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At the start of class 49, I gave an informal discussion on other criteria for ampleness,
and other adjectives for divisors. We discussed the following notions: Kleiman’s criterion
for ampleness, numerical equivalence, Neron-Severi group, Picard number, nef, the nef
cone and the ample cone, Nakai’s criterion, the Nakai-Moishezon criterion, big, Q-Cartier,
Snapper’s theorem.)

1. BLOWING UP A SCHEME ALONG A CLOSED SUBSCHEME

We’ll next discuss an important construction in algebraic geometry (and especially the
geometric side of the subject), the blow-up of a scheme along a closed subscheme (cut out
by a finite type ideal sheaf). We’ll start with a motivational example that will give you
a picture of the construction in a particularly important case (and the historically earli-
est case), in Section 2. I’ll then give a formal definition, in terms of universal property,
Section 3. This definition won’t immediately have a clear connection to the motivational
example! We’ll deduce some consequences of the definition (assuming that the blow-up
actually exists). We’ll prove that the blow-up always exists, by describing it quite ex-
plicitly, in Section 4. As a consequence, the blow-up morphism is projective, and we’ll
deduce more consequences from this. In Section 5, we’ll do a number of explicit compu-
tations, and see that in practice, it is possible to compute many things by hand. I’ll then
mention a couple of useful facts: (i) the blow-up a nonsingular variety in a nonsingular
variety is still nonsingular, something we’ll have observed in our explicit examples, and
(ii) Castelnuovo’s criterion, that on a smooth surface, “(−1)-curves” (P1’s with normal
bundle O(−1)) can be “blown down”.
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2. MOTIVATIONAL EXAMPLE

We’re going to generalize the following notion, which will correspond to “blowing up”
the origin of A2

k (over an algebraically closed field k). Because this is just motivation, I’ll
be informal. Consider the subset of A2 × P1 corresponding to the following. We interpret
P1 as the lines through the origin. Consider the subset {(p ∈ A2, [`] ∈ P1) : p ∈ `)}. (I
showed you a model in class, admittedly over the non-algebraically-closed field k = R.)

I’ll now try to convince you that this is nonsingular (informally). Now P1 is smooth,
and for each point [`] in P1, we have a smooth choice of points on the line `. Thus we are
verifying smoothness by way of the fibration over P1.

Let’s make this more algebraic. Let x and y be coordinates on A2, and X and Y be pro-
jective coordinates on P1 (“corresponding” to x and y); we’ll consider the subset Bl(0,0) A2

of A2 × P1 corresponding to xY − yX = 0. We could then verify that this is nonsingular
(by looking at two covering patches).

Notice that the preimage of (0, 0) is a curve and hence a divisor (an effective Cartier
divisor, as the blown-up surface is nonsingular). Also, note that if we have some curve
singular at the origin, this could be partially desingularized. (A desingularization or a
resolution of singularities of a variety X is a proper birational morphism X̃ → X from a non-
singular scheme. We are interested in desingularizations for many reasons. For example,
we understand nonsingular curves quite well. and we could hope to understand other
curves through their desingularizations. This philosophy holds true in higher dimension
as well.) For example, the curve y2 = x3 + x2, which is nonsingular except for a node at
the origin, then we can take the preimage of the curve minus the origin, and take the clo-
sure of this locus in the blow-up, and we’ll obtain a nonsingular curve; the two branches
of the node downstairs are separated upstairs. (This will later be an exercise, once we’ve
defined things properly. The result will be called the proper transform of the curve.)

Let’s generalize this. First, we can blow up An at the origin (or more informally, “blow
up the origin”), getting a subvariety of An × Pn−1. More algebraically, If x1, . . . , xn are
coordinates on An, and X1, . . . , Xn are projective coordinates on Pn−1, then the blow-up
Bl~0 An is given by the equations xiXj − xjXi = 0. Once again, this is smooth: Pn−1 is
smooth, and for each point [`] ∈ Pn−1, we have a smooth choice of p ∈ `.

We can extend this further, by blowing up An+m along a coordinate m-plane An by
adding m more variables xn+1, . . . , xn+m to the previous example; we get a subset of
An+m × Pn−1.

