral Noetherian scheme, and f ∈ Frac(Γ(X,OX))∗ is a non-zero
element of its function field. Show that f has a finite number of zeros and poles. (Hint:
reduce to X = Spec R. If f = f1/f2, where fi ∈ R, prove the result for fi.)

3. Let R be the subring k[x3, x2, xy, y] ⊂ k[x, y]. (The idea behind this example: I’m
allowing all monomials in k[x, y] except for x.) Show that it is not integrally closed (easy
— consider the “missing x”). Show that it is regular in codimension 1 (hint: show it
is dimension 2, and when you throw out the origin you get something nonsingular, by
inverting x2 and y respectively, and considering Rx2 and Ry).

4. You have checked that if k = C, then k[w, x, y, z]/(wx − yz) is integrally closed (PS4,
problem B5). Show that it is not a unique factorization domain. (The most obvious pos-
sibility is to do this “directly”, but this might be hard. Another possibility, faster but less
intuitive, is to prove the intermediate result that in a unique factorization domain, any height
1 prime is principal, and considering Exercise 1.)

5. Show that on a Noetherian scheme, you can check nonsingularity by checking at closed
points. (Caution: a scheme in general needn’t have any closed points!) You are allowed
to use the unproved fact from the notes, that any localization of a regular local ring is
regular.

6. Show that a nonsingular locally Noetherian scheme is irreducible if and only if it is
connected. (I’m not sure if this fact requires Noetherianness.)

Date: Wednesday, November 16, 2005. Updated December 9. Tiny revision December 11.
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7-. Show that there is a nonsingular hypersurface of degree d. Show that there is a Zariski-
open subset of the space of hypersurfaces of degree d. The two previous sentences com-
bine to show that the nonsingular hypersurfaces form a Zariski-open set. Translation:
almost all hypersurfaces are smooth.

8-. Suppose (R, m, k) is a regular Noetherian local ring of dimension n. Show that dimk(m
i/mi+1) =

(

n+i−1

i

)

.

9. Show that fact 2 in the “good facts to know about regular local rings” implies that
(R, m) is a domain. (Hint: show that if f, g 6= 0, then fg 6= 0, by considering the leading
terms.)

Note that we have proved this fact (referred to in the previous problem) if (R, m) is a
Noetherian local ring containing its residue field k. The next three exercises fill out the
proof in the notes. Do them only if you are fairly happy with other things.

10. If S is a Noetherian ring, show that S[[t]] is Noetherian. (Hint: Suppose I ⊂ S[[t]] is an
ideal. Let In ⊂ S be the coefficients of tn that appear in the elements of I form an ideal.
Show that In ⊂ In+1, and that I is determined by (I0, I1, I2, . . . ).)

11. Show that dim k[[t1, . . . , tn]] is dimension n. (Hint: find a chain of n + 1 prime ideals
to show that the dimension is at least n. For the other inequality, use Krull.)

12. If R is a Noetherian local ring, show that R̂ := lim← R/mn is a Noetherian local ring.
(Hint: Suppose m/m2 is finite-dimensional over k, say generated by x1, . . . , xn. Describe a

surjective map k[[t1, . . . , tn]]→ R̂.)

13. Show that a section of a sheaf on the distinguished affine base is determined by the
section’s germs.

14+. Recall Theorem 4.2(a) in the class 13 notes, which states that a sheaf on the distin-
guished affine base Fb determines a unique sheaf F , which when restricted to the affine
base is Fb. We defined

F(U) := {(fx ∈ Fb
x )x∈U : ∀x ∈ U, ∃UX with x ⊂ Ux ⊂ U, Fx ∈ Fb(Ux) : Fx

y = fy∀y ∈ Ux}

where each Ux is in our base. In class I claimed that if U is in our base, that F(U) = Fb(U).
We clearly have a map Fb(U)→ F(U). Prove that it is an isomorphism.

15+. Show that a sheaf of OX-modules on “the distinguished affine base” yields an OX-
module.

Class 14:
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16+. (a first example of the total complex of a double complex) Suppose 0→ A→ B→ C

is exact. Define the total complex

0 // A //

id

��

B //

−id

��

C

0 // A // B // C

as

0→ A→ A ⊕ B→ B ⊕ C

in the “obvious” way. Show that the total complex is also exact.

17. (a) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at the origin [(t)],
with group k(t). Give this the structure of an OX-module. Show that this is not a quasico-
herent sheaf. (More generally, if X is an integral scheme, and p ∈ X that is not the generic
point, we could take the skyscraper sheaf at p with group the function field of X. Except
in a silly circumstances, this sheaf won’t be quasicoherent.)
(b) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at the generic point
[(0)], with group k(t). Give this the structure of an OX-module. Show that this is a quasi-
coherent sheaf. Describe the restriction maps in the distinguished topology of X.

18+. (Important Exercise for later) Suppose X is a Noetherian scheme. Suppose F is a
quasicoherent sheaf on X, and let f ∈ Γ(X,OX) be a function on X. Let R = Γ(X,OX)

for convenience. Show that the restriction map resXf⊂X : Γ(X,FX) → Γ(Xf,FX) (here Xf

is the open subset of X where f doesn’t vanish) is precisely localization. In other words
show that there is an isomorphism Γ(X,F)f → Γ(Xf,F) making the following diagram
commute.

Γ(X,F)
resXf⊂X

//

⊗RRf %%LLLLLLLLLL
Γ(Xf,F)

Γ(X,F)f

∼

88rrrrrrrrrr

All that you should need in your argument is that X admits a cover by a finite number
of open sets, and that their pairwise intersections are each quasicompact. We will later
rephrase this as saying that X is quasicompact and quasiseparated. (Hint: cover by affine
open sets. Use the sheaf property. A nice way to formalize this is the following. Apply
the exact functor ⊗RRf to the exact sequence

0→ Γ(X,F)→ ⊕iΓ(Ui,F)→ ⊕Γ(Uijk,F)

where the Ui form a finite cover of X and Uijk form an affine cover of Ui ∩ Uj.)

19-. Give a counterexample to show that the above statement need not hold if X is not
quasicompact. (Possible hint: take an infinite disjoint union of affine schemes.)

20. (This is for arithmetically-minded people only — I won’t define my terms.) Prove
that a fractional ideal on a ring of integers in a number field yields an invertible sheaf.
Show that any two that differ by a principal ideal yield the same invertible sheaf. (Thus
we have described a map from the class group of the number field to the Picard group of
its ring of integers. We will later see that this is an isomorphism.)
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21+. Show that you can check exactness of a sequence of quasicoherent sheaves on an
affine cover. (In particular, taking sections over an affine open Spec R is an exact functor
from the category of quasicoherent sheaves on X to the category of R-modules. Recall that
taking sections is only left-exact in general. Similarly, you can check surjectivity on an
affine cover unlike sheaves in general.)

22+. If F and G are quasicoherent sheaves, show that F ⊗ G is given by the following
information: If Spec R is an affine open, and Γ(Spec R,F) = M and Γ(Spec R,G) = N, then
Γ(Spec R,F ⊗ G) = M ⊗ N, and the restriction map Γ(Spec R,F ⊗ G)→ Γ(SpecRf,F ⊗ G)

is precisely the localization map M ⊗R N → (M ⊗R N)f
∼= Mf ⊗Rf

Nf. (We are using the
algebraic fact that that (M⊗R N)f

∼= Mf ⊗Rf
Nf. You can prove this by universal property

if you want, or by using the explicit construction.)

23. If F and G are locally free sheaves, show that F ⊗ G is locally free. (Possible hint for
this, and later exercises: check on sufficiently small affine open sets.)

24. Prove the following.
(a) Tensoring by a quasicoherent sheaf is right-exact. More precisely, if F is a quasicoher-
ent sheaf, and G ′

→ G → G ′′
→ 0 is an exact sequence of quasicoherent sheaves, then so

is G ′ ⊗F → G ⊗ F → G ′′ ⊗F → 0 is exact.
(b) Tensoring by a locally free sheaf is exact. More precisely, if F is a quasicoherent
sheaf, and G ′

→ G → G ′′ is an exact sequence of quasicoherent sheaves, then then so
is G ′ ⊗F → G ⊗ F → G ′′ ⊗F .
(c) The stalk of the tensor product of quasicoherent sheaves at a point is the tensor prod-
uct of the stalks.
(d) Invertible sheaves on a scheme X (up to isomorphism) form a group. This is called the
Picard group of X, and is denoted Pic X. For arithmetic people: this group, for the Spec of
the ring of integers R in a number field, is the class group of R.

25. Show that sheaf Hom, Hom, is quasicoherent, and is what you think it might be. (De-
scribe it on affine opens, and show that it behaves well with respect to localization with
respect to f. To show that HomA(M, N)f

∼= HomAf
(Mf, Nf), take a “partial resolution”

Aq
→ Ap

→ M → 0, and apply Hom(·, N) and localize.) (Hom was defined earlier, and
was the subject of a homework problem.) Show that Hom is a left-exact functor in both
variables.

26+. Show that if F is locally free then F∨ is locally free, and that there is a canonical
isomorphism (F∨)∨ ∼= F . (Caution: your argument showing that if there is a canonical
isomorphism (F∨)∨ ∼= F better not also show that there is a canonical isomorphism
F∨ ∼= F ! We’ll see an example soon of a locally free F that is not isomorphic to its dual.
The example will be the line bundle O(1) on P1.)

27. The direct sum of quasicoherent sheaves is what you think it is.

For the next exercises, recall the following. If M is an A-module, then the tensor algebra
T ∗(M) is a non-commutative algebra, graded by Z≥0, defined as follows. T0(M) = A,
Tn(M) = M ⊗A · · · ⊗A M (where n terms appear in the product), and multiplication is
what you expect. The symmetric algebra Sym∗ M is a symmetric algebra, graded by Z≥0,
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defined as the quotient of T ∗(M) by the (two-sided) ideal generated by all elements of
the form x ⊗ y − y ⊗ x for all x, y ∈ M. Thus Symn M is the quotient of M ⊗ · · · ⊗ M

by the relations of the form m1 ⊗ · · · ⊗ mn − m ′
1 ⊗ · · · ⊗ m ′

n where (m ′
1, . . . , m

′
n) is a

rearrangement of (m1, . . . , mn). The exterior algebra ∧∗M is defined to be the quotient of
T ∗M by the (two-sided) ideal generated by all elements of the form x ⊗ y + y ⊗ x for all
x, y ∈ M. Thus ∧nM is the quotient of M⊗· · ·⊗M by the relations of the form m1⊗· · ·⊗
mn − (−1)sgnm ′

1 ⊗ · · · ⊗ m ′
n where (m ′

1, . . . , m
′
n) is a rearrangement of (m1, . . . , mn), and

the sgn is even if the rearrangement is an even permutation, and odd if the rearrangement
is an odd permutation. (It is a “skew-commutative” A-algebra.) It is most correct to write
T ∗

A(M), Sym∗
A(M), and ∧∗

A(M), but the “base ring” is usually omitted for convenience.

28. If F is a quasicoherent sheaf, then define the quasicoherent sheaves TnF , SymnF , and
∧nF . If F is locally free of rank m, show that TnF , SymnF , and ∧nF are locally free, and
find their ranks.

29+. If 0 → F ′
→ F → F ′′

→ 0 is an exact sequence of locally free sheaves, then for any
r, there is a filtration of SymrF :

SymrF = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊃ Fr+1 = 0

with quotients
Fp/Fp+1 ∼= (SympF ′) ⊗ (Symr−pF ′′)

for each p.

30. Suppose F is locally free of rank n. Then ∧nF is called the determinant (line) bundle.
Show that ∧rF × ∧n−rF → ∧nF is a perfect pairing for all r.

31+. If 0 → F ′
→ F → F ′′

→ 0 is an exact sequence of locally free sheaves, then for any
r, there is a filtration of ∧rF :

∧rF = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊃ Fr+1 = 0

with quotients
Fp/Fp+1 ∼= (∧pF ′) ⊗ (∧r−pF ′′)

for each p. In particular, detF = (detF ′) ⊗ (detF ′′).

E-mail address: vakil@math.stanford.edu

5



FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 7

RAVI VAKIL

This set is due Wednesday, December 7. It covers (roughly) classes 15 and 16.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in six solutions, including # 23. If you are
ambitious (and have the time), go for more. Problems marked with “-” count for half a
solution. Problems marked with “+” may be harder or more fundamental, but still count
for one solution. Try to solve problems on a range of topics. You are encouraged to talk
to each other, and to me, about the problems. I’m happy to give hints, and some of these
problems require hints!

Class 15:

You are not allowed to try the next four problems if you already know how to do them!

1. M Noetherian implies that any submodule of M is a finitely generated R-module.
Hence for example if R is a Noetherian ring then finitely generated = Noetherian.

2. If 0 → M ′ → M → M ′′ → 0 is exact, then M ′ and M ′′ are Noetherian if and only if M is
Noetherian. (Hint: Given an ascending chain in M, we get two simultaneous ascending
chains in M ′ and M ′′.)

3. A Noetherian as an A-module implies An is a Noetherian A-module.

4. If A is a Noetherian ring and M is a finitely generated A-module, then any submodule
of M is finitely generated. (Hint: suppose M ′

↪→ M and An
� M. Construct N with

N
�

�

//

��
��

An

��
��

M ′ �
�

// M

.)

