FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 6

RAVI VAKIL

This set is due Wednesday, November 30. It covers (roughly) classes 13 and 14.

Please read all of the problems, and ask me about any statements that you are unsure of,
even of the many problems you won’t try. Hand in six solutions. If you are ambitious
(and have the time), go for more. Problems marked with “-” count for half a solution.
Problems marked with “+” may be harder or more fundamental, but still count for one
solution. Try to solve problems on a range of topics. You are encouraged to talk to each
other, and to me, about the problems. I'm happy to give hints, and some of these problems
require hints!

Class 13:

1. Show that (x,z) C k[w, x,y, z]/(wz —xy) is a height 1 ideal that is not principal. (Make
sure you have a picture of this in your head!)

2. Suppose X is an integral Noetherian scheme, and f € Frac(I'(X, Ox))* is a non-zero
element of its function field. Show that f has a finite number of zeros and poles. (Hint:
reduce to X = Spec R. If f = f;/f,, where f; € R, prove the result for f;.)

3. Let R be the subring k[x*,x? xy,yl C k[x,yl. (The idea behind this example: I'm
allowing all monomials in k[x, y] except for x.) Show that it is not integrally closed (easy
— consider the “missing x”). Show that it is regular in codimension 1 (hint: show it
is dimension 2, and when you throw out the origin you get something nonsingular, by
inverting x? and y respectively, and considering R, and R).

4. You have checked that if k = C, then kw, x,y, z]/(wx — yz) is integrally closed (PS4,
problem B5). Show that it is not a unique factorization domain. (The most obvious pos-
sibility is to do this “directly”, but this might be hard. Another possibility, faster but less
intuitive, is to prove the intermediate result that in a unique factorization domain, any height
1 prime is principal, and considering Exercise 1.)

5. Show that on a Noetherian scheme, you can check nonsingularity by checking at closed
points. (Caution: a scheme in general needn’t have any closed points!) You are allowed
to use the unproved fact from the notes, that any localization of a regular local ring is
regular.

6. Show that a nonsingular locally Noetherian scheme is irreducible if and only if it is

connected. (I'm not sure if this fact requires Noetherianness.)
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7-. Show that there is a nonsingular hypersurface of degree d. Show that there is a Zariski-
open subset of the space of hypersurfaces of degree d. The two previous sentences com-
bine to show that the nonsingular hypersurfaces form a Zariski-open set. Translation:
almost all hypersurfaces are smooth.

8-. Suppose (R, m, k) is a regular Noetherian local ring of dimension n. Show that dimj(m'/m*!) =
(Tl«bi*]) .

9. Show that fact 2 in the “good facts to know about regular local rings” implies that
(R,m) is a domain. (Hint: show that if f, g # 0, then fg # 0, by considering the leading
terms.)

Note that we have proved this fact (referred to in the previous problem) if (R, m) is a
Noetherian local ring containing its residue field k. The next three exercises fill out the
proof in the notes. Do them only if you are fairly happy with other things.

10. If S is a Noetherian ring, show that S[[t]] is Noetherian. (Hint: Suppose I C S[[t]] is an
ideal. Let I, C S be the coefficients of t™ that appear in the elements of I form an ideal.
Show that I,, C I,,;1, and that I is determined by (I, I, I5,...).)

11. Show that dim k[[t;, ..., t,]] is dimension n. (Hint: find a chain of n + 1 prime ideals
to show that the dimension is at least n. For the other inequality, use Krull.)

12. If R is a Noetherian local ring, show that R:= lim_ R/m™ is a Noetherian local ring.
(Hint: Suppose m/m? is finite-dimensional over k, say generated by xi, . .., x,. Describe a
surjective map kl[[t, ..., tn]] — R)

13. Show that a section of a sheaf on the distinguished affine base is determined by the
section’s germs.

14+. Recall Theorem 4.2(a) in the class 13 notes, which states that a sheaf on the distin-
guished affine base F° determines a unique sheaf 7, which when restricted to the affine
base is F°. We defined

F(U) :={(fx € F)xeu: Vx € U, FUxwith x C U, C U, F* € FO(U,) : FY = f,Vy € U}

where each U, is in our base. In class I claimed that if U is in our base, that F(U) = F°(U).
We clearly have a map F°(U) — F(U). Prove that it is an isomorphism.