Then intuitively, we could extend this to blowing up a nonsingular subvariety of a
nonsingular variety. We’ll make this more precise. In the course of doing so, we will
accidentally generalize this notion greatly, defining the blow-up of any finite type sheaf
of ideals in a scheme. In general, blowing up may not have such an intuitive description
as in the case of blowing up something nonsingular inside something nonsingular — it
does great violence to the scheme — but even then, it is very useful (for example, in
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developing intersection theory). The result will be very powerful, and will touch on many
other useful notions in algebra (such as the Rees algebra) that we won’t discuss here.

Our description will depend only the closed subscheme being blown up, and not on co-
ordinates. That remedies a defect was already present in the first baby example, blowing
up the plane at the origin. It is not obvious that if we picked different coordinates for the
plane (preserving the origin as a closed subscheme) that we wouldn’t have two different
resulting blow-ups.

As is often the case, there are two ways of understanding this notion, and each is useful
in different circumstances. The first is by universal property, which lets you show some
things without any work. The second is an explicit construction, which lets you get your
hands dirty and compute things (and implies for example that the blow-up morphism is
projective).

3. BLOWING UP, BY UNIVERSAL PROPERTY

I’ll start by defining the blow-up using the universal property. The disadvantage of
starting here is that this definition won’t obviously be the same as the examples I just
gave. It won’t even look related!

Suppose X ↪→ Y is a closed subscheme corresponding to a finite type sheaf of ideals. (If
Y is locally Noetherian, the “finite type” hypothesis is automatic, so Noetherian readers
can ignore it.)

The blow-up X ↪→ Y is a fiber diagram

EXY
� � //

��

BlX Y

β

��

X
� � // Y

such that EXY is an effective Cartier divisor on BlX Y (and is the scheme-theoretical pullback
of X on Y), such any other such fiber diagram

(1) D
� � //

��

W

��

X
� � // Y,

where D is an effective Cartier divisor on W, factors uniquely through it:

D
� � //

��

W

��

EXY
� � //

��

BlX Y

��

X
� � // Y.
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(Recall that an effective Cartier divisor is locally cut out by one equation that is not a
zero-divisor; equivalently, it is locally cut out by one equation, and contains no associated
points. This latter description will prove crucial.) BlX Y is called the blow-up (of Y along X,
or of Y with center X). EXY is called the exceptional divisor. (Bl and β stand for “blow-up”,
and E stands for “exceptional”.)

By a universal property argument, if the blow-up exists, it is unique up to unique iso-
morphism. (We can even recast this more explicitly in the language of Yoneda’s lemma:
consider the category of diagrams of the form (1), where morphisms are of the form

D
� � //

��

W

��

D ′
� � //

��

W ′

��

X
� � // Y.

Then the blow-up is a final object in this category, if one exists.)

If Z ↪→ Y is any closed subscheme of Y, then the (scheme-theoretic) pullback β−1Z is
called the total transform of Z. We will soon see that β is an isomorphism away from X

(Observation 3.4). β−1(Z − X) is called the proper transform or strict transform of Z. (We
will use the first terminology. We will also define it in a more general situation.) We’ll
soon see that the proper transform is naturally isomorphic to BlZ∩X Z, where by Z ∩ X we
mean the scheme-theoretic intersection (the blow-up closure lemma 3.7).

We will soon show that the blow-up always exists, and describe it explicitly. But first,
we make a series of observations, assuming that the blow up exists.

3.1. Observation. If X is the empty set, then BlX Y = Y. More generally, if X is a Cartier
divisor, then the blow-up is an isomorphism. (Reason: idY : Y → Y satisfies the universal
property.)

3.2. Exercise. If U is an open subset of Y, then BlU∩X U ∼= β−1(U), where β : BlX Y → Y is
the blow-up. (Hint: show β−1(U) satisfies the universal property!)

Thus “we can compute the blow-up locally.”

3.3. Exercise. Show that if Yα is an open cover of Y (as α runs over some index set), and
the blow-up of Yα along X ∩ Yα exists, then the blow-up of Y along X exists.