5-. Show A is coherent (as an A-module) if and only if the notion of finitely presented
agrees with the notion of coherent.

6. If f ∈ A, show that if M is a finitely generated (resp. finitely presented, coherent) A-
module, then Mf is a finitely generated (resp. finitely presented, coherent) Af-module.
(Hint: localization is exact.)

7. If (f1, . . . , fn) = A, and Mfi
is finitely generated (resp. coherent) Afi

-module for all i,
then M is a finitely generated (resp. coherent) A-module.

Date: Monday, November 28, 2005. Minor update January 23, 2006.
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8. (Exercise on support of a sheaf) Show that the support of a finite type quasicoherent sheaf
on a scheme is a closed subset. (Hint: Reduce to an affine open set. Choose a finite set
of generators of the corresponding module.) Show that the support of a quasicoherent
sheaf need not be closed. (Hint: If A = C[t], then C[t]/(t − a) is an A-module supported
at a. Consider ⊕a∈CC[t]/(t − a).)

9. (Exercise on rank)

(a) If m1, . . . , mn are generators at P, they are generators in an open neighborhood of

P. (Hint: Consider coker An
(f1,...,fn)

// M and Exercise 8.)
(b) Show that at any point, rank(F ⊕ G) = rank(F) + rank(G) and rank(F ⊗ G) =

rankF rankG at any point. (Hint: Show that direct sums and fibered products
commute with ring quotients and localizations, i.e. (M ⊕ N) ⊗R (R/I) ∼= M/IM ⊕
N/IN, (M⊗R N)⊗R (R/I) ∼= (M⊗R R/I)⊗R/I (N⊗R R/I) ∼= M/IM⊗R/I N/IM, etc.)
Thanks to Jack Hall for improving this problem.

(c) Show that rank is an upper semicontinuous function on X. (Hint: Generators at P

are generators nearby.)

10. If X is reduced, F is coherent, and the rank is constant, show that F is locally free.
(Hint: choose a point p ∈ X, and choose generators of the stalk Fp. Let U be an open set
where the generators are sections, so we have a map φ : O⊕n

U → F |U. The cokernel and
kernel of φ are supported on closed sets by Exercise 8. Show that these closed subsets
don’t include p. Make sure you use the reduced hypothesis!) Thus coherent sheaves are
locally free on a dense open set. Show that this can be false if X is not reduced. (Hint:
Spec k[x]/x2, M = k.)

11. (Geometric Nakayama) Suppose X is a scheme, and F is a finite type quasicoherent
sheaf. Show that if Fx ⊗ k(x) = 0, then there exists V such that F |V = 0. Better: if I have a
set that generates the fiber, it defines the stalk.

12. (Reason for the name “invertible” sheaf) Suppose F and G are finite type sheaves such
that F ⊗G ∼= OX. Then F and G are both invertible (Hint: Nakayama.) This is the reason
for the adjective “invertible” these sheaves are the invertible elements of the monoid of
finite type sheaves. This exercise is a little less important.

13. (A non-quasicoherent sheaf of ideals) Let X = Spec k[x](x), the germ of the affine line at
the origin, which has two points, the closed point and the generic point η. Define I(X) =

{0} ⊂ OX(X) = k[x](x), and I(η) = k(x) = OX(η). Show that I is not a quasicoherent sheaf
of ideals.

14. (Sections of locally free sheaves cut out closed subschemes) Suppose F is a locally free sheaf
on a scheme X, and s is a section of F . Describe how s = 0 “cuts out” a closed subscheme.

15. (Reduction of a scheme)
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(a) Xred has the same underlying topological space as X: there is a natural homeomor-
phism of the underlying topological spaces Xred ∼= X. Picture: taking the reduction
may be interpreted as shearing off the fuzz on the space.

(b) Give an example to show that it is not true that Γ(Xred,OXred) = Γ(X,OX)/
√

Γ(X,OX).
(Hint:

∐
n>0 Spec k[t]/(tn) with global section (t, t, t, . . .).) Motivation for this ex-

ercise: this is true on each affine open set.

Class 16:

16. Describe the scheme-theoretic intersection of (y − x2) and y in A2. Draw a picture.

17. Suppose we have an effective Cartier divisor, a closed subscheme locally cut out by
a single equation. As described in class, this gives an invertible sheaf with a canonical
section. Show that this section vanishes along our actual effective Cartier divisor.

18. Describe the invertible sheaf corresponding to an effective Cartier divisor in terms
of transition functions. More precisely, on any affine open set where the effective Cartier
divisor is cut out by a single equation, the invertible sheaf is trivial. Determine the transi-
tion functions between two such overlapping affine open sets. Verify that there is indeed
a canonical section of this invertible sheaf, by describing it.

19. Show that M̃∗ ⊗ Ñ∗
∼= ˜M∗ ⊗S∗

N∗. (Hint: describe the isomorphism of sections over
each D(f), and show that this isomorphism behaves well with respect to smaller distin-
guished opens.)

20. (Closed immersions in projective S0-schemes) Show that if I∗ is a graded ideal of S∗, show
that we get a closed immersion Proj S∗/I∗ ↪→ ProjS∗.

21. Suppose S∗ is generated over S0 by f1, . . . , fn. Suppose d = lcm(deg f1, . . . , deg fn).
Show that Sd∗ is generated in “new” degree 1 (= “old” degree d). (Hint: I like to show
this by induction on the size of the set {deg f1, . . . , deg fn}.) This is handy, because we can
stick every Proj in some projective space via the construction of previous exercise.

22. If S∗ is generated in degree 1, show that OProj S∗
(n) is an invertible sheaf.

23. (Mandatory exercise — I am happy to walk you through it, see the notes.) Calculate
dimk Γ(Pm

k ,OPm
k
(n)).

24. Show that F(n) ∼= F ⊗O(n).

25. Show that O(m + n) ∼= O(m) ⊗O(n).

26. Show that if m 6= n, then OPl
k
(m) is not isomorphic to OPl

k
(n) if l > 0. (Hence

we have described a countable number of invertible sheaves (line bundles) that are non-
isomorphic. We will see later that these are all the line bundles on projective space Pn

k.)

27. If quasicoherent sheaves L and M are generated by global sections at a point p, then
so is L ⊗M. (This exercise is less important, but is good practice for the concept.)
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28. An invertible sheaf L on X is generated by global sections if and only if for any point
x ∈ X, there is a section of L not vanishing at x. (Hint: Nakayama.)

29+. (Important! A theorem of Serre. See the notes for extensive hints.) Suppose S0 is a
Noetherian ring, and S∗ is generated in degree 1. Let F be any finite type sheaf on Proj S∗.
Then for some integer n0, for all n ≥ n0, F(n) can be generated by a finite number of
global sections.

30. Show that Γ∗ gives a functor from the category of quasicoherent sheaves on ProjS∗ to
the category of graded S∗-modules. (In other words, show that if F → G is a morphism
of quasicoherent sheaves on Proj S∗, describe the natural map Γ∗(F) → Γ∗(G), and show
that such natural maps respect the identity and composition.)

31. Show that the canonical map M∗ → Γ∗M̃∗ need not be injective, nor need it be sur-
jective. (Hint: S∗ = k[x], M∗ = k[x]/x2 or M∗ = { polynomials with no constant terms
}.)

32. Describe the natural map Γ̃∗F → F as follows. First describe it over D(f). Note that
sections of the left side are of the form m/fn where m ∈ Γndeg fF , and m/fn = m ′/fn′

if
there is some N with fN(fn′

m− fnm ′) = 0. Show that your map behaves well on overlaps
D(f) ∩ D(g) = D(fg).

33+. Show that the natural map Γ̃∗F → F is an isomorphism, by showing that it is an
isomorphism over D(f) for any f. Do this by first showing that it is surjective. This will
require following some of the steps of the proof of Serre’s theorem (a previous exercise on
this set). Then show that it is injective. (This is longer, but worth it.)

34. (Γ∗ and ∼ are adjoint functors) Prove part of the statement that Γ∗ and ∼ are adjoint

functors, by describing a natural bijection Hom(M∗, Γ∗(F)) ∼= Hom(M̃∗,F). For the map
from left to right, start with a morphism M∗ → Γ∗(F). Apply ∼, and postcompose with

the isomorphism Γ̃∗F → F , to obtain

M̃∗ → Γ̃∗F → F .

Do something similar to get from right to left. Show that “both compositions are the
identity in the appropriate category”. (Is there a clever way to do that?)

Coherence: These twenty problems are only for people who are curious about the notion
of coherence for general rings. Others should just skip these. (This is the one exception of
my injunction to read all problems.)

A. Show that coherent implies finitely presented implies finitely generated.

B. Show that 0 is coherent.

Suppose for problems C–I that

(1) 0 → M → N → P → 0

is an exact sequence of A-modules.
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Hint ?. Here is a hint which applies to several of the problems: try to write

0 // Ap //

��

Ap+q //

��

Aq //

��

0

0 // M // N // P // 0

and possibly use the snake lemma.

C. Show that N finitely generated implies P finitely generated. (You will only need right-
exactness of (1).)

D. Show that M, P finitely generated implies N finitely generated. (Possible hint: ?.) (You
will only need right-exactness of (1).)

E. Show that N, P finitely generated need not imply M finitely generated. (Hint: if I is an
ideal, we have 0 → I → A → A/I → 0.)

F. Show that N coherent, M finitely generated implies M coherent. (You will only need
left-exactness of (1).)

G. Show that N, P coherent implies M coherent. Hint for (i) in the definition of coherence:

Aq

��

!!D
D

D

D

D

D

D

D

Ap

��   A
A

A

A

A

A

A

A

0 // M

��

// N

��

// P //

��
>

>

>

>

>

>

>

0

0 0 0

(You will only need left-exactness of (1).)

H. Show that M finitely generated and N coherent implies P coherent. (Hint for (ii) in the
definition of coherence: ?. You will only right-exactness of (1).)

I. Show that M, P coherent implies N coherent. (Hint: ?.)

At this point, we have shown that if two of (1) are coherent, the third is as well.

J. Show that a finite direct sum of coherent modules is coherent.

K. Suppose M is finitely generated, N coherent. Then if φ : M → N is any map, then
show that Im φ is coherent.

L. Show that the kernel and cokernel of maps of coherent modules are coherent.
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At this point, we have verified that coherent A-modules form an abelian subcategory
of the category of A-modules. (Things you have to check: 0 should be in this set; it should
be closed under finite sums; and it should be closed under taking kernels and cokernels.)

M. Suppose M and N are coherent submodules of the coherent module P. Show that
M + N and M ∩ N are coherent. (Hint: consider the right map M ⊕ N → P.)

N. Show that if A is coherent (as an A-module) then finitely presented modules are co-
herent. (Of course, if finitely presented modules are coherent, then A is coherent, as A is
finitely presented!) (This is also # 5.)

O. If M is finitely presented and N is coherent, show that Hom(M, N) is coherent. (Hint:
Hom is left-exact in its first entry.)

P. If M is finitely presented, and N is coherent, show that M ⊗ N is coherent.

Q. If f ∈ A, show that if M is a finitely generated (resp. finitely presented, coherent) A-
module, then Mf is a finitely generated (resp. finitely presented, coherent) Af-module.
Hint: localization is exact. (This is also # 6.)

R. Suppose (f1, . . . , fn) = A. Show that if Mfi
is finitely generated for all i, then M is too.

(Hint: Say Mfi
is generated by mij ∈ M as an Afi

-module. Show that the mij generate M.
To check surjectivity ⊕i,jA → M, it suffices to check “on D(fi)” for all i.) (This is half of #
7.)

S. Suppose (f1, . . . , fn) = A. Show that if Mfi
is coherent for all i, then M is too. (Hint

from Rob Easton: if φ : A2 → M, then (ker φ)fi
= ker(φfi

), which is finitely generated for
all i. Then apply the previous exercise.) (This is the other half of # 7.)

T. Show that the ring A := k[x1, x2, . . . ] is not coherent over itself. (Hint: consider A → A

with x1, x2, . . . 7→ 0.) Thus we have an example of a finitely presented module that is not
coherent; a surjection of finitely presented modules whose kernel is not even finitely gen-
erated; hence an example showing that finitely presented modules don’t form an abelian
category.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 8

RAVI VAKIL

This set is due Wednesday, December 14, in my mailbox. (I will accept it, and other
older sets, until Friday, December 16. That will likely be a hard deadline, because I
may not be around to pick up any later sets.) It covers (roughly) classes 17 and 18.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in four solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. I’m happy to give hints, and some of these problems
require hints!

Class 17:

1. Show that if q is primary, then
√

q is prime.

2-. Show that if q and q ′ are p-primary, then so is q ∩ q ′.

3-. (reality check) Find all the primary ideals in Z.

4+. Suppose A is a Noetherian ring. Show that every proper ideal I 6= A has a primary
decomposition. (Hint: Noetherian induction.)

5. Find a minimal primary decomposition of (x2, xy).

6+. (a) If p, p1, . . . , pn are prime ideals, and p = ∩pi, show that p = pi for some i. (Hint:
assume otherwise, choose fi ∈ pi − p, and consider

∏
fi.)

