
FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 5

RAVI VAKIL

This set is due Monday, November 14. It covers (roughly) classes 10, 11, and 12.

As you might have noticed, last week there were a lot of interesting problems worth
trying — too many to do! (This is just because we’ve gone far enough that we can really
explore interesting questions.) So please read all of the problems, and ask me about any
statements that you are unsure of, even of the many problems you won’t try. Hand in
six solutions. If you are ambitious (and have the time), go for more. Problems marked
with “-” count for half a solution. Problems marked with “+” may be harder or more
fundamental, but still count for one solution. Try to solve problems on a range of topics.
You are encouraged to talk to each other, and to me, about the problems.

Class 8:

1. (a) Use dimension theory to prove a microscopically stronger version of the weak
Nullstellensatz: Suppose R = k[x1, . . . , xn]/I, where k is an algebraically closed field and I

is some ideal. Then the maximal ideals are precisely those of the form (x1−a1, . . . , xn−an),
where ai ∈ k.
(b) Suppose R = k[x1, . . . , xn]/I where k is not necessarily algebraically closed. Show that
every maximal ideal of R has a residue field that is a finite extension of k. [Hint for both:
the maximal ideals correspond to dimension 0 points, which correspond to transcendence
degree 0 extensions of k, i.e. finite extensions of k. If k is algebraically closed, the maximal
ideals correspond to surjections f : k[x1, . . . , xn] → k. Fix one such surjection. Let ai =

f(xi), and show that the corresponding maximal ideal is (x1 − a1, . . . , xn − an).]

Class 10:

2+. Suppose R is a ring, and (f1, . . . , fn) = R. Suppose A is a ring, and R is an A-algebra.
Show that if each Rfi

is a finitely-generated A-algebra, then so is R.

3. Show that an irreducible homogeneous polynomial in n + 1 variables (over a field k)
describes an integral scheme of dimension n − 1. We think of this as a “hypersurface in
Pn

k
”.

4. Show that wx = yz, x2 = wy, y2 = xz describes an irreducible curve in P3
k

(the twisted
cubic!).

5. Suppose S∗ is a graded ring (with grading Z≥0). It is automatically a module over S0.
Now S+ := ⊕i>0Si is an ideal, which we will call the irrelevant ideal; suppose that it is a
finitely generated ideal. Show that S∗ is a finitely-generated S0-algebra.
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6+. Recall the definition of the distinguished open subset D(f) on Proj S∗, where f is
homogeneous of positive degree. Show that

(D(f),OProjS∗
) ∼= Spec(Sf)0

defines a sheaf on ProjS∗. (We used this to define the structure sheaf OProj S∗
on Proj S∗.)

7-. Show that Proj k[x0, . . . , xn] is isomorphic to our earlier definition of Pn.

8-. Show that Y = P2 − (x2 + y2 + z2 = 0) is affine, and find its corresponding ring (= find
its ring of global sections).

Class 11:

9-. Show that P0
A

= Proj A[T ] ∼= A. Thus “Spec A is a projective A-scheme”.

10. Show that all projective A-schemes are quasicompact. (Translation: show that any
projective A-scheme is covered by a finite number of affine open sets.) Show that Proj S∗

is finite type over A = S0. If S0 is a Noetherian ring, show that Proj S∗ is a Noetherian
scheme, and hence that Proj S∗ has a finite number of irreducible components. Show that
any quasiprojective scheme is locally of finite type over A. If A is Noetherian, show that
any quasiprojective A-scheme is quasicompact, and hence of finite type over A.

11. Give an example of a quasiprojective A-scheme that is not quasicompact (necessarily
for some non-Noetherian A).

12-. Show that Pn
k

is normal. More generally, show that Pn
R

is normal if R is a Unique
Factorization Domain.

13+. Show that the projective cone of Proj S∗ has an open subscheme D(T) that is the
affine cone, and that its complement V(T) can be identified with Proj S∗ (as a topological
space). (More precisely, setting T = 0 “cuts out” a scheme isomorphic to Proj S∗ — see if
you can make that precise.)

14. If S∗ is a finitely generated domain over k, and Proj S∗ is non-empty show that
dim Spec S∗ = dim Proj S∗ + 1.

15. Show that the irreducible subsets of dimension n−1 of Pn
k

correspond to homogeneous
irreducible polynomials modulo multiplication by non-zero scalars.

16+.