3.4. Observation. Combining Observation 3.1 and Exercise 3.2, we see that the blow-up is
an isomorphism away from the locus you are blowing up:

β|BlX Y−EXY : BlX Y − EXY → Y − X

is an isomorphism.
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3.5. Observation. If X = Y, then the blow-up is the empty set: the only map W → Y such
that the pullback of X is a Cartier divisor is ∅ ↪→ Y. In this case we have “blown Y out of
existence”!

3.6. Exercise (blow-up preserves irreducibility and reducedness). Show that if Y is irreducible,
and X doesn’t contain the generic point of Y, then BlX Y is irreducible. Show that if Y is
reduced, then BlX Y is reduced.

The following blow-up closure lemma is useful in several ways. At first, it is confusing
to look at, but once you look closely you’ll realize that it is not so unreasonable.

Suppose we have a fibered diagram

W
� �cl. imm.

//

��

Z

��

X
� �cl. imm.

// Y

where the bottom closed immersion corresponds to a finite type ideal sheaf (and hence
the upper closed immersion does too). The first time you read this, it may be helpful to
consider the special case where Z → Y is a closed immersion.

Then take the fiber product of this square by the blow-up β : BlX Y → Y, to obtain

Z ×Y EXY
� � //

��

Z ×Y BlX Y

��

EXY
� � Cartier

// BlX Y.

The bottom closed immersion is locally cut out by one equation, and thus the same is true
of the top closed immersion as well. However, it need not be a non-zero-divisor, and thus
the top closed immersion is not necessarily an effective Cartier divisor.

Let Z be the scheme-theoretic closure of Z ×Y BlX Y − W ×Y BlX Y in Z ×Y BlX Y. Note
that in the special case where Z → Y is a closed immersion, Z is the proper transform, as
defined in §3. For this reason, it is reasonable to call Z the proper transform of Z even if
Z isn’t a closed immersion. Similarly, it is reasonable to call Z×Z BlX Y the total transform
even if Z isn’t a closed immersion.

Define EZ ↪→ Z as the pullback of EXY to Z, i.e. by the fibered diagram

EZ
� � //

� _

cl. imm.
��

Z� _

cl. imm.
��

proper transform

Z ×Y EXY
� � //

��

Z ×Y BlX Y

��

total transform

EXY
� � Cartier

// BlX Y.
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Note that EZ is Cartier on Z (as it is locally the zero-scheme of a single function that does
not vanish on any associated points of Z).

3.7. Blow-up closure lemma. — (BlZ W, EZW) is canonically isomorphic to (Z, EZ).

This is very handy.

The first three comments apply to the special case where Z → W is a closed immersion,
and the fourth basically tells us we shouldn’t have concentrated on this special case.

(1) First, note that if Z → Y is a closed immersion, then this states that the proper
transform (as defined in §3) is the blow-up of Z along the scheme-theoretic intersection
W = X ∩ Z.

(2) In particular, it lets you actually compute blow-ups, and we’ll do lots of examples
soon. For example, suppose C is a plane curve, singular at a point p, and we want to
blow up C at p. Then we could instead blow up the plane at p (which we have already
described how to do, even if we haven’t yet proved that it satisfies the universal property
of blowing up), and then take the scheme-theoretic closure of C − p in the blow-up.

(3) More generally, if W is some nasty subscheme of Z that we wanted to blow-up,
and Z were a finite type k-scheme, then the same trick would work. We could work
locally (Exercise 3.2), so we may assume that Z is affine. If W is cut out by r equations
f1, . . . , fr ∈ Γ(OZ), then complete the f’s to a generating set f1, . . . , fn of Γ(OZ). This gives
a closed immersion Y ↪→ An such that W is the scheme-theoretic intersection of Y with a
coordinate linear space Ar.

3.8. (4) Most generally still, this reduces the existence of the blow-up to a specific special
case. (If you prefer to work over a fixed field k, feel free to replace Z by k in this dis-
cussion.) Suppose that for each n, Bl(x1,...,xn) Spec Z[x1, . . . , xn] exists. Then I claim that
the blow-up always exists. Here’s why. We may assume that Y is affine, say Spec B, and
X = Spec B/(f1, . . . , fn). Then we have a morphism Y → An

Z
given by xi 7→ fi, such that

X is the scheme-theoretic pullback of the origin. Hence by the blow-up closure lemma,
BlX Y exists.