(b) If p ⊃ ∩pi, then p ⊃ pi for some i.
(c) Suppose I ⊆ ∪npi. Show that I ⊂ pi for some i. (Hint: by induction on n.)

7. Show that these associated primes behave well with respect to localization. In other
words if A is a Noetherian ring, and S is a multiplicative subset (so, as we’ve seen, there
is an inclusion-preserving correspondence between the primes of S−1A and those primes
of A not meeting S), then the associated primes of S−1A are just the associated primes of
A not meeting S.

8. Show that the minimal primes of 0 are associated primes. (We have now proved im-
portant fact (1).) (Hint: suppose p ⊃ ∩n

i=1qi. Then p =
√

p ⊃
√

∩n
i=1qi = ∩n

i=1

√
qi = ∩n

i=1pi,
so by Exercise 6(b), p ⊃ pi for some i. If p is minimal, then as p ⊃ pi ⊃ (0), we must have

Date: Monday, December 9, 2005. One-character update December 19.

1



p = pi.) Show that there can be other associated primes that are not minimal. (Hint: see
an earlier exercise.)

9. Show that if A is reduced, then the only associated primes are the minimal primes.

10. Verify the inclusions and equalities

D = ∪x6=0(0 : x) ⊆ ∪x6=0

√

(0 : x) ⊆ D.

11. Suppose f and g are two global sections of a Noetherian normal scheme with the same
poles and zeros. Show that each is a unit times the other.

Class 18:

12. If W ⊂ X and Y ⊂ Z are both open immersions of ringed spaces, show that any
morphism of ringed spaces X → Y induces a morphism of ringed spaces W → Z.

13. Show that morphisms of ringed spaces glue. In other words, suppose X and Y are
ringed spaces, X = ∪iUi is an open cover of X, and we have morphisms of ringed spaces
fi : Ui → Y that “agree on the overlaps”, i.e. fi|Ui∩Uj

= fj|Ui∩Uj
. Show that there is a unique

morphism of ringed spaces f : X → Y such that f|Ui
= fi. (Long ago we had an exercise

proving this for topological spaces.)

14. (Easy but important) Given a morphism of ringed spaces f : X → Y with f(p) = q,
show that there is a map of stalks (OY)q → (OX)p.

15. If f# : S → R is a morphism of rings, verify that Rf#s
∼= R ⊗S Ss.

16. Show that morphisms of locally ringed spaces glue (Hint: Basically, the proof of the
corresponding exercise for ringed spaces works.)

17+ (easy but important) (a) Show that Spec R is a locally ringed space. (b) The morphism
of ringed spaces f : Spec R → Spec S defined by a ring morphism f#S → R is a morphism
of locally ringed spaces.

18++ (Important practice!) Make sense of the following sentence: “A
n+1 − ~0 → P

n given
by (x0, x1, . . . , xn+1) 7→ [x0; x1; . . . ; xn] is a morphism of schemes.” Caution: you can’t just
say where points go; you have to say where functions go. So you’ll have to divide these
up into affines, and describe the maps, and check that they glue.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 9

RAVI VAKIL

This set is due Tuesday, January 24, in Jarod Alper’s mailbox. It covers (roughly)
classes 19 through 22. (This is a long one, because I’m giving you the option of doing
some problems from the end of last quarter.)

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in four solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. I’m happy to give hints, and some of these problems
require hints!

Class 19:

1+. Show that morphisms X → Spec A are in natural bijection with ring morphisms A →

Γ(X,OX). (Hint: Show that this is true when X is affine. Use the fact that morphisms glue.)

2. Show that Spec Z is the final object in the category of schemes. In other words, if X is
any scheme, there exists a unique morphism to Spec Z. (Hence the category of schemes is
isomorphic to the category of Z-schemes.)

3. Show that morphisms X → Spec Z[t] correspond to global sections of the structure
sheaf.

4. Show that global sections of O∗

X correspond naturally to maps to Spec Z[t, t−1]. (Spec Z[t, t−1]
is a group scheme.)

5+. Suppose X is a finite type k-scheme. Describe a natural bijection Hom(Spec k[ε]/ε2, X)
to the data of a k-valued point (a point whose residue field is k, necessarily closed) and a
tangent vector at that point.

6. Suppose i : U → Z is an open immersion, and f : Y → Z is any morphism. Show that
U ×Z Y exists. (Hint: I’ll even tell you what it is: (f−1(U),OY|f−1(U)).)

7-. Show that open immersions are monomorphisms.

8+. Suppose Y → Z is a closed immersion, and X → Z is any morphism. Show that
the fibered product X ×Y Z exists, by explicitly describing it. Show that the projection
X ×Y Z → Y is a closed immersion. We say that “closed immersions are preserved by

Date: Monday, January 16, 2005. Updated January 23. Minor update January 25.
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base change” or “closed immersions are preserved by fibered product”. (Base change is
another word for fibered products.)

9. Show that closed immersions are monomorphisms.

10. (quasicompactness is affine-local on the target) Show that a morphism f : X → Y is qua-
sicompact if there is cover of Y by open affine sets Ui such that f−1(Ui) is quasicompact.
(Hint: affine communication lemma!)

11. Show that the composition of two quasicompact morphisms is quasicompact.

12. (the notions “locally of finite type” and “finite type” is affine-local on the target) Show that
a morphism f : X → Y is locally of finite type if there is a cover of Y by open affine sets
Spec Ri such that f−1(Spec Ri) is locally of finite type over Ri.

13-. Show that a closed immersion is a morphism of finite type.

14-. Show that an open immersion is locally of finite type. Show that an open immersion
into a Noetherian scheme is of finite type. More generally, show that a quasicompact open
immersion is of finite type.

15-. Show that a composition of two morphisms of finite type is of finite type.

16. Suppose we have a composition of morphisms X
f

// Y
g

// Z , where f is quasi-
compact, and g ◦ f is finite type. Show that f is finite type.

17-. Suppose f : X → Y is finite type, and Y is Noetherian. Show that X is also Noetherian.

18. Suppose X is an affine scheme, and Y is a closed subscheme locally cut out by one
equation (e.g. if X is an effective Cartier divisor). Show that X − Y is affine. (This is clear
if Y is globally cut out by one equation f; then if X = Spec R then Y = Spec Rf. However,
this is not always true.) Hint: affine locality of the notion of “affine morphism”.

19. Here is an explicit consequence of the previous exercise. We showed earlier that on
the cone over the smooth quadric surface Spec k[w, x, y, z]/(wz − xy), the cone over a
ruling w = x = 0 is not cut out scheme-theoretically by a single equation, by considering
Zariski-tangent spaces. We now show that it isn’t even cut out set-theoretically by a single
equation. For if it were, its complement would be affine. But then the closed subscheme
of the complement cut out by y = z = 0 would be affine. But this is the scheme y = z = 0

(also known as the wx-plane) minus the point w = x = 0, which we’ve seen is non-affine.
(For comparison, on the cone Spec k[x, y, z]/(xy − z2), the ruling x = z = 0 is not cut
out scheme-theoretically by a single equation, but it is cut out set-theoretically by x = 0.)
Verify all of this!

20. (the property of finiteness is affine-local on the target) Show that a morphism f : X → Y is
finite if there is a cover of Y by open affine sets Spec R such that f−1(Spec R) is the spectrum
of a finite R-algebra. (Hint: Use that f∗OX is finite type.)

21-. Show that closed immersions are finite morphisms.
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22. (a) Show that if a morphism is finite then it is quasifinite. (b) Show that the converse
is not true. (Hint: A

1 − {0} → A
1.)

23. Suppose X is a Noetherian scheme. Show that a subset of X is constructable if and
only if it is the finite disjoint union of locally closed subsets.

24-. Show that the image of an irreducible scheme is irreducible.

Class 20:

25. Let f : Spec A → Spec B be a morphism of affine schemes, and suppose M is an A-

module, so M̃ is a quasicoherent sheaf on Spec A. Show that f∗M̃ ∼= M̃B. (Hint: There is
only one reasonable way to proceed: look at distinguished opens!)

26. Give an example of a morphism of schemes π : X → Y and a quasicoherent sheaf F
on X such that π∗F is not quasicoherent. (Answer: Y = A1, X = countably many copies of
A1. Then let f = t. Xt has a global section (1/t, 1/t2, 1/t3, . . . ). The key point here is that
infinite direct sums do not commute with localization.)

27. Suppose f : X → Y is a finite morphism of Noetherian schemes. If F is a coherent
sheaf on X, show that f∗F is a coherent sheaf. (Hint: Show first that f∗OX is finite type =
locally finitely generated.)

28. Verify that the following is an example showing that pullback is not left-exact: con-
sider the exact sequence of sheaves on A1, where p is the origin:

0 → OA1 (−p) → OA1 → Op → 0.

(This is a closed subscheme exact sequence; also an effective Cartier exact sequence. Al-
gebraically, we have k[t]-modules 0 → tk[t] → k[t] → k → 0.) Restrict to p.

Class 21:

29. The notion of integral morphism is well behaved with localization and quotient of B,
and quotient of A (but not localization of A, witness k[t] → k[t], but k[t] → k[t](t)). The
notion of integral extension is well behaved with respect to localization and quotient of
B, but not quotient of A (same example, k[t] → k[t]/(t)).

30+. (a) Show that if B is an integral extension of A, and C is an integral extension of B,
then C is an integral extension of A.
(b) Show that if B is a finite extension of A, and C is a finite extension of B, then C is an
finite extension of A.

31-. Show that the special case of the going-up theorem where A is a field translates to: if
B ⊂ A is a subring with A integral over B, then B is a field. Prove this. (Hint: all you need
to do is show that all nonzero elements in B have inverses in B. Here is the start: If b ∈ B,
then 1/b ∈ A, and this satisfies some integral equation over B.)

32+. (sometimes also called the going-up theorem) Show that if q1 ⊂ q2 ⊂ · · · ⊂ qn is a chain
of prime ideals of B, and p1 ⊂ · · · ⊂ pm is a chain of prime ideals of A such that pi “lies
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over” qi (and m < n), then the second chain can be extended to p1 ⊂ · · · ⊂ pn so that this
remains true.

33+. Show that if f : Spec A → Spec B corresponds to an integral extension of rings, then
dim Spec A = dim Spec B.

34. Show that finite morphisms are closed, i.e. the image of any closed subset is closed.

35. Show that integral ring extensions induce a surjective map of spectra.

36. Suppose X is a Noetherian scheme. Show that a subset of X is constructable if and
only if it is the finite disjoint union of locally closed subsets. (This is admittedly the same
as 23.)

37. Show that a dominant morphism of integral schemes X → Y induces an inclusion of
function fields in the other direction.

38. If φ : A → B is a ring morphism, show that the corresponding morphism of affine
schemes Spec B → Spec A is dominant iff φ has nilpotent kernel.

39+. Reduce the proof of Chevalley’s theorem to the following case: suppose f : X =
Spec A → Y = Spec B is a dominant morphism, where A and B are domains, and f corre-
sponds to φ : B → B[x1, . . . , xn]/I ∼= A. Show that the image of f contains a dense open
subset of Spec B. (See the class notes.)

Class 22:

40. Let φ : X → Pn
A be a morphism of A-schemes, corresponding to an invertible sheaf L

on X and sections s0, . . . , sn ∈ Γ(X,L) as above. Then φ is a closed immersion iff (1) each
open set Xi = Xsi

is affine, and (2) for each i, the map of rings A[y0, . . . , yn] → Γ(Xi,OXi
)

given by yj 7→ sj/si is surjective.

41. (Automorphisms of projective space) Show that all the automorphisms of projective space
P

n
k correspond to (n+1)×(n+1) invertible matrices over k, modulo scalars (also known as

PGLn+1(k)). (Hint: Suppose f : Pn
k → Pn

k is an automorphism. Show that f∗O(1) ∼= O(1).
Show that f∗ : Γ(Pn,O(1)) → Γ(Pn,O(1)) is an isomorphism.)

42. Show that any map from projective space to a smaller projective space is constant.
(Fun!)

43. Prove that An
R

∼= An
Z
×Spec Z Spec R. Prove that Pn

R
∼= Pn

Z
×Spec Z Spec R.

44. Show that for finite-type schemes over C, the complex-valued points of the fibered
product correspond to the fibered product of the complex-valued points. (You will just
use the fact that C is algebraically closed.)

45-. Describe Spec C ×Spec R Spec C.
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46. Consider the morphism of schemes X = Spec k[t] → Y = Spec k[u] corresponding
to k[u] → k[t], u = t2 (where the characteristic of k is not 2). Show that X ×Y X has 2

irreducible components. Compare what is happening above the generic point of Y to the
previous exercise.

E-mail address: vakil@math.stanford.edu

5



FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 10

RAVI VAKIL

This set is due Thursday, February 2, in Jarod Alper’s mailbox. It covers (roughly)
classes 23 and 24.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in six solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. I’m happy to give hints, and some of these problems
require hints!

0. Here is something I would like to see worked out. Show that the points of Spec Q⊗Q Q

are in natural bijection with Gal(Q/Q), and the Zariski topology on the former agrees
with the profinite topology on the latter.