15+. Show that a sheaf of Ox-modules on “the distinguished affine base” yields an Ox-
module.

Class 14:



16+. (a first example of the total complex of a double complex) Suppose0 - A — B — C
is exact. Define the total complex

0 A B C

- |

0 A B C

as
0—-A—>A®B—-BapC

in the “obvious” way. Show that the total complex is also exact.

17. (a) Suppose X = Speck[t]. Let F be the skyscraper sheaf supported at the origin [(t)],
with group k(t). Give this the structure of an Ox-module. Show that this is not a quasico-
herent sheaf. (More generally, if X is an integral scheme, and p € X that is not the generic
point, we could take the skyscraper sheaf at p with group the function field of X. Except
in a silly circumstances, this sheaf won’t be quasicoherent.)

(b) Suppose X = Speck[t]. Let F be the skyscraper sheaf supported at the generic point
[(0)], with group k(t). Give this the structure of an Ox-module. Show that this is a quasi-
coherent sheaf. Describe the restriction maps in the distinguished topology of X.

18+. (Important Exercise for later) Suppose X is a Noetherian scheme. Suppose F is a
quasicoherent sheaf on X, and let f € I'(X, Ox) be a function on X. Let R = T'(X, Ox)
for convenience. Show that the restriction map resx,x : I'(X, Fx) — T'(Xf, Fx) (here X
is the open subset of X where f doesn’t vanish) is precisely localization. In other words
show that there is an isomorphism I'(X, F)¢ — T'(X¢, F) making the following diagram

commute.
resx ¢ cX

r'(X,F) (X, F)

r(X> f)f

All that you should need in your argument is that X admits a cover by a finite number
of open sets, and that their pairwise intersections are each quasicompact. We will later
rephrase this as saying that X is quasicompact and quasiseparated. (Hint: cover by affine
open sets. Use the sheaf property. A nice way to formalize this is the following. Apply
the exact functor @Ry to the exact sequence

0— F(X,F) — @ir(ui, f) — @F(Uﬁk, f)

where the U; form a finite cover of X and Uy, form an affine cover of U; N U;.)

19-. Give a counterexample to show that the above statement need not hold if X is not
quasicompact. (Possible hint: take an infinite disjoint union of affine schemes.)

20. (This is for arithmetically-minded people only — I won’t define my terms.) Prove
that a fractional ideal on a ring of integers in a number field yields an invertible sheaf.
Show that any two that differ by a principal ideal yield the same invertible sheaf. (Thus
we have described a map from the class group of the number field to the Picard group of
its ring of integers. We will later see that this is an isomorphism.)

3



21+. Show that you can check exactness of a sequence of quasicoherent sheaves on an
affine cover. (In particular, taking sections over an affine open Spec R is an exact functor
from the category of quasicoherent sheaves on X to the category of R-modules. Recall that
taking sections is only left-exact in general. Similarly, you can check surjectivity on an
affine cover unlike sheaves in general.)

22+. If F and G are quasicoherent sheaves, show that 7 ® G is given by the following
information: If Spec R is an affine open, and I'(Spec R, ) = M and I'(Spec R, G) = N, then
I'(SpecR, F ® G) = M ® N, and the restriction map I'(Spec R, F @ G) — TI'(SpecR¢, F @ G)
is precisely the localization map M ®@g N — (M ®g N)¢ = M ®g, N¢. (We are using the
algebraic fact that that (M ®g N)¢ = M¢ ®g, N¢. You can prove this by universal property
if you want, or by using the explicit construction.)

23. If 7 and G are locally free sheaves, show that 7 ® G is locally free. (Possible hint for
this, and later exercises: check on sufficiently small affine open sets.)