3.9. Tricky Exercise+. Prove the blow-up closure lemma. Hint: obviously, construct maps
in both directions, using the universal property. The following diagram may or may not
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help.

EZ

zzvvvvvvvvvvvvvvvvvvvvvvvv

� � Cartier
//

55

uu

� _

cl. imm.

��

Z55

uu

{{wwwwwwwwwwwwwwwwwwwwwwwww � _

cl. imm.

��

EWZ
� � Cartier

//

��

BlW Z

��

W
� � //

$$III
II

II
II

II
Z

$$HHHH
HHHH

HHH EXY
� � Cartier

//

zzvv
vv

vv
vv

vv

BlX Y

{{vvvvvvvvv

X
� � // Y

3.10. Exercise. If Y and Z are closed subschemes of a given scheme X, show that BlY Y∪Z ∼=
BlY∩Z Z. (In particular, if you blow up a scheme along an irreducible component, the
irreducible component is blown out of existence.)

4. THE BLOW-UP EXISTS, AND IS PROJECTIVE

It is now time to show that the blow up always exists. I’ll give two arguments, be-
cause I find them enlightening in two different ways. Both will imply that the blow-up
morphism is projective. Hence the blow-up morphism is projective, hence quasicompact,
proper, finite type, separated. In particular, if Y → Z is projective (resp. quasiprojective,
quasicompact, proper, finite type, separated), so is BlX Y → Z. The blow-up of a k-variety
is a k-variety (using the fact that irreducibility, reducedness are preserved, Exercise 3.6).

Approach 1. As explained above (§3.8), it suffices to show that Bl(x1,...,xn) Spec Z[x1, . . . , xn]

exists. But we know what it is supposed to be: the locus in
Spec Z[x1, . . . , xn] × Proj Z[X1, . . . , Xn]

such that xiXj − xjXi = 0. We’ll show this soon.

Approach 2. We can describe the blow-up all at once as a Proj.

4.1. Theorem (Proj description of the blow-up). — Suppose X ↪→ Y is a closed subscheme cut out
by a finite type sheaf of ideals I ↪→ OY . Then

Proj
(

OY ⊕ I ⊕ I2 ⊕ I3 ⊕ · · ·
)

→ Y

satisfies the universal property of blowing up.

We’ll prove this soon (Section 4.2), after seeing what this gives us. (The reason we had a
finite type requirement is that I wanted this Proj to exist; we needed the sheaf of algebras
to satisfy the conditions stated earlier.)

But first, we should make sure that the preimage of X is indeed an effective Cartier
divisor. We can work affine-locally (Exercise 3.2), so I’ll assume that Y = Spec B, and X is
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cut out by the finitely generated ideal I. Then
BlX Y = Proj

(

B ⊕ I ⊕ I2 ⊕ · · ·
)

.

(We are slightly abusing notation by using the notation BlX Y, as we haven’t yet shown
that this satisfies the universal property. But I hope that by now you trust me.)

The preimage of X isn’t just any effective Cartier divisor; it corresponds to the invertible
sheaf O(1) on this Proj. Indeed, O(1) corresponds to taking our graded ring, chopping
off the bottom piece, and sliding all the graded pieces to the left by 1; it is the invertible
sheaf corresponding to the graded module

I ⊕ I2 ⊕ I3 ⊕ · · ·

(where that first summand I has grading 0). But this can be interpreted as the scheme-
theoretic pullback of X, which corresponds to the ideal I of B:

I
(

B ⊕ I ⊕ I2 ⊕ · · ·
)

↪→ B ⊕ I ⊕ I2 ⊕ · · · .

Thus the scheme-theoretic pullback of X ↪→ Y to ProjOY ⊕ I ⊕ I2 ⊕ · · · , the invertible
sheaf corresponding to I ⊕ I2 ⊕ I3 ⊕ · · · , is an effective Cartier divisor in class O(1).
Once we have verified that this construction is indeed the blow-up, this divisor will be
our exceptional divisor EXY.

Moreover, we see that the exceptional divisor can be described beautifully as a Proj

over X:
(2) EXY = Proj

X
B/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · .

We’ll later see that in good circumstances (if X is a local complete intersection in some-
thing nonsingular, or more generally a local complete intersection in a Cohen-Macaulay
scheme) this is a projective bundle (the “projectivized normal bundle”).

4.2. Proof of the universal property, Theorem 4.1. Let’s prove that this Proj construction
satisfies the universal property. Then approach 1 will also follow, as a special case of
approach 2. You may ask why I bothered with approach 1. I have two reasons: one is
that you may find it more comfortable to work with this one nice ring, and the picture
may be geometrically clearer to you (in the same way that thinking about the blow-up
closure lemma in the case where Z → Y is a closed immersion is more intuitive). The
second reason is that, as you’ll find in the exercises, you’ll see some facts more easily in
this explicit example, and you can then pull them back to more general examples.

Proof. Reduce to the case of affine target R with ideal I. Reduce to the case of affine
source, with principal effective Cartier divisor t. (A principal effective Cartier divisor is
cut out by a single non-zero-divisor. Recall that an effective Cartier divisor is cut out only
locally by a single non-zero divisor.) Thus we have reduced to the case Spec S → Spec R,
corresponding to f : R → S. Say (x1, . . . , xn) = I, with (f(x1), . . . , f(xn)) = (t). We’ll
describe one map Spec S → Proj R[I] that will extend the map on the open set Spec St →

Spec R. It is then unique: a map to a separated R-scheme is determined by its behavior
away from the associated points (proved earlier). We map R[I] to S as follows: the degree
one part is f : R → S, and f(Xi) (where Xi corresponds to xi, except it is in degree 1) goes
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to f(xi)/t. Hence an element X of degree d goes to X/(td). On the open set D+(X1), we get
the map R[X2/X1, . . . , Xn/X1]/(x2 −X2/X1x1, . . . , xiXj −xjXi, . . . ) → S (where there may be
many relations) which agrees with f away from D(t). Thus this map does extend away
from V(I). �

Here are some applications and observations arising from this construction of the blow-
up.

4.3. Observation. We can verify that our initial motivational examples are indeed blow-
ups. For example, blowing up A2 (with co-ordinates x and y) at the origin yields: B =

k[x, y], I = (x, y), and Proj B ⊕ I ⊕ I2 = Proj B[X, Y] where the elements of B have degree
0, and X and Y are degree 1 and correspond to x and y.

4.4. Observation. Note that the normal bundle to a Cartier divisor D is the invertible sheaf
O(D)|D, the invertible sheaf corresponding to the D on the total space, then restricted to
D. (This was discussed earlier in the section on differentials.) (Reason: if D corresponds
to the ideal sheaf I, then recall that I = O(D)∨, and that the conormal sheaf was I/I2 =

I |D.) The ideal sheaf corresponding to the exceptional divisor is O(1), so the invertible
sheaf corresponding to the exceptional divisor is O(−1). (I prefer to think of this in light
of approach 1, but there is no real difference.) Thus for example in the case of the blow-up
of a point in the plane, the exceptional divisor has normal bundle O(−1). In the case of
the blow-up of a nonsingular subvariety of a nonsingular variety, the blow up turns out to
be nonsingular (a fact discussed soon in §6.1), and the exceptional divisor is a projective
bundle over X, and the normal bundle to the exceptional divisor restricts to O(−1).

4.5. More serious application: dimensional vanishing for quasicoherent sheaves on
quasiprojective schemes. Here is something promised long ago. I want to point out
something interesting here: in proof I give below, we will need to potentially blow up
arbitrary closed schemes. We won’t need to understand precisely what happens when
we do so; all we need is the fact that the exceptional divisor is indeed a (Cartier) divisor.

5. EXPLICIT COMPUTATIONS

In this section you will do a number of explicit of examples, to get a sense of how
blow-ups behave, how they are useful, and how one can work with them explicitly. For
convenience, all of the following are over an algebraically closed field k of characteristic
0.