Class 23:

1-. Show that for the morphism Spec C → Spec R, all geometric fibers consist of two
reduced points.

2+. Show that the notion of “morphism locally of finite type” is preserved by base change.
Show that the notion of “affine morphism” is preserved by base change. Show that the
notion of “finite morphism” is preserved by base change.

3+. Show that the notion of “morphism of finite type” is preserved by base change.

4. Show that the notion of “quasicompact morphism” is preserved by base change.

5. Show that the notion of “quasifinite morphism” (= finite type + finite fibers) is pre-
served by base change. (Note: the notion of “finite fibers” is not preserved by base
change. Spec Q → Spec Q has finite fibers, but Spec Q ⊗Q Q → Spec Q has one point
for each element of Gal(Q/Q).)

6. Show that surjectivity is preserved by base change (or fibered product). In other words,
if X → Y is a surjective morphism, then for any Z → Y, X×Y Z → Z is surjective. (You may
end up using the fact that for any fields k1 and k2 containing k3, k1 ⊗k3

k2 is non-zero, and
also the axiom of choice.)

Date: Tuesday, January 24, 2006. Minor update October 26, 2006.
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7-. Show that the notion of “irreducible” is not necessarily preserved by base change.
Show that the notion of “connected” is not necessarily preserved by base change. (Hint:
C ⊗R C, Q[i] ⊗Q Q[i].)

8. Show that Spec C is not a geometrically irreducible R-scheme. If char k = p, show that
Spec k(u) is not a geometrically reduced Spec k(up)-scheme.

9. Show that the notion of geometrically irreducible (resp. connected, reduced, integral)
fibers behaves well with respect to base change.

10. Suppose that l/k is a finite field extension. Show that a k-scheme X is normal if and
only if X×Spec kSpec l is normal. Hence deduce that if k is any field, then Spec k[w, x, y, z]/(wz−

xy) is normal. Hint: we showed earlier (Problem B4 on set 4) that Spec k[a, b, c, d]/(a2 +

b2 + c2 + d2) is normal. (This is less important, but helps us understand this example.)

11. Show that the Segre scheme (the image of the Segre morphism) is cut out by the
equations corresponding to

rank





a00 · · · a0n

... . . . ...
am0 · · · amn



 = 1,

i.e. that all 2 × 2 minors vanish. (Hint: suppose you have a polynomial in the aij that
becomes zero upon the substitution aij = xiyj. Give a recipe for subtracting polynomials
of the form monomial times 2 × 2 minor so that the end result is 0.)

12. Show that Xred → X satisfies the following universal property: any morphism from a
reduced scheme Y to X factors uniquely through Xred.

Y

��
>>

>>
>>

>>

∃!
// Xred

}}||
||

||
||

X

.

(Do this exercise if you want to see how this sort of argument works in general.)

13. Show that ν : Spec R̃ → Spec R satisfies the universal property of normalization. We
used this to show that normalization exists.

14. Show that normalizations exist for any quasiaffine X (i.e. any X that can be expressed
as an open subset of an affine scheme). Show that normalizations exist in general.

Class 24:

15. Show that the normalization morphism is surjective. (Hint: Going-up!)

16. Show that dim X̃ = dim X (hint: see our going-up discussion).

17. Show that if X is an integral finite-type k-scheme, then its normalization ν : X̃ → X is
a finite morphism.
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18. Explain how to generalize the notion of normalization to the case where X is a re-
duced Noetherian scheme (with possibly more than one component). This basically re-
quires defining a universal property. I’m not sure what the “perfect” definition, but all
reasonable universal properties should lead to the same space.

19. Show that if X is an integral finite type k-scheme, then its non-normal points form
a closed subset. (This is a bit trickier. Hint: consider where ν∗OX̃ has rank 1.) I haven’t
thought through all the details recently, so I hope I’ve stated this correctly.

20. (Good practice with the concept.) Suppose X = Spec Z[15i]. Describe the normaliza-
tion X̃ → X. (Hint: it isn’t hard to find an integral extension of Z[15i] that is integrally
closed. By the above discussion, you’ve then found the normalization!) Over what points
of X is the normalization not an isomorphism?

21. (This is an important generalization!) Suppose X is an integral scheme. Define the
normalization of X, ν : X̃ → X, in a given finite field extension of the function field of X. Show
that X̃ is normal. (This will be hard-wired into your definition.) Show that if either X

is itself normal, or X is finite type over a field k, then the normalization in a finite field
extension is a finite morphism.

22. Suppose X = Spec Z (with function field Q). Find its integral closure in the field
extension Q(i).

23. (a) Suppose X = Spec k[x] (with function field k(x)). Find its integral closure in the
field extension k(y), where y2 = x2 + x. (We get a Dedekind domain.)
(b) Suppose X = P1, with distinguished open Spec k[x]. Find its integral closure in the
field extension k(y), where y2 = x2 + x. (Part (a) involves computing the normalization
over one affine open set; now figure out what happens over the “other”.)

24. Show that if f : Z → X is an affine morphism, then we have a natural isomorphism
Z ∼= Spec f∗OZ of X-schemes.

25. (Spec behaves well with respect to base change) Suppose f : Z → X is any morphism,
and A is a quasicoherent sheaf of algebras on X. Show that there is a natural isomorphism
Z ×X SpecA ∼= Spec f∗A.

26. If F is a locally free sheaf, show that Spec SymF ∗ is a vector bundle, i.e. that given
any point p ∈ X, there is a neighborhood p ∈ U ⊂ X such that Spec SymF ∗|U ∼= A1

U. Show
that F is a sheaf of sections of it.

27. Suppose f : SpecA → X is a morphism. Show that the category of quasicoherent
sheaves on Spec A is “essentially the same” (=equivalent) as the category of quasicoherent
sheaves on X with the structure of A-modules (quasicoherent A-modules on X).

28. Complete this argument that if X = Spec A, then (ProjS∗,O(1)) satisfies the universal
property.
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29. Show that (ProjS∗,O(1)) exists in general, by following the analogous universal prop-
erty argument: show that it exists for X quasiaffine, then in general.

30. (Proj behaves well with respect to base change) Suppose S∗ is a quasicoherent sheaf
of graded algebras on X satisfying the required hypotheses above for ProjS∗ to exist. Let
f : Y → X be any morphism. Give a natural isomorphism

(Projf∗S∗,OProjf∗S∗
(1)) ∼= (Y ×X ProjS∗, g

∗
OProjS∗

(1)) ∼=

where g is the natural morphism in the base change diagram

Y ×X ProjS∗

g
//

��

ProjS∗

��

Y // X.

31. Proj(S∗[t]) ∼= SpecS∗

∐
ProjS∗, where SpecS∗ is an open subscheme, and ProjS∗ is a

closed subscheme. Show that ProjS∗ is an effective Cartier divisor, corresponding to the
invertible sheaf OProjN(1). (This is the generalization of the projective and affine cone. At
some point I should give an explicit reference to our earlier exercise on this.)

32. Suppose L is an invertible sheaf on X, and S∗ is a quasicoherent sheaf of graded
algebras on X satisfying the required hypotheses above for ProjS∗ to exist. Define S ′

∗ =

⊕n=0Sn ⊗ Ln. Give a natural isomorphism of X-schemes
(ProjS ′

∗,OProjS ′

∗
(1)) ∼= (ProjS∗,OProjS∗

(1) ⊗ π∗
L),

where π : ProjS∗ → X is the structure morphism. In other words, informally speaking,
the Proj is the same, but the O(1) is twisted by L.

33. Show that closed immersions are projective morphisms. (Hint: Suppose the closed
immersion X → Y corresponds to OY → OX. Consider S0 = OX, Si = OY for i > 1.)

34. (suggested by Kirsten) Suppose f : X ↪→ Pn
S where S is some scheme. Show that the

structure morphism π : X → S is a projective morphism as follows: let L = f∗OPn
S
(1), and

show that X = Projπ∗L
⊗n.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 11

RAVI VAKIL

This set is due Thursday, February 9, in Jarod Alper’s mailbox. It covers (roughly)
classes 25 and 26.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in six solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. I’m happy to give hints, and some of these problems
require hints!

Class 25:

1. Verify that the following definition of “induced reduced subscheme structure” is well-
defined. Suppose X is a scheme, and S is a closed subset of X. Then there is a unique
reduced closed subscheme Z of X “supported on S”. More precisely, it can be defined
by the following universal property: for any morphism from a reduced scheme Y to X,
whose image lies in S (as a set), this morphism factors through Z uniquely. Over an affine
X = Spec R, we get Spec R/I(S). (For example, if S is the entire underlying set of X, we get
Xred.)

2+. Show that open immersions and closed immersions are separated. (Answer: Show
that monomorphisms are separated. Open and closed immersions are monomorphisms,
by earlier exercises. Alternatively, show this by hand.)

3+. Show that every morphism of affine schemes is separated. (Hint: this was essentially
done in the notes if you know where to look.)

4. Complete the proof that Pn
Z

→ Spec Z is separated, by verifying the last sentence in the
proof.

5. Show that the line with doubled origin X is not separated, by verifying that the image of
the diagonal morphism is not closed. (Another argument is given below, in Exercise 12.)

6. Show that any morphism from a Noetherian scheme is quasicompact. Hence show that
any morphism from a Noetherian scheme is quasiseparated.

Date: Tuesday, January 31, 2006. Update February 27 (changes to 18). Update February 12 (change to 15).
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7+. Show that f : X → Y is quasiseparated if and only if for any affine open Spec R of Y,
and two affine open subsets U and V of X mapping to Spec R, U ∩ V is a finite union of
affine open sets.

8. Here is an example of a nonquasiseparated scheme. Let X = Spec k[x1, x2, . . . ], and let
U be X − m where m is the maximal ideal (x1, x2, . . . ). Take two copies of X, glued along
U. Show that the result is not quasiseparated.

9. Prove that the condition of being quasiseparated is local on the target. (Hint: the
condition of being quasicompact is local on the target by an earlier exercise.)

10-. Show that a k-scheme is separated (over k) iff it is separated over Z.

11+ (the locus where two morphisms agree) We can now make sense of the following
statement. Suppose

f, g : X

��
>>

>>
>>

>
// Y

����
��

��
��

Z

are two morphisms over Z. Then the locus on X where f and g agree is a locally closed
subscheme of X. If Y → Z is separated, then the locus is a closed subscheme of X. More
precisely, define V to be the following fibered product:

V //

��

Y

δ
��

X
(f,g)

// Y ×Z Y.

As δ is a locally closed immersion, V → X is too. Then if h : W → X is any scheme such
that g ◦ h = f ◦ h, then h factors through V . (Put differently: we are describing V ↪→ X by
way of a universal property. Taking this as the definition, it is not a priori clear that V is a
locally closed subscheme of X, or even that it exists.) Now we come to the exercise: prove
this (the sentence before the parentheses). (Hint: we get a map g ◦h = f ◦h : W → Y. Use
the definition of fibered product to get W → V .)

12. Show that the line with doubled origin X is not separated, by finding two morphisms
f1, f2 : W → X whose domain of agreement is not a closed subscheme. (Another argument
was given above, in Exercise 5.)

13. Suppose π : Y → X is a morphism, and s : X → Y is a section of a morphism, i.e. π ◦ s is
the identity on X. Show that s is a locally closed immersion. Show that if π is separated,
then s is a closed immersion. (This generalizes Proposition 1.12 in the Class 25 notes.)

14-. Suppose P is a class of morphisms such that closed immersions are in P, and P is
closed under fibered product and composition. Show that if X → Y is in P then Xred

→

Yred is in P. (Two examples are the classes of separated morphisms and quasiseparated
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morphisms.) (Hint:

Xred //

%%KKKKKKKKKKK
X ×Y Yred

��

// Yred

��

X // Y

)

15. Suppose π : X → Y is a morphism or a ring R, Y is a separated R-scheme, U is an
affine open subset of X, and V is an affine open subset of Y. Show that U ∩ π−1V is an
affine open subset of X. (Hint: this generalizes Proposition 1.9 of the Class 25 notes. Use
Proposition 1.12 or 1.13.) This will be used in the proof of the Leray spectral sequence.

16. Make this precise: show that the line with the doubled origin fails the valuative
criterion for separatedness.

Class 26:

17-. Show that A1
C

→ C is not proper.

18. Show that finite morphisms are projective. (There was something that I didn’t check in
the notes.) More explicitly, if X → Y is finite, then I described a sheaf of graded algebras S∗

on Y, and claimed that X = ProjS∗. Verify that this is indeed the case. What is OProjS∗
(1)?

19-. Suppose (1) is a commutative diagram, and f is surjective, g is proper, and h is
separated and finite type. Show that h is proper.

(1) X
f

//

g

��
??

??
??

? Y
h

����
��

��
�

Z

(I’m not sure that this is useful, but I know that if I forget to mention it, it will come back
to haunt me!)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 12

RAVI VAKIL

This set is due Thursday, February 16, in Jarod Alper’s mailbox. It covers (roughly)
classes 27 and 28.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in five solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. I’m happy to give hints, and some of these problems
require hints!

