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1. FLAT IMPLIES CONSTANT EULER CHARACTERISTIC

We come to an important consequence of flatness. We'll see that this result implies
many answers and examples to questions that we would have asked before we even knew
about flatness.

1.1. Important Theorem. — Suppose f : X — Y is a projective morphism, and F is a coherent
sheaf on X, flat over Y. Suppose Y is locally Noetherian. Then Y (—1)'"h (X Fl,) is a locally
constant function of y € Y. In other words, the Euler characteristic of F is constant in the fibers.

This is first sign that cohomology behaves well in families. (We’ll soon see a second:
the Semicontinuity Theorem 4.4.) Before getting to the proof, I'll show you some of its
many consequences. (A second proof will be given after the semicontinuity discussion.)

The theorem also gives a necessary condition for flatness. It also sufficient if target is
integral and locally Noetherian, although we won’t use this. (Reference: You can trans-
late Hartshorne Theorem II1.9.9 into this.) I seem to recall that both the necessary and
sufficient conditions are due to Serre, but I'm not sure of a reference. It is possible that
integrality is not necessary, and that reducedness suffices, but I haven’t checked.

Date: Tuesday, April 25 and Thursday, April 27, 2006. Last mior update: June 28, 2007. (© 2005, 2006,
2007 by Ravi Vakil.



1.2. Corollary. — Assume the same hypotheses and notation as in Theorem 1.1. Then the Hilbert
polynomial of F is locally constant as a function of y € Y.

Thus for example a flat family of varieties in projective space will all have the same
degree and genus (and the same dimension!). Another consequence of the corollary is
something remarkably useful.

1.3. Corollary. — An invertible sheaf on a flat projective family of connected nonsingular curves
has locally constant degree on the fibers.

Proof. An invertible sheaf £ on a flat family of curves is always flat (as locally it is isomor-
phic to the structure sheaf). Hence x(L£,) is constant. From the Riemann-Roch formula
X(Ly) = deg(Ly) — g(Xy) + 1, using the local constancy of x(L,), the result follows. O

Riemann-Roch holds in more general circumstances, and hence the corollary does too.
Technically, in the example I'm about to give, we need Riemann-Roch for the union of
two P'"s, which I haven’t shown. This can be shown in three ways. (i) I'll prove that
Riemann-Roch holds for projective generically reduced curves later. (ii) You can prove it
by hand, as an exercise. (iii) You can consider this curve C inside P' x P! as the union of a
“vertical fiber” and “horizontal fiber”. Any invertible sheaf on C is the restriction of some
O(a,b) on P! x P'. Use additivity of Euler characteristics on 0 — Opi,p1(a—1,b—1) —
Op1«p1(a,b) — Oc(a,b) — 0, and note that we have earlier computed the x(Op1 p1 (c, d)).

This result has a lot of interesting consequences.

1.4. Example of a proper non-projective surface. We can use it to show that a certain proper
surface is not projective. Here is how.

Fix any field with more than two elements. We begin with a flat projective family of
curves whose X — P!, such that the fiber X, over 0 is isomorphic to P!, and the fiber
Xs Over oo is isomorphic to two P"s meeting at a point, X,, = Yo U Z. For example,
consider the family of conics in P? (with projective coordinates x, y, z) parameterized by
P! (with projective coordinates A and p given by

Axy + pz(x+y+z) =0.

This family unfortunately is singular for [A; u] = [0; 1] (as well as [1; 0] and one other point),
so change coordinates on P! so that we obtain a family of the desired form.

We now take a break from this example to discuss an occasionally useful construction.

1.5. Gluing two schemes together along isomorphic closed subschemes. Suppose X' and X"
are two schemes, with closed subschemes W’ < X’ and W” — X", and an isomorphism
W' — W”. Then we can glue together X’ and X” along W’ = W”. We define this more
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formally as the coproduct:
W/ ~ W// S X/

L

X 2

Exercise. Prove that this coproduct exists. Possible hint: work by analogy with our
product construction. If the coproduct exists, it is unique up to unique isomorphism.
Start with judiciously chosen affine open subsets, and glue.

Warning: You might hope that if you have a scheme X with two disjoint closed sub-
schemes W’ and W”, and an isomorphism W’ — W, then you should be able to glue X
to itself along W' — W”. This is not always possible! I'll give an example shortly. You
can still make sense of the quotient as an algebraic space, which I will not define here. If
you want to know what it is, ask Jarod, or come to one of the three lectures he’ll give later
this quarter.

1.6. Back to the non-projective surface. Now take two copies of the X we defined above;
call them X" and X”. Glue X’ to X” by identifying Xj with Y2 (in any way you want)
and Y/, with X{. (Somewhat more explicitly: we are choosing an isomorphism Xj U Y7
with X7 U Y2 that “interchanges the components”.) I claim that the resulting surface X is
proper and not projective over the base field k. The first is an exercise.

Exercise. Show that X is proper over k. (Hint: show that the union of two proper
schemes is also proper.)

Suppose now that X is projective, and is embedded in projective space by an invertible
sheaf (line bundle) £. Then the degree of £ on each curve of X is non-negative. For any
curve C C X, let deg C be the degree of £ on C (or equivalently, the degree of C under this
projective embedding). Pull £ back to X’. Then this is a line bundle on a flat projective
family, so the degree is constant in fibers. Thus

degXi=deg(Y, UZ! )=degY +degZ' >degY..
0 00 0 0 00 0

(Technically, we have not shown that the middle equality holds, so you should think
about why that is clear.) Similarly degX{ > degY[. But after gluing, X; = Y2 and
X4y =Y., so we have a contradiction.

