
FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 10

RAVI VAKIL

This set is due Thursday, February 2, in Jarod Alper’s mailbox. It covers (roughly)
classes 23 and 24.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in six solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. I’m happy to give hints, and some of these problems
require hints!

0. Here is something I would like to see worked out. Show that the points of Spec Q⊗Q Q

are in natural bijection with Gal(Q/Q), and the Zariski topology on the former agrees
with the profinite topology on the latter.

Class 23:

1-. Show that for the morphism Spec C → Spec R, all geometric fibers consist of two
reduced points.

2+. Show that the notion of “morphism locally of finite type” is preserved by base change.
Show that the notion of “affine morphism” is preserved by base change. Show that the
notion of “finite morphism” is preserved by base change.

3+. Show that the notion of “morphism of finite type” is preserved by base change.

4. Show that the notion of “quasicompact morphism” is preserved by base change.

5. Show that the notion of “quasifinite morphism” (= finite type + finite fibers) is pre-
served by base change. (Note: the notion of “finite fibers” is not preserved by base
change. Spec Q → Spec Q has finite fibers, but Spec Q ⊗Q Q → Spec Q has one point
for each element of Gal(Q/Q).)

6. Show that surjectivity is preserved by base change (or fibered product). In other words,
if X → Y is a surjective morphism, then for any Z → Y, X×Y Z → Z is surjective. (You may
end up using the fact that for any fields k1 and k2 containing k3, k1 ⊗k3

k2 is non-zero, and
also the axiom of choice.)
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7-. Show that the notion of “irreducible” is not necessarily preserved by base change.
Show that the notion of “connected” is not necessarily preserved by base change. (Hint:
C ⊗R C, Q[i] ⊗Q Q[i].)

8. Show that Spec C is not a geometrically irreducible R-scheme. If char k = p, show that
Spec k(u) is not a geometrically reduced Spec k(up)-scheme.

9. Show that the notion of geometrically irreducible (resp. connected, reduced, integral)
fibers behaves well with respect to base change.

10. Suppose that l/k is a finite field extension. Show that a k-scheme X is normal if and
only if X×Spec kSpec l is normal. Hence deduce that if k is any field, then Spec k[w, x, y, z]/(wz−

xy) is normal. Hint: we showed earlier (Problem B4 on set 4) that Spec k[a, b, c, d]/(a2 +

b2 + c2 + d2) is normal. (This is less important, but helps us understand this example.)

11. Show that the Segre scheme (the image of the Segre morphism) is cut out by the
equations corresponding to

rank





a00 · · · a0n

... . . . ...
am0 · · · amn



 = 1,

i.e. that all 2 × 2 minors vanish. (Hint: suppose you have a polynomial in the aij that
becomes zero upon the substitution aij = xiyj. Give a recipe for subtracting polynomials
of the form monomial times 2 × 2 minor so that the end result is 0.)

12. Show that Xred → X satisfies the following universal property: any morphism from a
reduced scheme Y to X factors uniquely through Xred.

Y

��
>>

>>
>>

>>

∃!
// Xred

}}||
||

||
||

X

.

(Do this exercise if you want to see how this sort of argument works in general.)

13. Show that ν : Spec R̃ → Spec R satisfies the universal property of normalization. We
used this to show that normalization exists.

14. Show that normalizations exist for any quasiaffine X (i.e. any X that can be expressed
as an open subset of an affine scheme). Show that normalizations exist in general.

Class 24:

15. Show that the normalization morphism is surjective. (Hint: Going-up!)

16. Show that dim X̃ = dim X (hint: see our going-up discussion).

17. Show that if X is an integral finite-type k-scheme, then its normalization ν : X̃ → X is
a finite morphism.
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18. Explain how to generalize the notion of normalization to the case where X is a re-
duced Noetherian scheme (with possibly more than one component). This basically re-
quires defining a universal property. I’m not sure what the “perfect” definition, but all
reasonable universal properties should lead to the same space.

19. Show that if X is an integral finite type k-scheme, then its non-normal points form
a closed subset. (This is a bit trickier. Hint: consider where ν∗OX̃ has rank 1.) I haven’t
thought through all the details recently, so I hope I’ve stated this correctly.