Class 27:

1+. (Scheme-theoretic closure and scheme-theoretic image) If f : W → Y is any morphism,
define the scheme-theoretic image as the smallest closed subscheme Z → Y so that f

factors through Z ↪→ Y. Show that this is well-defined. (One possible hint: use a universal
property argument.) If Y is affine, the ideal sheaf corresponds to the functions on Y that
are zero when pulled back to Z. Show that the closed set underlying the image subscheme
may be strictly larger than the closure of the set-theoretic image: consider Spec k(t) →

Spec k[t]. (We define the scheme-theoretic closure of a locally closed subscheme W ↪→ Y

as the scheme-theoretic image of the morphism.)

2-. Show that rational functions on an integral scheme correspond to rational maps to A
1
Z
.

3-. Show that you can compose two rational maps f : X 99K Y, g : Y 99K Z if f is dominant.

4. We define the graph of a rational map f : X 99K Y as follows: let (U, f ′) be any represen-
tative of this rational map (so f ′ : U → Y is a morphism). Let Γf be the scheme-theoretic
closure of Γf′ ↪→ U×Y ↪→ X×Y, where the first map is a closed immersion, and the second
is an open immersion. Show that this is independent of the choice of U.

5. Let K be a finitely generated field extension of transcendence degree m over k. Show
there exists an irreducible k-variety W with function field K. (Hint: let x1, . . . , xn be
generators for K over k. Consider the map Spec K → Spec k[t1, . . . , tn] given by the ring
map ti 7→ xi. Take the scheme-theoretic closure of the image.)

Date: Tuesday, February 7, 2006. Updated March 8.
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6+. Prove the following. Suppose X and Y are integral and separated (our standard hy-
potheses from last day). Then X and Y are birational if and only if there is a dense=non-
empty open subscheme U of X and a dense=non-empty open subscheme V of Y such that
U ∼= Y. (Feel free to consult Iitaka, or Hartshorne Chapter I Corollary 4.5.)

7. Use the class discussion to find a “formula” for all Pythagorean triples.

8. Show that the conic x2+y2 = z2 in P
2
k is isomorphic to P

1
k for any field k of characteristic

not 2. (Presumably this is true for any ring in which 2 is invertible too...)

9. Find all rational solutions to the y2 = x3 + x2, by finding a birational map to A
1,

mimicking what worked with the conic.

10. Find a birational map from the quadric Q = {x2 + y2 = w2 + z2} to P
2. Use this to find

all rational points on Q. (This illustrates a good way of solving Diophantine equations.
You will find a dense open subset of Q that is isomorphic to a dense open subset of P

2,
where you can easily find all the rational points. There will be a closed subset of Q where
the rational map is not defined, or not an isomorphism, but you can deal with this subset
in an ad hoc fashion.)

11. (a first view of a blow-up) Let k be an algebraically closed field. (We make this hypothesis
in order to not need any fancy facts on nonsingularity.) Consider the rational map A

2
k 99K

P
1
k given by (x, y) 7→ [x; y]. I think you have shown earlier that this rational map cannot

be extended over the origin. Consider the graph of the birational map, which we denote
Bl(0,0) A

2
k. It is a subscheme of A

2
k×P

1
k. Show that if the coordinates on A

2 are x, y, and the
coordinates on P

1 are u, v, this subscheme is cut out in A
2×P

1 by the single equation xv =

yu. Show that Bl(0,0) A
2
k is nonsingular. Describe the fiber of the morphism Bl(0,0) A

2
k → P

1
k

over each closed point of P
1
k. Describe the fiber of the morphism Bl(0,0) A

2
k → A

2
k. Show

that the fiber over (0, 0) is an effective Cartier divisor. It is called the exceptional divisor.

12. (the Cremona transformation, a useful classical construction) Consider the rational map
P

2
99K P

2, given by [x; y; z] → [1/x; 1/y; 1/z]. What is the the domain of definition? (It
is bigger than the locus where xyz 6= 0!) You will observe that you can extend it over
codimension 1 sets. This will again foreshadow a result we will soon prove.

Class 28:

13. (Useful practice!) Suppose X is a Noetherian k-scheme, and Z is an irreducible codi-
mension 1 subvariety whose generic point is a nonsingular point of X (so the local ring
OX,Z is a discrete valuation ring). Suppose X 99K Y is a rational map to a projective k-
scheme. Show that the domain of definition of the rational map includes a dense open
subset of Z. In other words, rational maps from Noetherian k-schemes to projective k-
schemes can be extended over nonsingular codimension 1 sets. See problem 12 to see
this principle in action. (By the easy direction of the valuative criterion of separatedness,
or the theorem of uniqueness of extensions of maps from reduced schemes to separated
schemes — Theorem 3.3 of Class 27 — this map is unique.)

2



14. Show that all nonsingular proper curves are projective. (We may eventually see
that all reduced proper curves over k are projective, but I’m not sure; this will use the
Riemann-Roch theorem, and I may just prove it for projective curves.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 13

RAVI VAKIL

This set is due Thursday, February 23, in Jarod Alper’s mailbox. It covers (roughly)
classes 29 and 30.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in five solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. Some of these problems require hints, and I’m
happy to give them!

Class 29:

1+. (This was discussed in class 29, but I’ve put it in the class 27 notes, because it belongs
more naturally there.) Suppose W ↪→ Y is a locally closed immersion. The scheme-
theoretic closure is the smallest closed subscheme of Y containing W. Show that this
notion is well-defined. More generally, if f : W → Y is any morphism, define the scheme-
theoretic image as the smallest closed subscheme Z → Y so that f factors through Z ↪→ Y.
Show that this is well-defined. (One possible hint: use a universal property argument.)
If Y is affine, the ideal sheaf corresponds to the functions on Y that are zero when pulled
back to Z. Show that the closed set underlying the image subscheme may be strictly
larger than the closure of the set-theoretic image: consider

∐
n≥0

Spec k[t]/tn → Spec k[t].
(I suspect that such a pathology cannot occur for finite type morphisms of Noetherian
schemes, but I haven’t investigated.)

2. Suppose f : C → C ′ is a degree d morphism of integral projective nonsingular curves,
and L is an invertible sheaf on C ′. Show that degC f∗L = d degC′ L.

3. (for those who like working with non-Noetherian schemes) Suppose R is a ring that is
coherent over itself. (In other words, R is a coherent R-module.) Show that for any coher-
ent sheaf F on a projective R-scheme where R is Noetherian, hi(X,F) is a finitely gener-
ated R-module. (Hint: induct downwards as before. The order is as follows: Hn(Pn

R
,F)

finitely generated, Hn(Pn

R
,G) finitely generated, Hn(Pn

R
,F) coherent, Hn(Pn

R
,G) coherent,

Hn−1(Pn

R
,F) finitely generated, Hn−1(Pn

R
,G) finitely generated, etc.)

4+ (This is important!) Suppose 0 → F1 → F2 → F3 → 0 is a short exact sequence of
sheaves on a topological space, and U is an open cover such that on any intersection the
sections of F2 surject onto F3. Show that we get a long exact sequence of cohomology.
(Note that this applies in our case!)

Date: Tuesday, February 14, 2006. Updated March 8, 2006.
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5. If D is an effective Cartier divisor on a projective nonsingular curve, say D =
∑

nipi,
prove that deg D =

∑
ni deg pi, where deg pi is the degree of the field extension of the

residue field at pi over k.

Class 30:

6. Suppose V ⊂ U are open subsets of X. Show that we have restriction morphisms
Hi(U,F) → Hi(V,F) (if U and V are quasicompact, and U hence V is separated). Show
that restrictions commute. Hence if X is a Noetherian space, Hi(,̇F) this is a contravariant
functor from the category Top(X) to abelian groups. (The same argument will show more
generally that for any map f : X → Y, there exist natural maps Hi(X,F) → Hi(X, f∗F); I
should have asked this instead.)

7. Show that if F → G is a morphism of quasicoherent sheaves on separated and quasi-
compact X then we have natural maps Hi(X,F) → Hi(X,G). Hence Hi(X, ·) is a covariant
functor from quasicoherent sheaves on X to abelian groups (or even R-modules).

8. Verify that Hn−1(Pn−1

R
,F ′) → Hn(Pn

R
,F) is injective. (Hint: one possibility is by verify-

ing that it is the map on Laurent monomials we claimed when proving that cohomology
of O(m) is what we wanted it to be. In particular, this fact was used in that proof, so you
can’t use that theorem!)

9. Suppose X is a projective k-scheme. Show that Euler characteristic is additive in exact
sequences. In other words, if 0 → F → G → H → 0 is an exact sequence of coherent
sheaves on X, then χ(X,G) = χ(X,F) + χ(X,H). (Hint: consider the long exact sequence
in cohomology.) More generally, if

0 → F1 → · · · → Fn → 0

is an exact sequence of sheaves, show that
n∑

i=1

(−1)iχ(X,Fi) = 0.

10. The Riemann-Roch theorem for line bundles on nonsingular projective curves over k. Sup-
pose F is an invertible sheaf on C. Show that χ(L) = degL + χ(C,OC). (Possible hint:
Write L as the difference of two effective Cartier divisors, L ∼= O(Z − P). Describe two
exact sequences 0 → L(−Z) → L → OZ ⊗ L → 0 and 0 → OC(−P) → OC → OP → 0,
where L(−Z) ∼= OC(P).)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 14

RAVI VAKIL

This set is due Thursday, March 2, in Jarod Alper’s mailbox. It covers (roughly)
classes 31 and 32.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in six solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. Some of these problems require hints, and I’m
happy to give them!

Class 31:

1-. Prove the base case of Theorem 1.1 of Class 31. If you choose to do the case k = −1,
explain precisely why what you are proving is the base case!

2-. Consider the short exact sequence of A-modules 0 // M
×f // M // K ′ // 0 .

Show that Supp K ′ = Supp(M) ∩ Supp(f).

3-. Show that the twisted cubic (in P
3) has Hilbert polynomial 3m + 1.

4. (a) Find the Hilbert polynomial for the dth Veronese embedding of P
n (i.e. the closed

immersion of P
n in a bigger projective space by way of the line bundle O(d))

(b) Find the degree of the dth Veronese embedding of P
n.

5-. Show that the degree of a degree d hypersurface is d (preventing a notational crisis).

6. Suppose a curve C is embedded in projective space via an invertible sheaf of degree d.
(In other words, this line bundle determines a closed immersion.) Show that the degree
of C under this embedding is d (preventing another notational crisis). (Hint: Riemann-
Roch.)

7+. (Bezout’s theorem) Suppose X is a projective scheme of dimension at least 1, and H is a
degree d hypersurface not containing any associated points of X. (For example, if X is a
projective variety, then we are just requiring H not to contain any irreducible components
of X.) Show that deg H ∩ X = d deg X.

8-. Determine the degree of the d-fold Veronese embedding of P
n in a different way as

follows. Let vd : P
n → P

N be the Veronese embedding. To find the degree of the image,

Date: Tuesday, February 21, 2006. Minor update April 9.
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we intersect it with n hyperplanes in P
N (scheme-theoretically), and find the number of

intersection points (counted with multiplicity). But the pullback of a hyperplane in P
N to

P
n is a degree d hypersurface. Perform this intersection in P

n, and use Bezout’s theorem.
(If already you know the answer by the earlier exercise on the degree of the Veronese
embedding, this will be easier.)

9+. Show that if X is a complete intersection of dimension r in P
n, then Hi(X,OX(m)) = 0

for all 0 < i < r and all m. Show that if r > 0, then H0(Pn,O(m)) → H0(X,O(m)) is
surjective.

10-. Show that complete intersections of positive dimension are connected. (Hint: show
h0(X,OX) = 1.)

11-. Find the genus of the intersection of 2 quadrics in P
3. (We get curves of more genera

by generalizing this!)

12-. Show that the rational normal curve of degree d in P
d is not a complete intersection

if d > 2.

13-. Show that the union of 2 distinct planes in P
4 is not a complete intersection. (This is

the first appearance of another universal counterexample!) Hint: it is connected, but you
can slice with another plane and get something not connected.

14. Show that if π is affine, then for i > 0, Riπ∗F = 0. Moreover, if Y is quasicompact and
separated, show that the natural morphism Hi(X,F) → Hi(Y, f∗F) is an isomorphism. (A
special case of the first sentence is a special case we showed earlier, when π is a closed
immersion. Hint: use any affine cover on Y, which will induce an affine cover of X.)

Class 32:

15+. (Important algebra exercise) Suppose M1
α // M2

β // M3 is a complex of A-modules

(i.e. β ◦ α = 0), and N is an A-module. (a) Describe a natural homomorphism of the co-
homology of the complex, tensored with N, with the cohomology of the complex you get
when you tensor with N H(M∗) ⊗A B → H(M∗ ⊗A N), i.e.

(

ker β

im α

)

⊗A N →
ker(β ⊗ N)

im(α ⊗ N)
.

I always forget which way this map is supposed to go.
(b) If N is flat, i.e. ⊗N is an exact functor, show that the morphism defined above is an
isomorphism. (Hint: This is actually a categorical question: if M∗ is an exact sequence
in an abelian category, and F is a right-exact functor, then (a) there is a natural morphism
FH(M∗) → H(FM∗), and (b) if F is an exact functor, this morphism is an isomorphism.)