(a) Suppose I is any homogeneous ideal, and f is a homogeneous element. Suppose
f vanishes on V(I). Show that fn ∈ I for some n. (Hint: Mimic the proof in the
affine case.)

(b) If Z ⊂ Proj S∗, define I(·). Show that it is a homogeneous ideal. For any two
subsets, show that I(Z1 ∪ Z2) = I(Z1) ∩ I(Z2).

(c) For any homogeneous ideal I with V(I) 6= ∅, show that I(V(I)) =
√

I.
(d) For any subset Z ⊂ Proj S∗, show that V(I(Z)) = Z.
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17. Show that the following are equivalent. (a) V(I) = ∅ (b) for any fi (i in some index set)

generating I, ∪D(fi) = Proj S∗ (c)
√

I ⊃ S+.

18+. Show that Proj Sn· is isomorphic to Proj S∗.

For problems 19-21, suppose S∗ = k[x, y] (with the usual grading).

19. Show that S2·
∼= k[u, v, w]/(uw− v2). (Thus the 2-uple Veronese embedding of P1 is as

a conic in P2.)

20. Show that Proj S3· is the twisted cubic “in” P3. (The equations of the twisted cubic turn
up in problems 4 and 39.)

21+. Show that Proj Sd· is given by the equations that
(

y0 y1 · · · yd−1

y1 y2 · · · yd

)

is rank 1 (i.e. that all the 2 × 2 minors vanish). This is called the degree d rational normal
curve “in” Pd.

22. Find the equations cutting out the Veronese surface Proj S2· where S∗ = k[x0, x1, x2],
which sits naturally in P5.

23. Show that P(m, n) is isomorphic to P1. Show that P(1, 1, 2) ∼= Proj k[u, v, w, z]/(uw −

v2). Hint: do this by looking at the even-graded parts of k[x0, x1, x2]. (Picture: this is a
projective cone over a conic curve.)

24+. (This is a handy exercise for later.) (a) (Hypersurfaces meet everything of dimension at
least 1 in projective space — unlike in affine space.) Suppose X is a closed subset of Pn

k
of

dimension at least 1, and H a nonempty hypersurface in Pn
k

. Show that H meets X. (Hint:
consider the affine cone, and note that the cone over H contains the origin. Use Krull’s
Principal Ideal Theorem.)
(b) (Definition: Subsets in Pn cut out by linear equations are called linear subspaces. Di-
mension 1, 2 linear subspaces are called lines and planes respectively.) Suppose X ↪→ Pn

k
is

a closed subset of dimension r. Show that any codimension r linear space meets X. (Hint:
Refine your argument in (a).)
(c) Show that there is a codimension r + 1 complete intersection (codimension r + 1 set
that is the intersection of r + 1 hypersurfaces) missing X. (The key step: show that there
is a hypersurface that doesn’t contain every generic point of X.) If k is infinite, show that
there is a codimension r + 1 linear subspace missing X. (The key step: show that there is
a hyperplane not containing any generic point of a component of X.)

25. Describe all the lines on the quadric surface wx − yz = 0 in P3
k
. (Hint: they come in

two “families”, called the rulings of the quadric surface.)

26. (This is intended for people who already know what derivations are.) In differen-
tial geometry, the tangent space at a point is sometimes defined as the vector space of
derivations at that point. A derivation is a function that takes in functions near the point
that vanish at the point, and gives elements of the field k, and satisfies the Leibniz rule
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(fg) ′ = f ′g + g ′f. Show that this agrees with our definition of tangent space. (One direc-
tion was shown in class 11.)

27+. (Nakayama’s lemma version 3) Suppose R is a ring, and I is an ideal of R contained in all
maximal ideals. Suppose M is a finitely generated R-module, and N ⊂ M is a submodule.
If N/IN ↪→ M/IM an isomorphism, then M = N.

28+. (Nakayama’s lemma version 4) Suppose (R, m) is a local ring. Suppose M is a finitely-
generated R-module, and f1, . . . , fn ∈ M, with (the images of) f1, . . . , fn generating M/mM.
Then f1, . . . , fn generate M. (In particular, taking M = m, if we have generators of m/m2,
they also generate m.)

Class 12:

29-. Show that if A is a Noetherian local ring, then A has finite dimension. (Warning:
Noetherian rings in general could have infinite dimension.)

