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This week: Grauert’s theorem and the Cohomology and base change theorem, and
applications. The Rigidity Lemma. Proof of Grauert’s theorem. Dimensions behave
well for flat morphisms. Associated points go to associated points.

1. COHOMOLOGY AND BASE CHANGE THEOREMS

We’re in the midst of discussing a family of theorems involving the following situation.
Suppose F is a coherent sheaf on X, π : X → Y projective, Y (hence X) Noetherian, and F
flat over Y.

Here are two related questions. Is Rpπ∗F locally free? Is φp : Rpπ∗F⊗k(y) → Hp(Xy,Fy)
an isomorphism?

We have shown a key intermediate result, that if Y is affine, say Y = Spec B, then we
can compute the pushforwards of F by a complex of locally free modules

0 → M0
→ M1

→ · · · → Mn
→ 0

where in fact Mp is free for p > 1. Moreover, this computes pushforwards “universally”:
after a base change, this remains true.

We have already shown the constancy of Euler characteristic, and the semicontinuity
theorem. I’m now going to discuss two big theorems, Grauert’s theorem and the Co-
homology and base change theorem, that are in some sense the scariest in Hartshorne,
coming at the end of Chapter III (along with the semicontinuity theorem). I hope you
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agree that semicontinuity isn’t that scary (given the key fact). I’d like to discuss applica-
tions of these two theorems to show you why you care; then given time I’ll give proofs.
I’ve found the statements worth remembering, even though they are a little confusing.

Note that if Rpπ∗F is locally free and φp is an isomorphism, then the right side is locally
constant. The following is a partial converse.

1.1. Grauert’s Theorem. — If Y is reduced, then hp locally constant implies Rpπ∗F is locally free
and φp is an isomorphism.

1.2. Cohomology and base change theorem. — Assume φp is surjective. Then the following hold.

(a) φp is an isomorphism, and the same is true nearby. [Note: The hypothesis is trivially
satisfied in the common case Hp = 0. If Hp = 0 at a point, then it is true nearby by
semicontinuity.]

(b) φp−1 is surjective (=isomorphic) if and only if Rpπ∗F is locally free. [This in turn implies
that hp is locally constant.]

Notice that (a) is about just what happens over the reduced scheme, but (b) has a neat
twist: you can check things over the reduced scheme, and it has implications over the
scheme as a whole!

Here are a couple of consequences.

1.3. Exercise. Suppose Hp(Xy,Fy) = 0 for all y ∈ Y. Show that φp−1 is an isomorphism
for all y ∈ Y. (Hint: cohomology and base change (b).)

1.4. Exercise. Suppose Rpπ∗F = 0 for p ≥ p0. Show that Hp(Xy,Fy) = 0 for all y ∈ Y,
k ≥ k0. (Same hint. You can also do this directly from the key theorem above.)

2. WHEN THE PUSHFORWARD OF THE FUNCTIONS ON X ARE THE FUNCTIONS ON Y

Many fun applications happen when a certain hypothesis holds, which I’ll now de-
scribe.

We say that π satisfies (*) if it is projective, and the natural morphism OY → π∗OX is an
isomorphism. Here are two statements that will give you a feel for this notion. First:

2.1. Important Exercise. Suppose π is a projective flat family, each of whose fibers are
(nonempty) integral schemes, or more generally whose fibers satisfy h0(Xy) = 1. Then (*)
holds. (Hint: consider

OY ⊗ k(y) // (π∗OX) ⊗ k(y)
φ0

// H0(Xy,OXy
) ∼= k(y) .
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The composition is surjective, hence φ0 is surjective, hence it is an isomorphism (by the
Cohomology and base change theorem 1.2 (a)). Then thanks to the Cohomology and base
change theorem 1.2 (b), π∗OX is locally free, thus of rank 1. If I have a map of invert-
ible sheaves OY → π∗OX that is an isomorphism on closed points, it is an isomorphism
(everywhere) by Nakayama.)

Note in the previous exercise: we are obtaining things not just about closed points!

Second: we will later prove a surprisingly hard result, that given any projective (proper)
morphism of Noetherian schemes satisfying (*) (without any flatness hypotheses!), the
fibers are all connected (“Zariski’s connectedness lemma”).