5.1. Example: Blowing up the plane along the origin. Let’s first blow up the plane A2
k

along the origin, and see that the result agrees with our discussion in §2. Let x and y be
the coordinates on A2

k. The the blow-up is Proj k[x, y, X, Y] where xY − yX = 0. This is
naturally a closed subscheme of A2

k × P1
k, cut out (in terms of the projective coordinates X

and Y on P1
k) by xY − yX = 0. We consider the two usual patches on P1

k: [X; Y] = [s; 1] and
[1; t]. The first patch yields Spec k[x, y, s]/(sy−x), and the second gives Spec k[x, y, t]/(y−
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xt). Notice that both are nonsingular: the first is naturally Spec k[y, s] ∼= A2
k, the second is

Spec k[x, t] ∼= A2
k.

Let’s describe the exceptional divisor. We first consider the first (s) patch. The ideal is
generated by (x, y), which in our ys-coordinates is (ys, y) = (y), which is indeed princi-
pal. Thus on this patch the exceptional divisor is generated by y. Similarly, in the second
patch, the exceptional divisor is cut out by x. (This can be a little confusing, but there is
no contradiction!)

5.2. The proper transform of a nodal curve. Consider next the curve y2 = x3 + x2 inside the
plane A2

k. Let’s blow up the origin, and compute the total and proper transform of the
curve. (By the blow-up closure lemma, the latter is the blow-up of the nodal curve at the
origin.) In the first patch, we get y2 − s2y2 − s3y3 = 0. This factors: we get the exceptional
divisor y with multiplicity two, and the curve 1 − s2 − y3 = 0. Easy exercise: check that
the proper transform is nonsingular. Also, notice where the proper transform meets the
exceptional divisor: at two points, s = ±1. This corresponds to the two tangent directions
at the origin. (Notice that s = y/x.)

5.3. Exercise. Describe both the total and proper transform of the curve C given by
y = x2 − x in Bl(0,0) A2. Verify that the proper transform of C is isomorphic to C. Interpret
the intersection of the proper transform of C with the exceptional divisor E as the slope
of C at the origin.

5.4. Exercise: blowing up a cuspidal plane curve. Describe the proper transform of the
cuspidal curve C ′ given by y2 = x3 in the plane A2

k. Show that it is nonsingular. Show
that the proper transform of C meets the exceptional divisor E at one point, and is tangent
to E there.

5.5. Exercise. (a) Desingularize the tacnode y2 = x4 by blowing up the plane at the origin
(and taking the proper transform), and then blowing up the resulting surface once more.
(b) Desingularize y8 − x5 = 0 in the same way. How many blow-ups do you need?
(c) Do (a) instead in one step by blowing up (y, x2).

5.6. Exercise. Blowing up a nonreduced subscheme of a nonsingular scheme can give you
something singular, as shown in this example. Describe the blow up of the ideal (x, y2) in
A2

k. What singularity do you get? (Hint: it appears in a nearby exercise.)

5.7. Exercise. Blow up the cone point z2 = x2 + y2 at the origin. Show that the resulting
surface is nonsingular. Show that the exceptional divisor is isomorphic to P1.

5.8. Harder but enlightening exercise. If X ↪→ Pn is a projective scheme, show that the
exceptional divisor of the blow up the affine cone over X at the origin is isomorphic to X,
and that its normal bundle is OX(−1). (I prefer approach 1 here, but both work.)
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In the case X = P1, we recover the blow-up of the plane at a point. In particular,
we again recover the important fact that the normal bundle to the exceptional divisor is
O(−1).

5.9. Exercise. Show that the multiplicity of the exceptional divisor in the total transform
of a subscheme of An when you blow up the origin is the lowest degree that appears in a
defining equation of the subscheme. (For example, in the case of the nodal and cuspidal
curves above, Example 5.2 and Exercise 5.4 respectively, the exceptional divisor appears
with multiplicity 2.) This is called the multiplicity of the singularity.

5.10. Exercise. Suppose Y is the cone x2 + y2 = z2, and X is the ruling of the cone x = 0,
y = z. Show that BlX Y is nonsingular. (In this case we are blowing up a codimension 1

locus that is not a Cartier divisor. Note that it is Cartier away from the cone point, so you
should expect your answer to be an isomorphism away from the cone point.)