30+. (the Jacobian criterion for checking nonsingularity) Suppose k is an algebraically closed
field, and X is a finite type k-scheme. Then locally it is of the form Spec k[x1, . . . , xn]/(f1, . . . , fr).
Show that the Zariski tangent space at the closed point p (with residue field k, by the Null-
stellensatz) is given by the cokernel of the Jacobian map kr

→ kn given by the Jacobian
matrix

(1) J =







∂f1

∂x1
(p) · · · ∂fr

∂x1
(p)

...
. . .

...
∂f1

∂xn
(p) · · · ∂fr

∂xn
(p)






.

(This is just making precise our example of a curve in A3 cut out by a couple of equations,
where we picked off the linear terms .) Possible hint: “translate p to the origin,” and
consider linear terms.

31. Show that the singular closed points of the hypersurface f(x1, . . . , xn) = 0 in An
k

are
given by the equations f = ∂f

∂x1
= · · · = ∂f

∂xn
= 0.

32. Show that A1 and A2 are nonsingular. (Make sure to check nonsingularity at the
non-closed points! Fortunately you know what all the points of A2 are; this is trickier
for A3.) You are not allowed to use the fact that regular local rings remain regular under
localization.

33. Show that Spec Z is a nonsingular curve.

34. Note that Z[i] is dimension 1, as Z[x] has dimension 2 (problem set exercise), and is a
domain, and x2 + 1 is not 0, so Z[x]/(x2 + 1) has dimension 1 by Krull. Show that Spec Z[i]

is a nonsingular curve. (This exercise is intended for people who know about the primes
in the Gaussian integers Z[i].)

35. Show that there is one singular point of Spec Z[2i], and describe it.
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36. (the Euler test for projective hypersurfaces) There is an analogous Jacobian criterion for
hypersurfaces f = 0 in Pn

k
. Show that the singular closed points correspond to the locus

f = ∂f

∂x1
= · · · = ∂f

∂xn
= 0. If the degree of the hypersurface is not divisible by the char-

acteristic of any of the residue fields (e.g. if we are working over a field of characteristic
0), show that it suffices to check ∂f

∂x1
= · · · = ∂f

∂xn
= 0. (Hint: show that f lies in the ideal

( ∂f

∂x1
, . . . , ∂f

∂xn
)). (Fact: this will give the singular points in general. I don’t want to prove

this, and I won’t use it.)

37-. Suppose k is algebraically closed. Show that y2z = x3 − xz2 in P2
k

is an irreducible
nonsingular curve. (This is for practice.) Warning: I didn’t say char k = 0.

38-. Find all the singular closed points of the following plane curves. Here we work over
a field of characteristic 0 for convenience.

(a) y2 = x2 + x3. This is called a node.
(b) y2 = x3. This is called a cusp.
(c) y2 = x4. This is called a tacnode.

39. Show that the twisted cubic Proj k[w, x, y, z]/(wz−xy, wy−x2, xz−y2) is nonsingular.
(You can do this by using the fact that it is isomorphic to P1. I’d prefer you to do this with
the explicit equations, for the sake of practice.)

40-. Show that the only dimension 0 Noetherian regular local rings are fields. (Hint:
Nakayama.)

41-. Consider the following two examples:
(i) (the 5-adic valuation) K = Q, v(r) is the “power of 5 appearing in r”, e.g. v(35/2) = 1,
v(27/125) = −3.
(ii) K = k(x), v(f) is the “power of x appearing in f.
Describe the valuation rings in those two examples.

42. Show that 0 ∪ {x ∈ K∗ : v(x) ≥ 1} is the unique maximal ideal of the valuation ring.
(Hint: show that everything in the complement is invertible.) Thus the valuation ring is
a local ring.

43+. Show that every discrete valuation ring is a Noetherian regular local ring of dimen-
sion 1. (This was part of our long theorem showing that many things were equivalent.)

44-. Suppose R is a Noetherian local domain of dimension 1. Show that R is a principal
ideal domain if and only if it is a discrete valuation ring.

45-. Show that there is only one discrete valuation on a discrete valuation ring.

46. Suppose X is a regular integral Noetherian scheme, and f ∈ Frac(Γ(X,OX))∗ is a non-
zero element of its function field. Show that f has a finite number of zeros and poles.

47+. Suppose A is a subring of a ring B, and x ∈ B. Suppose there is a faithful A[x]-module
M that is finitely generated as an A-module. Show that x is integral over A. (Hint: look
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carefully at the proof of Nakayama’s Lemma version 1 in the Class 11 notes, and change
a few words.)

E-mail address: vakil@math.stanford.edu
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