
FOUNDATIONS OF ALGEBRAIC GEOMETRY PROBLEM SET 3

RAVI VAKIL

This set is due Monday, October 31. It covers classes 5, 6, and 7. Read all of these
problems, and hand in six solutions. Try to solve problems on a range of topics. If you
are pressed for time, try more straightforward problems. If you are ambitious, push the
envelope a bit. You are encouraged to talk to each other about the problems. (Write up
your solutions individually.) You are also encouraged to talk to me about them. Ideally,
you should find out who did problems that you didn’t do. Make sure you read all the
problems, because we will be be making use of many of these results.

Facts we’ll use (short proofs)

Three of these count for one problem.

A1. Show that if (S) is the ideal generated by S, then V(S) = V((S)). Thus when looking
at vanishing sets, it suffices to consider vanishing sets of ideals.

A2. (a) Show that ∅ and Spec R are both open.
(b) (The intersection of two open sets is open.) Check that V(I1I2) = V(I1) ∪ V(I2).
(c) (The union of any collection of open sets is open.) If Ii is a collection of ideals (as i runs
over some index set), check that V(

∑
i Ii) = ∩iV(Ii).

A3. If I ⊂ R is an ideal, show that V(
√

I) = V(I).

A4. Show that if R is an integral domain, then Spec R is an irreducible topological space.
(Hint: look at the point [(0)].)

A5. Show that the closed points of Spec R correspond to the maximal ideals.

A6. If X = Spec R, show that [p] is a specialization of [q] if and only if q ⊂ p.

A7. If X is a finite union of quasicompact spaces, show that X is quasicompact.

A8. Suppose fi ∈ R for i ∈ I. Show that ∪i∈ID(fi) = Spec R if and only if (fi) = R.

A9. Show that D(f) ∩ D(g) = D(fg). Hence the distinguished base is a nice base.

A10. Show that if D(f) ⊂ D(g), then fn ∈ (g) for some n.

A11. Show that f ∈ N if and only if D(f) = ∅.
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A12. Suppose f ∈ R. Show that under the identification of D(f) in Spec R with Spec Rf,
there is a natural isomorphism of sheaves (D(f),OSpecR|D(f)) ∼= (Spec Rf,OSpec Rf

).

A13. Show that the disjoint union of a finite number of affine schemes is also an affine
scheme. (Hint: say what the ring is.)

A14. An infinite disjoint union of (non-empty) affine schemes is not an affine scheme.
(One-word hint: quasicompactness.)

A15. If X is a scheme, and U is any open subset, then prove that (U,OX|U) is also a scheme.

A16. Show that if X is a scheme, then the affine open sets form a base for the Zariski
topology. (Warning: they don’t form a nice base, as we’ll see in a different exercise on this
problem set.) However, in “most nice situations” this will be true, as we will later see,
when we define the analogue of “Hausdorffness”, called separatedness.)

Facts we’ll use

B1. Show that Spec R is quasicompact.

B2. Suppose that I, S ⊂ R are an ideal and multiplicative subset respectively. Show that
the Zariski topology on Spec R/I (resp. Spec S−1R) is the subspace topology induced by
inclusion in Spec R. (Hint: compare closed subsets.)

B3. (a) Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S. (b) Show that if I ⊂ R

is an ideal, then I(V(I)) =
√

I.

B4. (Important!) Show that V and I give a bijection between irreducible closed subsets of
Spec R and prime ideals of R. From this conclude that in Spec R there is a bijection between
points of Spec R and irreducible closed subsets of Spec R (where a point determines an
irreducible closed subset by taking the closure). Hence each irreducible closed subset has
precisely one generic point.

B5. (Important!) Show that the distinguished opens form a base for the Zariski topology.

B6. (a) Recall that sections of the structure sheaf on the base were defined byOSpec R(D(f)) =
Rf. Verify that this is well-defined, i.e. if D(f) = D(f ′) then Rf

∼= Rf′ .
(b) Recall that restriction maps on the base were defined as follows. If D(f) ⊂ D(g), then
we have shown that fn ∈ (g), i.e. we can write fn = ag, so there is a natural map Rg → Rf

given by r/gm 7→ (ram)/(fmn), and we define

resD(g),D(f) : OSpec R(D(g)) → OSpec R(D(f))

to be this map. Show that resD(g),D(f) is well-defined, i.e. that it is independent of the
choice of a and n, and if D(f) = D(f ′) and D(g) = D(g ′), then

Rg

∼

��

resD(g),D(f)
// Rf

∼

��

Rg′

resD(g),D(f)
// Rf′
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commutes.

B7. Show that the structure sheaf satisfies “identity on the distinguished base”. Show that
it satisfies “gluability on the distinguished base”. (We used this to show that the structure
sheaf is actually a sheaf.)

B8. Suppose M is an R-module. Show that the following construction describes a sheaf

M̃ on the distinguished base. To D(f) we associate Mf = M ⊗R Rf; the restriction map is
the “obvious” one.

B9. Show that the stalk of OSpec R at the point [p] is the ring Rp. (Hint: use distinguished
open sets in the direct limit you use to define the stalk. In the course of doing this, you’ll
discover a useful principle. In the concrete definition of stalk, the elements were sections
of the sheaf over some open set containing our point, and two sections over different open
sets were considered the same if they agreed on some smaller open set. In fact, you can
just consider elements of your base when doing this. I think this is called a cofinal system
in the directed set, but I might be mistaken.) This is yet another reason to like the notion
of a sheaf on a base.

B10. (Important!) Figure out how to define projective n-space P
n
k. Glue together n + 1

opens each isomorphic to A
n
k. Show that the only global sections of the structure sheaf

are the constants, and hence that P
n
k is not affine if n > 0. (Hint: you might fear that you

will need some delicate interplay among all of your affine opens, but you will only need
two of your opens to see this. There is even some geometric intuition behind this: the
complement of the union of two opens has codimension 2. But “Hartogs’ Theorem” says
that any function defined on this union extends to be a function on all of projective space.
Because we’re expecting to see only constants as functions on all of projective space, we
should already see this for this union of our two affine open sets.)

Practice with the concepts

C1. Verify that [(y − x2)] ∈ A
2
k is a generic point for V(y − x2).

C2. Suppose X ⊂ A
3
k is the union of the three axes. Give generators for the ideal I(X).

C3. Describe a natural isomorphism (k[x, y]/(xy))x
∼= k[x]x.

C4. Suppose we have a polynomial f(x) ∈ k[x]. Instead, we work in k[x, ε]/ε2. What
then is f(x + ε)? (Do a couple of examples, and you will see the pattern. For example, if
f(x) = 3x3 + 2x, we get f(x + ε) = (3x3 + 2x) + ε(9x2 + 2). Prove the pattern!) Useful tip:
the dual numbers are a good source of (counter)examples, being the “smallest ring with
nilpotents”. They will also end up being important in defining differential information.

C5. Show that the affine base of the Zariski topology isn’t necessarily a nice base. (Hint:
look at the affine plane with the doubled origin.)
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