16+. (Higher pushforwards and base change) (a) Suppose f : Z → Y is any morphism, and
π : X → Y as usual is quasicompact and separated. Suppose F is a quasicoherent sheaf

2



on X. Let

W
f′

//

π′

��

X

π

��
Z

f // Y

is a fiber diagram. Describe a natural morphism f∗(Riπ∗F) → Riπ ′

∗
(f ′)∗F .

(b) If f : Z → Y is an affine morphism, and for a cover Spec Ai of Y, where f−1(Spec Ai) =

Spec Bi, Bi is a flat A-algebra, show that the natural morphism of (a) is an isomorphism.
(You can likely generalize this immediately, but this will lead us into the concept of flat
morphisms, and we’ll hold off discussing this notion for a while.)

17+. (The projection formula) Suppose π : X → Y is quasicompact and separated, and E , F
are quasicoherent sheaves on X and Y respectively. (a) Describe a natural morphism

(Riπ∗E) ⊗F → Riπ∗(E ⊗ π∗F).

(b) If F is locally free, show that this natural morphism is an isomorphism.

18. Consider the open immersion π : A
n − 0 → A

n. By direct calculation, show that
Rn−1f∗OAn−0 6= 0.

19+. (Semicontinuity of fiber dimension of projective morphisms) Suppose π : X → Y is a
projective morphism where OY is coherent. Show that {y ∈ Y : dim f−1(y) > k} is a Zariski-
closed subset. In other words, the dimension of the fiber “jumps over Zariski-closed
subsets”. (You can interpret the case k = −1 as the fact that projective morphisms are
closed.) This exercise is rather important for having a sense of how projective morphisms
behave! (Hint: see the notes.)

20. Suppose f : X → Y is a projective morphism, with O(1) on X. Suppose Y is quasicom-
pact and OY is coherent. Let F be coherent on X. Show that

(a) f∗f∗F(n) → F(n) is surjective for n � 0. (First show that there is a natural map
for any n! Hint: by adjointness of f∗ with f∗.) Translation: for n � 0, F(n) is
relatively generated by global sections.

(b) For i > 0 and n � 0, Rif∗F(n) = 0.

21-. Show that H0(A∗) = E0,0
∞ = E0,0

2 and

0 → E1,0
2 → H1(A∗) → E0,1

2 → E2,0
2 → H2(A∗).

(Here take the spectral sequence starting with the vertical arrows.)

22. Suppose we are working in the category of vector spaces over a field k, and ⊕p,qE
p,q
2

is a finite-dimensional vector space. Show that χ(H∗(A∗)) is well-defined, and equals∑
p,q(−1)p+qE

p,q
2 . (It will sometimes happen that ⊕E

p,q
0 will be an infinite-dimensional

vector space, but that E
p,q
2 will be finite-dimensional!)

23. By looking at our spectral sequence proof of the five lemma, prove a subtler version
of the five lemma, where one of the isomorphisms can instead just be required to be an
injection, and another can instead just be required to be a surjection. (I’m deliberately not

3



telling you which ones, so you can see how the spectral sequence is telling you how to
improve the result.) I’ve heard this called the “subtle five lemma”, but I like calling it the
41

2
-lemma.

24. If β and δ (in (1)) are injective, and α is surjective, show that γ is injective. State the
dual statement. (The proof of the dual statement will be essentially the same.)

(1) F // G // H // I // J

A //

α

OO

B //

β

OO

C

γ

OO

// D //

δ

OO

E

ε

OO

25. Use spectral sequences to show that a short exact sequence of complexes gives a long
exact sequence in cohomology.

26. Suppose µ : A∗ → B∗ is a morphism of complexes. Suppose C∗ is the single complex
associated to the double complex A∗ → B∗. (C∗ is called the mapping cone of µ.) Show that
there is a long exact sequence of complexes:

· · · → Hi−1(C∗) → Hi(A∗) → Hi(B∗) → Hi(C∗) → Hi+1(A∗) → · · · .

(There is a slight notational ambiguity here; depending on how you index your double
complex, your long exact sequence might look slightly different.) In particular, people
often use the fact µ induces an isomorphism on cohomology if and only if the mapping
cone is exact.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 15

RAVI VAKIL

This set is due Thursday, March 9, in Jarod Alper’s mailbox. It covers (roughly)
classes 33 and 34.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in five solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. Some of these problems require hints, and I’m
happy to give them!

Class 33:

1. (for people who like non-algebraically closed fields) Suppose that X is a quasicompact sep-
arated k-scheme, where k is a field. Suppose F is a quasicoherent sheaf on X. Let
Xk = X ×Spec k Spec k, and f : Xk → X the projection. Describe a natural isomorphism
Hi(X,F) ⊗k k → Hi(Xk, f

∗F). Recall that a k-scheme X is geometrically integral if Xk is
integral. Show that if X is geometrically integral, then H0(X,OX) ∼= k. (This is a clue that
P

1
C

is not a geometrically integral R-scheme.)

2. Suppose Y is any scheme, and π : P
n
Y → Y is the trivial projective bundle over Y. Show

that π∗OPn
Y

∼= OY. More generally, show that Rjπ∗O(m) is a finite rank free sheaf on Y, and
is 0 if j 6= 0, n. Find the rank otherwise.

3. Let A be any ring. Suppose a is a negative integer and b is a positive integer. Show
that Hi(Pm

A ×A P
n
A,O(a, b)) is 0 unless i = m, in which case it is a free A-module. Find the

rank of this free A-module. (Hint: Use the previous exercise, and the projection formula,
which was Exercise 1.3 of class 32, and exercise 17 of problem set 14.)

4. (a) Find the genus of a curve in class (2, n) on P
1
k ×k P

1
k. (A curve in class (2, n) is

any effective Cartier divisor corresponding to invertible sheaf O(2, n). Equivalently, it is
a curve whose ideal sheaf is isomorphic to O(−2, −n). Equivalently, it is a curve cut out
by a non-zero form of bidegree (2, n).)
(b) Suppose for convenience that k is algebraically closed of characteristic not 2. Show
that there exists an integral nonsingular curve in class (2, n) on P

1
k × P

1
k for each n > 0.

5. Suppose X and Y are projective k-schemes, and F and G are coherent sheaves on X and
Y respectively. Recall that if π1 : X × Y → X and π2 : X × Y → Y are the two projections,
then F � G := π∗

1F ⊗ π∗

2G. Prove the following, adding additional hypotheses if you find

Date: Tuesday, February 28, 2006. Updated March 6.
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them necessary.
(a) Show that H0(X × Y,F � G) = H0(X,F) ⊗ H0(Y,G).
(b) Show that HdimX+dimY(X × Y,F � G) = Hdim X(X,F)⊗k HdimY(Y,G).
(c) Show that χ(X × Y,F � G) = χ(X,F)χ(Y,G).

Class 34:

6-. Show that the following two morphisms are projective morphisms that are injective
on points, but that are not injective on tangent vectors.
(a) the normalization of the cusp y2 = x3 in the plane
(b) the Frobenius morphism from A

1 to A
1, given by k[t] → k[u], u → tp, where k has

characteristic p.

7. Suppose L is a degree 2g − 2 invertible sheaf. Show that it has g − 1 or g sections, and
it has g sections if and only if L ∼= K.

8. Suppose C is a genus 0 curve (projective, geometrically integral and nonsingular).
Show that C has a point of degree at most 2.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 16

RAVI VAKIL

This set is due Thursday, March 16, in Jarod Alper’s mailbox. It covers (roughly)
classes 35 and 36.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in six solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. Some of these problems require hints, and I’m
happy to give them!

Class 35:

1-. Show that a curve C of genus at least 1 admits a degree 2 cover of P1 if and only if it
has a degree 2 invertible sheaf with precisely 2 sections.

2. Show that the nonhyperelliptic curves of genus 3 form a family of dimension 6. (Hint:
Count the dimension of the family of nonsingular quartics, and quotient by Aut P2 =

PGL(3).) This (and all other moduli dimension-counting arguments) should be inter-
preted as: “make a plausibility argument”, as we haven’t yet defined these moduli spaces.

3. Suppose C is a genus g curve. Show that if C is not hyperelliptic, then the canonical
bundle gives a closed immersion C ↪→ Pg−1. (In the hyperelliptic case, we have already
seen that the canonical bundle gives us a double cover of a rational normal curve.) Hint:
follow the genus 3 case. Such a curve is called a canonical curve.

4-. Suppose C is a curve of genus g > 1, over a field k that is not algebraically closed.
Show that C has a closed point of degree at most 2g − 2 over the base field. (For compar-
ison: if g = 1, there is no such bound!)

5. Suppose X ⊂ Y ⊂ Pn are a sequence of closed subschemes, where X and Y have the
same Hilbert polynomial. Show that X = Y. (Hint: consider the exact sequence

0 → IX/Y → OY → OX → 0.

Show that if the Hilbert polynomial of IX/Y is 0, then IX/Y must be the 0 sheaf.)

6. Suppose that C is a complete intersection of a quadric surface with a cubic surface.
Show that OC(1) has 4 sections. (Hint: long exact sequences!)

Date: Tuesday, February 28, 2006. Superficial update June 26.
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7. Show that nonhyperelliptic curves of genus 4 “form a family of dimension 9 = 3g −

3”. (Again, this isn’t a mathematically well-formed question. So just give a plausibility
argument.)

8. Suppose C is a nonhyperelliptic genus 5 curve. The canonical curve is degree 8 in
P4. Show that it lies on a three-dimensional vector space of quadrics (i.e. it lies on 3

independent quadrics). Show that a nonsingular complete intersection of 3 quadrics is a
canonical genus 5 curve.

9. Show that the complete intersections of 3 quadrics in P
4 form a family of dimension

12 = 3 × 5 − 3.

10-. Show that if C ⊂ Pg−1 is a canonical curve of genus g ≥ 6, then C is not a complete
intersection. (Hint: Bezout.)

Class 36:

11. (a) Suppose C is a projective curve. Show that C − p is affine. (Hint: show that n � 0,
O(np) gives an embedding of C into some projective space Pm, and that there is some
hyperplane H meeting C precisely at p. Then C − p is a closed subscheme of Pn − H.)
(b) If C is a geometrically integral nonsingular curve over a field k (i.e. all of our standing
assumptions, minus projectivity), show that it is projective or affine.

12. Suppose (E, p) is an elliptic curve. Show that O(4p) embeds E in P3 as the complete
intersection of two quadrics.

13+. Verify that the axiomatic definition and the functorial definition of a group object in
a category are the same.

14+. Suppose (E, p) is an elliptic curve. Show that (E, p) is a group scheme. You may
assume that we’ve defined the multiplication morphism, as sketched in class and in the
notes. (Caution! we’ve stated that only the closed points form a group — the group Pic0.
So there is something to show here. The main idea is that with varieties, lots of things can
be checked on closed points. First assume that k = k, so the closed points are dimension
1 points. Then the associativity diagram is commutative on closed points; argue that it is
hence commutative. Ditto for the other categorical requirements. Finally, deal with the
case where k is not algebraically closed, by working over the algebraic closure.)

15-. Show that A1
k is a group scheme under addition, and Gm is a group scheme under

multiplication. You’ll see that the functorial description trumps the axiomatic descrip-
tion here! (Recall that Hom(X, A1

k) is canonically Γ(X,OX), and Hom(X, Gm) is canonically
Γ(X,OX)∗.)

16. Define the group scheme GL(n) over the integers.

17-. Define µn to be the kernel of the map of group schemes Gm → Gm that is “taking
nth powers”. In the case where n is a prime p, which is also char k, describe µp. (I.e. how
many points? How “big” = degree over k?)

2



18-. Define a ring scheme. Show that A1
k is a ring scheme.

19. Because A1
k is a group scheme, k[t] is a Hopf algebra. Describe the comultiplication

map k[t] → k[t] ⊗k k[t].

20. Suppose X is a scheme, and L is the total space of a line bundle corresponding to
invertible sheaf L, so L = Spec⊕n≥0(L

∨)⊗n. Show that H0(L,OL) = ⊕H0(X, (L∨)⊗n).
E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 17

RAVI VAKIL

This set is due Thursday, April 20. You can hand it in to Rob Easton, in class or via
his mailbox. It covers (roughly) classes 37 and 38.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in five solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. Some of these problems require hints, and I’m
happy to give them!

Class 37:

1+. In class I stated the following. Note that if A is generated over B (as an algebra)
by xi ∈ A (where i lies in some index set, possibly infinite), subject to some relations rj

(where j lies in some index set, and each is a polynomial in some finite number of the
xi), then the A-module ΩA/B is generated by the dxi, subject to the relations (i)—(iii) and
drj = 0. In short, we needn’t take every single element of A; we can take a generating set.
And we needn’t take every single relation among these generating elements; we can take
generators of the relations. Verify this.

2. (localization of differentials) If S is a multiplicative set of A, show that there is a natural
isomorphism ΩS−1A/B

∼= S−1ΩA/B. (Again, this should be believable from the intuitive
picture of “vertical cotangent vectors”.) If T is a multiplicative set of B, show that there is
a natural isomorphism ΩS−1A/T−1B

∼= S−1ΩA/B where S is the multiplicative set of A that
is the image of the multiplicative set T ⊂ B.