5.11. Harder but useful exercise (blow-ups resolve base loci of rational maps to projective space).
(I find this easier via method 1.) Suppose we have a scheme Y, an invertible sheaf L, and
a number of sections s0, . . . , sn of L. Then away from the closed subscheme X cut out
by s0 = · · · = sn = 0, these sections give a morphism to Pn. Show that this morphism
extends to a morphism BlX Y → Pn, where this morphism corresponds to the invertible
sheaf (π∗L)(−EXY), where π : BlX Y → Y is the blow-up morphism. In other words,
“blowing up the base scheme resolves this rational map”. (Hint: it suffices to consider an
affine open subset of Y where L is trivial.)

6. TWO STRAY FACTS

There are two stray facts I want to mention.

6.1. Blowing up a nonsingular in a nonsingular. The first is that if you blow up a non-
singular subscheme of a nonsingular locally Noetherian scheme, the result is nonsingular.
I didn’t have the time to prove this, but I discussed some of the mathematics behind it.
(This is harder than our previous discussion. Also, it uses a flavor of argument that in
general I haven’t gotten to, about local complete intersections and Cohen-Macaulayness.)
Moreover, for a local complete intersection X ↪→ Y cut out by ideal sheaf I, I/I2 is locally
free (class 39/40, Theorem 2.20, p. 10). Then it is a fact (unproved here) that for a lo-
cal complete intersection, the natural map Symn I/I2

→ In/In+1 is an isomorphism. Of
course it suffices to prove this for affine open sets. More generally, if A is Cohen-Macaulay
(recall that I’ve stated that nonsingular schemes are Cohen-Macaulay), and x1, . . . , xr ∈ m

is a regular sequence, with I = (x1, . . . , xr), then the natural map is an isomorphism. You
can read about this at p. 110 of Matsumura’s Commutative Algebra.

Assuming this fact, we conclude that if X ↪→ Y is a complete intersection in a non-
singular scheme (or more generally cut out by a regular sequence in a Cohen-Macaulay
scheme), the exceptional divisor is the projectivized normal bundle (by (2)). (Exercise:
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Blow up (xy, z) in A3, and verify that the exceptional divisor is indeed the projectivized
normal bundle.)

In particular, in the case where we blow up a nonsingular subvariety in a nonsingular
variety, the exceptional divisor is nonsingular. We can then show that the blow-up is
nonsingular as follows. The blow-up BlX Y remains nonsingular away from EXY, as it is
here isomorphic to the nonsingular space Y −X. Thus we need check only the exceptional
divisor. Fix any point of the exceptional divisor p. Then the dimension of EXY at p is
precisely the dimension of the Zariski tangent space (by nonsingularity). Moreover, the
dimension of BlX Y at p is one more than that of EXY (by Krull’s Principal Ideal Theorem),
as the latter is an effective Cartier divisor), and the dimension of the Zariski tangent space
of BlX Y at p is at most one more than that of EXY. But the first of these is at most as big as
the second, so we must have equality, which means that BlX Y is nonsingular at p.

6.2. Exercise. Suppose X is an irreducible nonsingular subvariety of a nonsingular variety
Y, of codimension at least 2. Describe a natural isomorphism Pic BlX Y ∼= Pic Y ⊕Z. (Hint:
compare divisors on BlX Y and Y. Show that the exceptional divisor EXY gives a non-
torsion element of Pic(BlX Y) by describing a P1 on BlX Y which has intersection number
−1 with EXY.)

(If I had more time, I would have used this to give Hironaka’s example of a nonpro-
jective proper nonsingular threefold. If you are curious and have ten minutes, please ask
me! It includes our nonprojective proper surface as a closed subscheme, and indeed that
is how we can show nonprojectivity.)

6.3. Castelnuovo’s criterion.

A curve in a nonsingular surface that is isomorphic to P1 with normal bundle O(−1)

is called a (−1)-curve. We’ve shown that if we blow up a nonsingular point of a surface
at a (reduced) point, the exceptional divisor is a (−1)-curve. Castelnuovo’s criterion is
the converse: if we have a quasiprojective surface containing a (−1)-curve, that surface is
obtained by blowing up another surface at a reduced nonsingular point. (We say that we
can “blow down” the (−1)-curve.)

E-mail address: vakil@math.stanford.edu
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