2.2. Exercise (the Hodge bundle; important in Gromov-Witten theory). Suppose π : X → Y

is a projective flat family, all of whose geometric fibers are connected reduced curves of
arithmetic genus g. Show that R1π∗OX is a locally free sheaf of rank g. This is called the
Hodge bundle. [Hint: use cohomology and base change (b) twice, once with p = 2, and
once with p = 1.]

Here is the question we’ll address in this section. Given an invertible sheaf L on X, we
wonder when it is the pullback of an invertible sheaf M on Y. Certainly it is necessary
for it to be trivial on the fibers. We’ll see that (*) holds, then this basically suffices. Here is
the idea: given L, how can we recover M? Thanks to the next exercise, it must be π∗L.

2.3. Exercise. Suppose π : X → Y satisfies (*). Show that if M is any invertible sheaf
on Y, then the natural morphism M → π∗π

∗M is an isomorphism. In particular, we can
recover M from π∗M by pushing forward. (Hint: projection formula.)

2.4. Proposition. — Suppose π : X → Y is a morphism of locally Noetherian integral schemes
with geometrically integral fibers (hence by Exercise 2.1 satisfying (*)). Suppose also that Y is
reduced, and L is an invertible sheaf on X that is trivial on the fibers of π (i.e. Ly is a trivial
invertible sheaf on Xy). Then π∗L is an invertible sheaf on Y (call it M), and L = π∗M.

Proof. To show that there exists such an invertible sheaf M on Y with π∗M ∼= L, it suffices
to show that π∗L is an invertible sheaf (call it M) and the natural homomorphism π∗M →

L is an isomorphism.

Now by Grauert’s theorem 1.1, π∗L is locally free of rank 1 (again, call it M), and
M⊗OY

k(y) → H0(Xy,Ly) is an isomorphism. We have a natural map of invertible sheaves
π∗M = π∗π∗L → L. To show that it is an isomorphism, we need only show that it is
surjective, i.e. show that it is surjective on the fibers, which is done. �

Here are some consequences.

A first trivial consequence: if you have two invertible sheaves on X that agree on the
fibers of π, then they differ by a pullback of an invertible sheaf on Y.
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2.5. Exercise. Suppose X is an integral Noetherian scheme. Show that Pic(X × P
1) ∼=

Pic X × Z. (Side remark: If X is non-reduced, this is still true, see Hartshorne Exercise
III.12.6(b). It need only be connected of finite type over k. Presumably locally Noetherian
suffices.) Extend this to X × P

n. Extend this to any P
n-bundle over X.

2.6. Exercise. Suppose X → Y is the projectivization of a vector bundle F over a reduced
locally Noetherian scheme (i.e. X = Proj Sym∗ F ). Then I think we’ve already shown in an
exercise that it is also the projectivization of F⊗L. If Y is reduced and locally Noetherian,
show that these are the only ways in which it is the projectivization of a vector bundle.
(Hint: note that you can recover F by pushing forward O(1).)

2.7. Exercise. Suppose π : X → Y is a projective flat morphism over a Noetherian integral
scheme, all of whose geometric fibers are isomorphic to P

n (over the appropriate field).
Show that this is a projective bundle if and only if there is an invertible sheaf on X that
restricts to O(1) on all the fibers. (One direction is clear: if it is a projective bundle, then it
has a projective O(1). In the other direction, the candidate vector bundle is π∗O(1). Show
that it is indeed a locally free sheaf of the desired rank. Show that its projectivization is
indeed π : X → Y.)

2.8. Exercise (An example of a Picard scheme). Show that the Picard scheme of P
1
k over k is

isomorphic to Z.

2.9. Harder but worthwhile Exercise (An example of a Picard scheme). Show that if E is
an elliptic curve over k (a geometrically integral and nonsingular genus 1 curve with a
marked k-point), then Pic E is isomorphic to E×Z. Hint: Choose a marked point p. (You’ll
note that this isn’t canonical.) Describe the candidate universal invertible sheaf on E × Z.
Given an invertible sheaf on E × X, where X is an arbitrary Noetherian scheme, describe
the morphism X → E × Z.

3. THE RIGIDITY LEMMA

The rigidity lemma is another useful fact about morphisms π : X → Y such that π∗OX

(condition (*) of the previous section). It is quite powerful, and quite cheap to prove, so
we may as well do it now. (During class, the hypotheses kept on dropping until there was
almost nothing left!)