3+. (a) (pullback of differentials) If

A ′ Aoo

B ′

OO

B

OO

oo

is a commutative diagram, show that there is a natural homomorphism of A ′-modules
ΩA/B ⊗A A ′

→ ΩA′/B′ . An important special case is B = B ′.
(b) (differentials behave well with respect to base extension, affine case) If furthermore the above
diagram is a tensor diagram (i.e. A ′ ∼= B ′ ⊗B A) then show that ΩA/B ⊗A A ′

→ ΩA′/B′ is
an isomorphism.

4. Suppose k is a field, and K is a separable algebraic extension of k. Show that ΩK/k = 0.

Date: Tuesday, April 11, 2006. Minor update May 15.

1



5. (Jacobian description of ΩA/B) Suppose A = B[x1, . . . , xn]/(f1, . . . , fr). Then ΩA/B =

{⊕iBdxi}/{dfj = 0} maybe interpreted as the cokernel of the Jacobian matrix J : A⊕r
→

A⊕n.

Class 38:

6. (normal bundles to effective Cartier divisors) Suppose D ⊂ X is an effective Cartier divisor.
Show that the conormal sheaf N∨

D/X is O(−D)|D (and in particular is an invertible sheaf),

and hence that the normal sheaf is O(D)|D. It may be surprising that the normal sheaf
should be locally free if X ∼= A

2 and D is the union of the two axes (and more generally if
X is nonsingular but D is singular), because you may be used to thinking that the normal
bundle is isomorphic to a “tubular neighborhood”.

7-. Suppose f : X → Y is locally of finite type, and X is locally Noetherian. Show that ΩX/Y

is a coherent sheaf on X.

8+. (differentials on hyperelliptic curves) Consider the double cover f : C → P
1
k branched

over 2g + 2 distinct points. (We saw earlier that this curve has genus g.) Then ΩC/k is
again an invertible sheaf. What is its degree? (Hint: let x be a coordinate on one of the
coordinate patches of P

1
k. Consider f∗dx on C, and count poles and zeros.) In class I gave

a sketch showing that you should expect the answer to be 2g − 2.

9. (differentials on non-singular plane curves) Suppose C is a nonsingular plane curve of
degree d in P

2
k, where k is algebraically closed. By considering coordinate patches, find

the degree of ΩC/k. Make any reasonable simplifying assumption (so that you believe
that your result still holds for “most” curves).

10. Suppose that C is a nonsingular projective curve over k such that ΩC/k is an invertible
sheaf. (We’ll see that for nonsingular curves, the sheaf of differentials is always locally
free. But we don’t yet know that.) Let Ck = C ×Spec k Spec k. Show that ΩC

k
/k is locally

free, and that
deg ΩC

k
/k = deg ΩC/k.

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 18

RAVI VAKIL

This set is due Thursday, May 4. You can hand it in to Rob Easton, in class or via his
mailbox. It covers (roughly) classes 39, 40, 41, and 42.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in seven solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. Some of these problems require hints, and I’m
happy to give them!

Classes 39–40:

1. Show that H1(Pn
A, Tn

P
n
A
) = 0. (This later turns out to be an important calculation for the

following reason. If X is a nonsingular variety, H1(X, TX) parametrizes deformations of
the variety. Thus projective space can’t deform, and is “rigid”.)

2. I discussed the Grassmannian, which “parametrizes” the space of vector spaces of
dimension m in an (n + 1)-dimensional vector space V (over our base field k). The case
m = 1 is P

n. Over G(m, n + 1) we have a short exact sequence of locally free sheaves

0 → S → V ⊗OG(m,n+1) → Q → 0

where V⊗OG(m,n+1) is a trivial bundle, and S is the “universal subbundle” (such that over
a point [V ′ ⊂ V] of the Grassmannian G(m, n + 1), S|[V ′⊂V ] is V). Then

(1) ΩG(m,n+1)/k
∼= Hom(Q, S).

In the case of projective space, m = 1, S = O(−1). Verify (1) in this case.

3+. Show that if k is separably closed, then Xk is nonsingular if and only if X is nonsingu-
lar.

4-. Show that Bertini’s theorem still holds even if the variety X is singular in dimension 0.

5. Suppose C ⊂ P
2 is a nonsingular conic over a field of characteristic not 2. Show that the

dual variety is also a conic. (More precisely, suppose C is cut out by f(x0, x1, x2) = 0. Show
that {(a0, a1, a2) : a0x0 + a1x1 + a2x2 = 0} is cut out by a quadratic equation.) Thus for
example, through a general point in the plane, there are two tangents to C. (The points on
a line in the dual plane corresponds to those lines through a point of the original plane.)

Date: Tuesday, April 25, 2006. Updated June 26.
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6. (interpreting the ramification divisor in terms of number of preimages) Suppose all the
ramification above y ∈ Y is tame. Show that the degree of the branch divisor at y is
deg(f : X → Y) − #f−1(y). Thus the multiplicity of the branch divisor counts the extent to
which the number of preimages is less than the degree.

7. (degree of dual curves) Describe the degree of the dual to a nonsingular degree d plane
curve C as follows. Pick a general point p ∈ P

2. Find the number of tangents to C

through p, by noting that projection from p gives a degree d map to P
1 (why?) by a

curve of known genus (you’ve calculated this before), and that ramification of this cover
of P

1 corresponds to a tangents through p. (Feel free to make assumptions, e.g. that for
a general p this branched cover has the simplest possible branching — this should be a
back-of-an-envelope calculation.)

8. (Artin-Schreier covers) In characteristic 0, the only connected unbranched cover of A
1 is

the isomorphism A
1

∼

//

A
1 ; that was an earlier example/exercise, when we discussed

Riemann-Hurwitz the first time. In positive characteristic, this needn’t be true, because of
wild ramification over ∞. Show that the morphism corresponding to k[x] → k[x, y]/(yp −
xp − y) is such a map. (Once the theory of the algebraic fundamental group is developed,
this translates to: “A

1 is not simply connected in characteristic p.”)

Classes 41–42:

9-. If N ′
→ N → N ′′ is exact and M is a flat A-module, show that M ⊗A N ′

→ M ⊗A N →

M⊗A N ′′ is exact. Hence any exact sequence of A-modules remains exact upon tensoring
with M. (We’ve seen things like this before, so this should be fairly straightforward.)

10-. (localizations are flat). Suppose that S is a multiplicative subset of B. Show that B →

S−1B is a flat ring morphism.

11-. Suppose that A is a ring, p is a prime ideal, M is an Ap-module, and N is an A-module.
Show that M ⊗A N is canonically isomorphic to M ⊗Ap Np.

12. (a) Prove that flatness is preserved by chase of base ring: If M flat A-module, A → B

is a homomorphism, then M ⊗A B is a flat B-module.

(b) Prove transitivity of flatness: If B is a flat A-algebra, and M is B-flat, then it is also
A-flat. (Hint: consider the natural isomorphism (M ⊗A B) ⊗B · ∼= M ⊗B (B ⊗A ·).)

13. If X is a scheme, and η is the generic point for an irreducible component, show that
the natural morphism SpecOX,η → X is flat. (Hint: localization is flat.)

14. Show that B → A is faithfully flat if and only if Spec A → Spec B is faithfully flat. (Use
the definitions in the notes!)

15. Show that two homotopic maps of complexes induce the same map on homology. (Do
this only if you haven’t seen this before!)
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16. Show that any two lifts of resolutions of modules are homotopic (see the notes for a
more precise statement).

17. The notion of an injective object in an abelian category is dual to the notion of a pro-
jective object. Define derived functors for (i) covariant left-exact functors (these are called
right-derived functors), (ii) contravariant left-exact functors (also right-derived functors),
and (iii) contravariant right-exact functors (these are called left-derived functors), mak-
ing explicit the necessary assumptions of the category having enough injectives or pro-
jectives.

18+. If B is A-flat, then we get isomorphism B ⊗ TorA
i (M, N) ∼= TorB

i (B ⊗ M, B ⊗ N).
(Here is a fancier fact that experts may want to try: if B is not A-flat, we don’t get an
isomorphism; instead we get a spectral sequence.)

19. (not too important, but good practice if you haven’t played with Tor before) If x is not a
0-divisor, show that TorA

i (A/x, M) is 0 for i > 1, and for i = 0, get M/xM, and for i = 1,
get (M : x) (those things sent to 0 upon multiplication by x).

20+. (flatness over the dual numbers) This fact is important in deformation theory and else-
where. Show that M is flat over k[t]/t2 if and only if the natural map M/tM → tM is an
isomorphism.

21-. If 0 → M0 → M1 → · · · → Mn → 0 is an exact sequence, and Mi is flat for i > 0,
show that M0 is flat too. (Hint: as always, break into short exact sequences.)

22+. (flat limits are unique) Suppose A is a discrete valuation ring, and let η be the generic
point of Spec A. Suppose X is proper over A, and Y is a closed subscheme of Xη. Show
that there is only one closed subscheme Y ′ of X, proper over A, such that Y ′|η = Y, and Y ′

is flat over A.

23. (an interesting explicit example of a flat limit) Let X = A
3 × A

1
→ Y = A

1 over a field
k, where the coordinates on A

3 are x, y, and z, and the coordinates on A
1 are t. Define X

away from t = 0 as the union of the two lines y = z = 0 (the x-axis) and x = z − t = 0

(the y-axis translated by t). Find the flat limit at t = 0. (Hint: it is not the union of the two
axes, although it includes it. The flat limit is non-reduced.)

24. Prove that flat and locally finite type morphisms of locally Noetherian schemes are
open. (Hint: reduce to the affine case. Use Chevalley’s theorem to show that the image is
constructible. Reduce to target that is the spectrum of a local ring. Show that the generic
point is hit.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 19

RAVI VAKIL

This set is due Thursday, May 18. You can hand it in to Rob Easton, in class or via
his mailbox. It covers (roughly) classes 43, 44, 45, and 46.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in eight solutions. If you are ambitious
(and have the time), go for more. Unlike previous sets, problems marked with “+” count for
two solutions. Try to solve problems on a range of topics. You are encouraged to talk to
each other, and to me, about the problems. Some of these problems require hints, and I’m
happy to give them!

In lieu of completing this problems, you can prove the Cohomology and base change theorem.

Classes 43–44:

1. Prove the Riemann-Roch theorem for two P
1’s glued together at a (reduced) point. (We

needed this for our proof that a certain proper surface was nonprojective.)

2. Gluing two schemes together along isomorphic closed subschemes. Suppose X ′ and X ′′ are
two schemes, with closed subschemes W ′

↪→ X ′ and W ′′
↪→ X ′′, and an isomorphism

W ′
→ W ′′. Show that we can glue together X ′ and X ′′ along W ′ ∼= W ′′. More precisely,

show that the following coproduct exists:

W ′ ∼= W ′′ //

��

X ′

��
X ′′ // ?.

Hint: work by analogy with our product construction. If the coproduct exists, it is unique
up to unique isomorphism. Start with judiciously chosen affine open subsets, and glue.

3. I alleged that a certain surface is proper over k (see the notes). Prove this. (Possible
hint: show that the union of two proper schemes is proper.)

4. The Picard scheme Pic X/Y → Y is a scheme over Y which represents the following
functor: Given any T → Y, we have the set of invertible sheaves on X ×Y T , modulo those
invertible sheaves pulled back from T . In other words, there is a natural bijection between

Date: Tuesday, May 9, 2006.
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diagrams of the form
L

��
X ×T Y //

��

X

��
T // Y

and diagrams of the form
PicX/Y

��
T

<<
y

y
y

y
y

y
y

y
y

// Y.

It is a hard theorem (due to Grothendieck) that (at least if Y is reasonable, e.g. locally
Noetherian — I haven’t consulted the appropriate references) Pic X/Y → Y exists, i.e.
that this functor is representable. In fact Pic X/Y is of finite type. Problem: Given its
existence, check that PicX/Y is a group scheme over Y, using our functorial definition of
group schemes.

5. Show that the Picard scheme for X → Y, where the morphism is flat and projective, and
the fibers are geometrically integral, is separated over Y by showing that it satisfies the
valuative criterion of separatedness.

Classes 45–46:

6. Suppose F is a coherent sheaf on X, π : X → Y projective, Y (hence X) Noetherian, and
F flat over Y. Let φp : Rpπ∗F ⊗ k(y) → Hp(Xy,Fy) be the natural morphism. Suppose
Hp(Xy,Fy) = 0 for all y ∈ Y. Show that φp−1 is an isomorphism for all y ∈ Y. (Hint:
cohomology and base change (b).)

7. With the same hypotheses as the previous problem, suppose Rpπ∗F = 0 for p ≥ p0.
Show that Hp(Xy,Fy) = 0 for all y ∈ Y, k ≥ k0. (Same hint. You can also do this directly
from the key theorem presented in class.)

8+. (Important!) Suppose π is a projective flat family, each of whose fibers are (nonempty)
integral schemes, or more generally whose fibers satisfy h0(Xy) = 1. Then (*) holds. (Hint:
consider

OY ⊗ k(y) // (π∗OX) ⊗ k(y)
φ0

// H0(Xy,OXy
) ∼= k(y) .