20. (Good practice with the concept.) Suppose X = Spec Z[15i]. Describe the normaliza-
tion X̃ → X. (Hint: it isn’t hard to find an integral extension of Z[15i] that is integrally
closed. By the above discussion, you’ve then found the normalization!) Over what points
of X is the normalization not an isomorphism?

21. (This is an important generalization!) Suppose X is an integral scheme. Define the
normalization of X, ν : X̃ → X, in a given finite field extension of the function field of X. Show
that X̃ is normal. (This will be hard-wired into your definition.) Show that if either X

is itself normal, or X is finite type over a field k, then the normalization in a finite field
extension is a finite morphism.

22. Suppose X = Spec Z (with function field Q). Find its integral closure in the field
extension Q(i).

23. (a) Suppose X = Spec k[x] (with function field k(x)). Find its integral closure in the
field extension k(y), where y2 = x2 + x. (We get a Dedekind domain.)
(b) Suppose X = P1, with distinguished open Spec k[x]. Find its integral closure in the
field extension k(y), where y2 = x2 + x. (Part (a) involves computing the normalization
over one affine open set; now figure out what happens over the “other”.)

24. Show that if f : Z → X is an affine morphism, then we have a natural isomorphism
Z ∼= Spec f∗OZ of X-schemes.

25. (Spec behaves well with respect to base change) Suppose f : Z → X is any morphism,
and A is a quasicoherent sheaf of algebras on X. Show that there is a natural isomorphism
Z ×X SpecA ∼= Spec f∗A.

26. If F is a locally free sheaf, show that Spec SymF ∗ is a vector bundle, i.e. that given
any point p ∈ X, there is a neighborhood p ∈ U ⊂ X such that Spec SymF ∗|U ∼= A1

U. Show
that F is a sheaf of sections of it.

27. Suppose f : SpecA → X is a morphism. Show that the category of quasicoherent
sheaves on Spec A is “essentially the same” (=equivalent) as the category of quasicoherent
sheaves on X with the structure of A-modules (quasicoherent A-modules on X).

28. Complete this argument that if X = Spec A, then (ProjS∗,O(1)) satisfies the universal
property.
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29. Show that (ProjS∗,O(1)) exists in general, by following the analogous universal prop-
erty argument: show that it exists for X quasiaffine, then in general.

30. (Proj behaves well with respect to base change) Suppose S∗ is a quasicoherent sheaf
of graded algebras on X satisfying the required hypotheses above for ProjS∗ to exist. Let
f : Y → X be any morphism. Give a natural isomorphism

(Projf∗S∗,OProjf∗S∗
(1)) ∼= (Y ×X ProjS∗, g

∗
OProjS∗

(1)) ∼=

where g is the natural morphism in the base change diagram

Y ×X ProjS∗

g
//

��

ProjS∗

��

Y // X.

31. Proj(S∗[t]) ∼= SpecS∗

∐
ProjS∗, where SpecS∗ is an open subscheme, and ProjS∗ is a

closed subscheme. Show that ProjS∗ is an effective Cartier divisor, corresponding to the
invertible sheaf OProjN(1). (This is the generalization of the projective and affine cone. At
some point I should give an explicit reference to our earlier exercise on this.)

32. Suppose L is an invertible sheaf on X, and S∗ is a quasicoherent sheaf of graded
algebras on X satisfying the required hypotheses above for ProjS∗ to exist. Define S ′

∗ =

⊕n=0Sn ⊗ Ln. Give a natural isomorphism of X-schemes
(ProjS ′

∗,OProjS ′

∗
(1)) ∼= (ProjS∗,OProjS∗

(1) ⊗ π∗
L),

where π : ProjS∗ → X is the structure morphism. In other words, informally speaking,
the Proj is the same, but the O(1) is twisted by L.

33. Show that closed immersions are projective morphisms. (Hint: Suppose the closed
immersion X → Y corresponds to OY → OX. Consider S0 = OX, Si = OY for i > 1.)

34. (suggested by Kirsten) Suppose f : X ↪→ Pn
S where S is some scheme. Show that the

structure morphism π : X → S is a projective morphism as follows: let L = f∗OPn
S
(1), and

show that X = Projπ∗L
⊗n.

E-mail address: vakil@math.stanford.edu
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