3.1. Rigidity lemma (first version). — Suppose we have a commutative diagram

X

e closed, e∗OX = OY ��>
>>

>>
>>

f // Z

g quasi–proj.����
��

��
�

Y

where Y is locally Noetherian, where f takes Xy for some y ∈ Y. Then there is a neighborhood
U ⊂ Y of y on which this is true. Better: over U, f factors through the projection to Y, i.e. the
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following diagram commutes for some choice of h:

X|U
f //

e

  A
AA

AA
AA

A
Z|U

U

h
>>}}}}}}}}

.

Proof. This proof is very reminiscent of an earlier result, when we showed that a projective
morphisms with finite fibers is a finite morphism.

We can take g to be projective. We can take Y to be an affine neighborhood of y. Then
Z ↪→ P

n
Y for some n. Choose a hyperplane of P

n
y missing f(Xy), and extend it to a hyper-

plane H of P
n
Y . (If Y = Spec B, and y = [n], then we are extending a linear equation with

coefficients in B/n to an equation with coefficients in B.) Pull back this hyperplane to X;
the preimage is a closed subset. The image of this closed subset in Y is also a closed set
K ⊂ Y, as e is a closed map. But y /∈ K, so let U = Y − K. Over U, f(Xy) misses our
hyperplane H. Thus the map Xy → P

n
U factors through Xy → A

n
U. Thus the map is given

by n functions on X|U. But e∗OX
∼= OY , so these are precisely the pullbacks of functions

on U, so we are done. �

3.2. Rigidity lemma (second version). — Same thing, with the condition on g changed from
“projective” to simply “finite type”.

Proof. Shrink Y so that it is affine. Choose an open affine subset Z ′ of Z containing the
f(Xy). Then the complement the pullback of K = Z−Z ′ to X is a closed subset of X whose
image in Y is thus closed (as again e is a closed map), and misses y. We shrink Y further
such that f(X) lies in Z ′. But Z ′

→ Y is quasiprojective, so we can apply the previous
version. �

Here is another mild strengthening.

3.3. Rigidity lemma (third version). — If X is reduced and g is separated, and Y is connected, and
there is a section Y → X, then we can take U = Y.

Proof. We have two morphisms X → Z: f and f ◦ s ◦ e which agree on the open set U.
But we’ve shown earlier that any two morphisms from a reduced scheme to a separated
scheme agreeing on a dense open set are the same. �

Here are some nifty consequences.

3.4. Corollary (abelian varieties are abelian). — Suppose A is a projective integral group variety
(an abelian variety) over a field k. Then the multiplication map m : A × A → A is commutative.
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Proof. Consider the commutator map c : A × A → A that corresponds to (x, y) 7→

xyx−1y−1. We wish to show that this map sends A × A to the identity in A. Consider
A × A as a family over the first factor. Then over x = e, c maps the fiber to e. Thus by
the rigidity lemma (third version), the map c is a function only of the first factor. But then
c(x, y) = c(x, e) = e. �

3.5. Exercise. By a similar argument show that any map f : A → A ′ from one abelian
variety to another is a group homomorphism followed by a translation. (Hint: reduce
quickly to the case where f sends the identity to the identity. Then show that “f(x + y) −
f(x) − f(y) = e”.)

4. PROOF OF GRAUERT’S THEOREM

I’ll prove Grauert, but not Cohomology and Base Change. It would be wonderful if Co-
homology and Base Change followed by just mucking around with maps of free modules
over a ring.

4.1. Exercise++. Find such an argument.

We’ll need a preliminary result.

4.2. Lemma. — Suppose Y = Spec B is a reduced Noetherian scheme, and f : M → N is
a homomorphism of coherent free (hence projective, flat) B-modules. If dimk(y) im(f ⊗ k(y)) is
locally constant, then there are splittings M = M1 ⊕ M2 and N = N1 ⊕ N2 with f killing M1,
and sending M2 isomorphically to N1.