The composition is surjective, hence φ0 is surjective, hence it is an isomorphism (by the
Cohomology and base change theorem (a)). Then thanks to the Cohomology and base
change theorem (b), π∗OX is locally free, thus of rank 1. If I have a map of invertible
sheaves OY → π∗OX that is an isomorphism on closed points, it is an isomorphism (ev-
erywhere) by Nakayama.)

9. (the Hodge bundle; important in Gromov-Witten theory) Suppose π : X → Y is a projective
flat family, all of whose geometric fibers are connected reduced curves of arithmetic genus
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g. Show that R1π∗OX is a locally free sheaf of rank g. This is called the Hodge bundle. [Hint:
use cohomology and base change (b) twice, once with p = 2, and once with p = 1.]

10. Suppose π : X → Y satisfies (*). Show that if M is any invertible sheaf on Y, then
the natural morphism M → π∗π

∗M is an isomorphism. In particular, we can recover M
from π∗M by pushing forward. (Hint: projection formula.)

11. Suppose X is an integral Noetherian scheme. Show that Pic(X×P
1) ∼= Pic X×Z. (Side

remark: If X is non-reduced, this is still true, see Hartshorne Exercise III.12.6(b). It need
only be connected of finite type over k. Presumably locally Noetherian suffices.) Extend
this to X × P

n. Extend this to any P
n-bundle over X.

12. Suppose X → Y is the projectivization of a vector bundle F over a reduced locally
Noetherian scheme (i.e. X = Proj Sym∗

F ). Then I think we’ve already shown in an exer-
cise that it is also the projectivization of F ⊗ L. If Y is reduced and locally Noetherian,
show that these are the only ways in which it is the projectivization of a vector bundle.
(Hint: note that you can recover F by pushing forward O(1).)

13. Suppose π : X → Y is a projective flat morphism over a Noetherian integral scheme,
all of whose geometric fibers are isomorphic to P

n (over the appropriate field). Show that
this is a projective bundle if and only if there is an invertible sheaf on X that restricts to
O(1) on all the fibers. (One direction is clear: if it is a projective bundle, then it has a
projective O(1). In the other direction, the candidate vector bundle is π∗O(1). Show that
it is indeed a locally free sheaf of the desired rank. Show that its projectivization is indeed
π : X → Y.)

14. An example of a Picard scheme Show that the Picard scheme of P
1
k over k is isomorphic

to Z.

15+. An example of a Picard scheme Show that if E is an elliptic curve over k (a geometrically
integral and nonsingular genus 1 curve with a marked k-point), then Pic E is isomorphic
to E × Z. Hint: Choose a marked point p. (You’ll note that this isn’t canonical.) Describe
the candidate universal invertible sheaf on E × Z. Given an invertible sheaf on E × X,
where X is an arbitrary Noetherian scheme, describe the morphism X → E × Z.

16. By a similar argument as we showed that abelian varieties are commutative, show
that any map f : A → A ′ from one abelian variety to another is a group homomorphism
followed by a translation. (Hint: reduce quickly to the case where f sends the identity to
the identity. Then show that “f(x + y) − f(x) − f(y) = e”.)

17. Prove the following. Suppose f : X → Y is a flat finite-type morphism of locally
Noetherian schemes, and Y is irreducible. Then the following are equivalent.

• Every irreducible component of X has dimension dim Y + n.
• For any point y ∈ Y (not necessarily closed!), every irreducible component of the

fiber Xy has dimension n.
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18+. Show that if f : X → Y is a flat morphism of finite type k-schemes (or localizations
thereof), then any associated point of X must map to an associated point of Y. (I find this
an important point when visualizing flatness!) Hint: use a variant of an argument in the
notes. (See the statement of this problem in the notes for more details.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 20

RAVI VAKIL

This set is due Thursday, May 25. You can hand it in to Rob Easton, in class or via
his mailbox. It covers (roughly) classes 47 and 48.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in five solutions. If you are ambitious
(and have the time), go for more. Try to solve problems on a range of topics. You are
encouraged to talk to each other, and to me, about the problems. Some of these problems
require hints, and I’m happy to give them!

1. (for those who know what a Cohen-Macaulay scheme is) Suppose π : X → Y is a map of lo-
cally Noetherian schemes, where both X and Y are equidimensional, and Y is nonsingular.
Show that if any two of the following hold, then the third does as well:

• π is flat.
• X is Cohen-Macaulay.
• Every fiber Xy is Cohen-Macaulay of the expected dimension.

2. (generated ⊗ generated = generated for finite type sheaves) Suppose F and G are finite type
sheaves on a scheme X that are generated by global sections. Show that F ⊗ G is also
generated by global sections. In particular, if L and M are invertible sheaves on a scheme
X, and both L and M are base-point-free, then so is L⊗M. (This is often summarized as
“base-point-free + base-point-free = base-point-free”. The symbols + is used rather than
⊗, because Pic is an abelian group.)

3. (very ample + very ample = very ample) If L and M are invertible sheaves on a scheme X,
and both L and M are base-point-free, then so is L⊗M. Hint: Segre. In particular, tensor
powers of a very ample invertible sheaf are very ample.

4+. (very ample + relatively generated = very ample). Suppose L is very ample, and M is
relatively generated, both on X → Y. Show that L ⊗ M is very ample. (Hint: Reduce to
the case where the target is affine. L induces a map to P

n
A, and this corresponds to n + 1

sections s0, . . . , sn of L. We also have a finite number m of sections t1, . . . , tm of M which
generate the stalks. Consider the (n + 1)m sections of L ⊗ M given by sitj. Show that
these sections are base-point-free, and hence induce a morphism to P

(n+1)m−1. Show that
it is a closed immersion.)

5. Suppose π : X → Y is proper and Y is quasicompact. Show that if L is relatively ample
on X, then some tensor power of L is very ample.

Date: Tuesday, May 9, 2006. Updated June 19.
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6. State and prove Serre’s criterion for relative ampleness (where the target is quasicom-
pact) by adapting the statement of Serre’s criterion for ampleness. Whoops! Ziyu and
Rob point out that I used Serre’s criterion as the definition of ampleness (and similarly,
relative ampleness). Thus this exercise is nonsense.

7. Use Serre’s criterion for ampleness to prove that the pullback of ample sheaf on a
projective scheme by a finite morphism is ample. Hence if a base-point-free invertible
sheaf on a proper scheme induces a morphism to projective space that is finite onto its
image, then it is is ample.

8. In class, we proved the following: Suppose π : X → Spec B is proper, L ample, and M

invertible. Then L⊗n ⊗ M is very ample for n � 0. Give and prove the corresponding
statement for a relatively ample invertible sheaf over a quasicompact base.

9. Suppose X a projective k-scheme. Show that every invertible sheaf is the difference of
two effective Cartier divisors. Thus the groupification of the semigroup of effective Cartier
divisors is the Picard group. Hence if you want to prove something about Cartier divisors
on such a thing, you can study effective Cartier divisors. (This is false if projective is
replaced by proper — ask Sam Payne for an example.)

10. Suppose C is a generically reduced projective k-curve. Then we can define degree of
an invertible sheaf M as follows. Show that M has a meromorphic section that is regular
at every singular point of C. Thus our old definition (number of zeros minus number
of poles, using facts about discrete valuation rings) applies. Prove the Riemann-Roch
theorem for generically reduced projective curves. (Hint: our original proof essentially
will carry through without change.)

E-mail address: vakil@math.stanford.edu
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FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 21

RAVI VAKIL

This set is due Thursday June 8. You can hand it in to Rob Easton, for example via
his mailbox. It covers (roughly) classes 49 and 50.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in five solutions. If you are ambitious
(and have the time), go for more. Try to solve problems on a range of topics. You are
encouraged to talk to each other, and to me, about the problems. Some of these problems
require hints, and I’m happy to give them!

1. Suppose X is an open subscheme of Y, cut out by a finite type sheaf of ideals. If U is
an open subset of Y, show that BlU∩X U ∼= β−1(U), where β : BlX Y → Y is the blow-up.
(Hint: show β−1(U) satisfies the universal property!)

2. (The blow up can be computed locally.) Show that if Yα is an open cover of Y (as α runs
over some index set), and the blow-up of Yα along X ∩ Yα exists, then the blow-up of Y

along X exists.

3. (The blow-up preserves irreducibility and reducedness.) Show that if Y is irreducible, and X

doesn’t contain the generic point of Y, then BlX Y is irreducible. Show that if Y is reduced,
then BlX Y is reduced.

4+. Prove the blow-up closure lemma (see the class notes). Hint: obviously, construct
maps in both directions, using the universal property. The following diagram may or
may not help.

EZ

zzvvvvvvvvvvvvvvvvvvvvvvvv

� � Cartier
//

55

uu

� _

cl. imm.

��

Z55

uu

{{wwwwwwwwwwwwwwwwwwwwwwwww � _

cl. imm.

��

EWZ
� � Cartier

//

��

BlW Z

��

W
� � //

$$III
II

II
II

II
Z

$$HHHH
HHHH

HHH EXY
� � Cartier

//

zzvv
vv

vv
vv

vv

BlX Y

{{vvvvvvvvv

X
� � // Y

5. If Y and Z are closed subschemes of a given scheme X, show that BlY Y ∪ Z ∼= BlY∩Z Z.
(In particular, if you blow up a scheme along an irreducible component, the irreducible
component is blown out of existence.)

Date: Tuesday, May 30, 2006.
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6. Consider the curve y2 = x3 + x2 inside the plane A
2
k. Blow up the origin, and com-

pute the total and proper transform of the curve. (By the blow-up closure lemma, the
latter is the blow-up of the nodal curve at the origin.) Check that the proper transform is
nonsingular. (All but the last sentence were done in class.)

7. Describe both the total and proper transform of the curve C given by y = x2 − x in
Bl(0,0) A

2. Verify that the proper transform of C is isomorphic to C. Interpret the intersec-
tion of the proper transform of C with the exceptional divisor E as the slope of C at the
origin.

8. (blowing up a cuspidal plane curve) Describe the proper transform of the cuspidal curve
C ′ given by y2 = x3 in the plane A

2
k. Show that it is nonsingular. Show that the proper

transform of C meets the exceptional divisor E at one point, and is tangent to E there.

9. (a) Desingularize the tacnode y2 = x4 by blowing up the plane at the origin (and taking
the proper transform), and then blowing up the resulting surface once more.
(b) Desingularize y8 − x5 = 0 in the same way. How many blow-ups do you need?
(c) Do (a) instead in one step by blowing up (y, x2).

10. Blowing up something nonreduced in nonsingular can give you something singular,
as shown in this example. Describe the blow up of the ideal (x, y2) in A

2
k. What singularity

do you get? (Hint: it appears in a nearby exercise.)

11. Blow up the cone point z2 = x2 + y2 at the origin. Show that the resulting surface is
nonsingular. Show that the exceptional divisor is isomorphic to P

1.

12+. If X ↪→ P
n is a projective scheme, show that the exceptional divisor of the blow

up the affine cone over X at the origin is isomorphic to X, and that its normal bundle is
OX(−1). (In the case X = P

1, we recover the blow-up of the plane at a point. In particular,
we again recover the important fact that the normal bundle to the exceptional divisor is
O(−1).)

13. Show that the multiplicity of the exceptional divisor in the total transform of a sub-
scheme of A

n when you blow up the origin is the lowest degree that appears in a defining
equation of the subscheme. (For example, in the case of the nodal and cuspidal curves
above, Example ?? and Exercise respectively, the exceptional divisor appears with multi-
plicity 2.) This is called the multiplicity of the singularity.

14. Suppose Y is the cone x2 + y2 = z2, and X is the ruling of the cone x = 0, y = z. Show
that BlX Y is nonsingular. (In this case we are blowing up a codimension 1 locus that is not
a Cartier divisor. Note that it is Cartier away from the cone point, so you should expect
your answer to be an isomorphism away from the cone point.)

15+. (blow-ups resolve base loci of rational maps to projective space) Suppose we have a scheme
Y, an invertible sheaf L, and a number of sections s0, . . . , sn of L. Then away from the
closed subscheme X cut out by s0 = · · · = sn = 0, these sections give a morphism to
P

n. Show that this morphism extends to a morphism BlX Y → P
n, where this morphism

corresponds to the invertible sheaf (π∗L)(−EXY), where π : BlX Y → Y is the blow-up

2



morphism. In other words, “blowing up the base scheme resolves this rational map”.
(Hint: it suffices to consider an affine open subset of Y where L is trivial.)

16. Blow up (xy, z) in A
3, and verify that the exceptional divisor is indeed the projec-

tivized normal bundle.

17. Suppose X is an irreducible nonsingular subvariety of a nonsingular variety Y, of
codimension at least 2. Describe a natural isomorphism Pic BlX Y ∼= Pic Y ⊕ Z. (Hint:
compare divisors on BlX Y and Y. Show that the exceptional divisor EXY gives a non-
torsion element of Pic(BlX Y) by describing a P

1 on BlX Y which has intersection number
−1 with EXY.)

E-mail address: vakil@math.stanford.edu
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