24. Prove the following.

(a) Tensoring by a quasicoherent sheaf is right-exact. More precisely, if F is a quasicoher-
ent sheaf, and G’ — G — G” — 0 is an exact sequence of quasicoherent sheaves, then so
isG’®F -G F — G"®F — 0is exact.

(b) Tensoring by a locally free sheaf is exact. More precisely, if F is a quasicoherent
sheaf, and G’ — G — G” is an exact sequence of quasicoherent sheaves, then then so
8G'RF 2GF2G"®F.

(c) The stalk of the tensor product of quasicoherent sheaves at a point is the tensor prod-
uct of the stalks.

(d) Invertible sheaves on a scheme X (up to isomorphism) form a group. This is called the
Picard group of X, and is denoted Pic X. For arithmetic people: this group, for the Spec of
the ring of integers R in a number field, is the class group of R.

25. Show that sheaf Hom, Hom, is quasicoherent, and is what you think it might be. (De-
scribe it on affine opens, and show that it behaves well with respect to localization with
respect to f. To show that Homa (M, N)¢ = Homa, (My, N¢), take a “partial resolution”
A4 — AP - M — 0, and apply Hom(-, N) and localize.) (Hom was defined earlier, and
was the subject of a homework problem.) Show that Hom is a left-exact functor in both
variables.

26+. Show that if F is locally free then FV is locally free, and that there is a canonical
isomorphism (FV)Y = F. (Caution: your argument showing that if there is a canonical
isomorphism (FV)Y = F better not also show that there is a canonical isomorphism
FY = F! We'll see an example soon of a locally free F that is not isomorphic to its dual.
The example will be the line bundle O(1) on P.)

27. The direct sum of quasicoherent sheaves is what you think it is.

For the next exercises, recall the following. If M is an A-module, then the tensor algebra
T*(M) is a non-commutative algebra, graded by Z=°, defined as follows. T°(M) = A,
THM) = M ®a --- ®a M (where n terms appear in the product), and multiplication is
what you expect. The symmetric algebra Sym* M is a symmetric algebra, graded by Z=°,
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defined as the quotient of T*(M) by the (two-sided) ideal generated by all elements of
the form x ® y —y ® x for all x,y € M. Thus Sym™ M is the quotient of M ® --- @ M
by the relations of the form m; ® --- ® my, — mj ® --- ® m;, where (mj,...,m/)) is a
rearrangement of (my, ..., my). The exterior algebra /\*M is defined to be the quotient of
T*M by the (two-sided) ideal generated by all elements of the form x ® y + y ® x for all
X,y € M. Thus A™M is the quotient of M ® - - - ® M by the relations of the form m; ®- - - ®
m, — (—1)*"m; ® - - - ® m), where (m},..., m/) is a rearrangement of (my, ..., m,), and
the sgn is even if the rearrangement is an even permutation, and odd if the rearrangement
is an odd permutation. (Itis a “skew-commutative” A-algebra.) It is most correct to write

TA(M), Symy (M), and A (M), but the “base ring” is usually omitted for convenience.

28. If F is a quasicoherent sheaf, then define the quasicoherent sheaves T"F, Sym"™ F, and
A"F. If F is locally free of rank m, show that T"F, Sym"™ F, and A™F are locally free, and
find their ranks.

29+. If 0 = F' — F — F" — 0is an exact sequence of locally free sheaves, then for any
1, there is a filtration of Sym" F:

Sym"F=FDOF' D>...DF >F =0
with quotients
FP/FPH = (SymP F') ® (Sym™ P F")
for each p.

30. Suppose F is locally free of rank n. Then A"F is called the determinant (line) bundle.
Show that A"F x A™TF — A™F is a perfect pairing for all r.

31+. If 0 = 7' — F — F” — 0is an exact sequence of locally free sheaves, then for any
T, there is a filtration of /A" F:

NF=F2F 2. . DF2>FT=0
with quotients
FP/FPHL = (APF) @ (AT PF")
for each p. In particular, det F = (det ') ® (det F").

E-mail address: vakil@math.stanford.edu