Proof. Note that f(M) ⊗ k ∼= f(M ⊗ k) from that surjection. From 0 → f(M) → N →

N/f(M) → 0 we have

f(M) ⊗ k //

��

N ⊗ k //

��

N/f(M) ⊗ k

��

// 0

f(M ⊗ k) // N ⊗ k // N ⊗ k/f(M ⊗ k) // 0

from which (N/f(M)) ⊗ k ∼= (N ⊗ k)/f(M ⊗ k). Now the one on the right has locally
constant rank, so the one on the left does too, hence is locally free, and flat, and projective.
Hence 0 → f(M) → N → N/f(M) → 0 splits, so let N2 = N/f(M), N1 = f(M). Also, N

and N/f(M) are flat and coherent, hence so is f(M).

We now play the same game with

0 → ker f → M → f(M) → 0.

f(M) is projective, hence this splits. Let ker f = M1. �
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Now let’s prove Grauert’s theorem 1.1. We can use this lemma to rewrite

Mp−1
dp−1

// Mp dp
// Mp+1

as Zp−1 ⊕ Kp−1 // Bp ⊕ Hp ⊕ Kp // Bp+1 ⊕ Kp+1 where dp−1 sends Kp−1 isomorphi-
cally onto Bp (and is otherwise 0), and dp sends Kp isomorphically onto Bp+1. Here Hp

is a projective module, so we have local freeness. Thus when we tensor with some other
ring, this structure is preserved as well; hence we have isomorphism. �

5. DIMENSIONS BEHAVE WELL FOR FLAT MORPHISMS

There are a few easier statements about flatness that I could have said much earlier.

Here’s a basic statement about how dimensions behave in flat families.

5.1. Proposition. — Suppose f : X → Y is a flat morphism of schemes all of whose stalks are
localizations of finite type k-algebras, with f(x) = y. (For example, X and Y could be finite type
k-schemes.) Then the dimension of Xy at x plus the dimension of Y and y is the dimension X at x.

In other words, there can’t be any components contained in a fibers; and you can’t have
any dimension-jumping.

In class, I first incorrectly stated this with the weaker hypotheses that X and Y are just
locally Noetherian. Kirsten pointed out that I used the fact that height = codimension,
which is not true for local Noetherian rings in general. However, we have shown it for
local rings of finite type k-schemes. Joe suggested that one could work around this prob-
lem.

Proof. This is a question about local rings, so we can consider SpecOX,x → SpecOY,y. We
may assume that Y is reduced. We prove the result by induction on dim Y. If dim Y = 0,
the result is immediate, as Xy = X and dimy Y = 0.

Now for dim Y > 0, I claim there is an element t ∈ m that is not a zero-divisor, i.e. is not
contained in any associated prime, i.e. (as Y is reduced) is not contained in any minimal
prime. Let p1, . . . , pn be the (finite number of) minimal primes. If m ⊂ p1 ∪· · ·∪pn, then in
the first quarter we showed (in an exercise) that m ⊂ pi for some i. But as m is maximal,
and pi is minimal, we must have m = pi, and dim Y = 0.

Now by flatness t is not a zero-divisor of OX,x. (Recall that non-zero-divisors pull back
to non-zero-divisors.) dimOY,y/t = dimOY,y − 1 by Krull’s principal ideal theorem (here
we use the fact that codimension = height), and dimOX,x/t = dimOX,x − 1 similarly. �.

5.2. Corollary. — Suppose f : X → Y is a flat finite-type morphism of locally Noetherian schemes,
and Y is irreducible. Then the following are equivalent.
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• Every irreducible component of X has dimension dim Y + n.
• For any point y ∈ Y (not necessarily closed!), every irreducible component of the fiber Xy

has dimension n.

5.3. Exercise. Prove this.

Important definition: If these conditions hold, we say that π is flat of relative dimension n.
This definition will come up when we define smooth of relative dimension n.

5.4. Exercise.
(a) Suppose π : X → Y is a finite-type morphism of locally Noetherian schemes, and
Y is irreducible. Show that the locus where π is flat of relative dimension n is an open
condition.
(b) Suppose π : X → Y is a flat finite-type morphism of locally Noetherian schemes, and Y

is irreducible. Show that X can be written as the disjoint union of schemes X0 ∪ X1 ∪ · · ·
where π|Xn

: Xn → Y is flat of relative dimension n.

5.5. Important Exercise. Use a variant of the proof of Proposition 5.1 to show that if
f : X → Y is a flat morphism of finite type k-schemes (or localizations thereof), then any
associated point of X must map to an associated point of Y. (I find this an important point
when visualizing flatness!)
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