1.7. Remark. This is a stripped down version of Hironaka’s example in dimension 3.
Hironaka’s example has the advantage of being nonsingular. I'll present that example
(and show how this one comes from Hironaka) when we discuss blow-ups. (I think it is
a fact that nonsingular proper surfaces over a field are always projective.)

1.8. Unimportant remark. You can do more fun things with this example. For example, we
know that projective surfaces can be covered by three affine open sets. This can be used
to give an example of (for any N) a proper surface that requires at least N affine open
subsets to cover it (see my paper with Mike Roth on my preprints page, Example 4.9).
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1.9. Problematic nature of the notion of “projective morphism”.  This example shows that
the notion of being projective isn’t a great notion. There are four possible definitions that
might go with this notion. (1) We are following Grothendieck’s definition. This notion
is not local on the base. For example, by following the gluing above for the morphisms
X' — P'and X” — P!, we obtain a morphism 7 : X — P'UP', where the union on the right
is obtained by gluing the 0 of the first P! to the oo of the second, and vice versa. Then away
from each node of the target, 7 is projective. (You could even give some explicit equations
if you wanted.) However, we know that 7 is not projective, as p : P! UP' — Speck is
projective, but we have already shown that p o 7w : X — Spec k is not projective.

(2) Hartshorne’s definition is designed for finite type k-schemes, and is definitely the
wrong one for schemes in general.

(3) You could make our notion “local on the base” by also requiring more information:
e.g. the notion of a projective morphism could be a morphism of schemes X — Y along
with an invertible sheaf £ on X that serves as an O(1). This is a little unpleasant; when
someone says “consider a projective surface”, they usually wouldn’t want to have any
particular projective embedding preferred.

(4) Another possible notion is that of locally projective: 7w : X — Y is locally projective if
there is an open cover of Y by U; such that over each Uj, 7t is projective (in our original
sense (1)). The disadvantage is that this isn’t closed under composition, as is shown by
our example X — P! UP! — Speck.

1.10. Example: You can’t always glue a scheme to itself along isomorphic disjoint subschemes. In
class, we had an impromptu discussion of this, so it is a little rough. I'll use a variation
of the above example. We'll see that you can’t glue X to itself along an isomorphism
Xo = Y. (To make this a precise statement: there is no morphism 7 : X — W such that
there is a curve C — W such that 7' (W —U) = X — X, — Y, and 7 maps both X, and Yo,
isomorphically to W.) A picture here is essential!

If there were such a scheme W, consider the point 71(Y,, N Zs) € W. It has an affine
neighborhood U; let K be its complement. Consider 7' (K). This is a closed subset of X,
missing Yo, N Z,,. Note that it meets Y,, (as the affine open U can contain no P''s) and Z..
Discard all components of 7~'(K) that are dimension 0, and that contain components of
tibers; call what's left K’. Caution: I need to make sure that I don’t end up discarding the points
on Yo, and Z,. I could show that w='(K) has pure codimension 1, but I'd like to avoid doing that.
For now, assume that is the case; I may patch this later. Then K’ is an effective Cartier divisor,
inducing an invertible sheaf on the surface X, which in turn is a flat projective family over
P'. Thus the degree of K’ is constant on fibers. Then we get the same sort of contradiction:

degK/ YOO - degK/ XO - degK/ YOO + degK/ ZOO > degK/ YOO'

This led to a more wide-ranging discussion. A surprisingly easy theorem (which you
can find in Mumford’s Abelian Varieties for example) states that if X is a projective k-
scheme with an action by a finite group G, then the quotient X/G exists, and is also a
projective scheme. (One first has to define what one means by X/G!) If you are a little
careful in choosing the isomorphisms used to build our nonprojective surface (picking
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Xo = YZ and X§ — Y., to be the “same” isomorphisms), then there is a Z/2-action on
X (“swapping the P'’s”), we have shown that the quotient W does not exist as a scheme,
hence giving another proof (modulo things we haven’t shown) that X is not projective.

2. PROOF OF IMPORTANT THEOREM ON CONSTANCY OF EULER CHARACTERISTIC IN
FLAT FAMILIES

Now you’ve seen a number of interesting results that seem to have nothing to do with
flatness. I find this a good motivation for this motivation: using the concept, we can prove
things that were interested in beforehand. It is time to finally prove Theorem 1.1.

Proof. The question is local on the base, so we may reduce to case Y is affine, say Y =
Spec B, so X — P} for some n. We may reduce to the case X = P} (as we can consider
F as a sheaf on P3). We may reduce to showing that Hilbert polynomial F(m) is locally
constant for all m >> 0 (as by Serre vanishing for m > 0, the Hilbert polynomial agrees
with the Euler characteristic). Now consider the Cech complex C* for F. Note that all the
terms in the Cech complex are flat. Twist by O(m) for m >> 0, so that all the higher push-
forwards vanish. Hence I'(C*(m)) is exact except at the first term, where the cohomology
is I'(7t,.F(m)). We tack on this module to the front of the complex, so it is once again exact.
Thus (by an earlier exercise), as we have an exact sequence in which all but the first terms
are known to be flat, the first term is flat as well. As it is finitely generated, it is also free
by an earlier fact (flat and finitely generated over a Noetherian local ring equals free), and
thus has constant rank.

We're interested in the cohomology of the fibers. To obtain that, we tensor the Cech
resolution with k(y) (as y runs over Y) and take cohomology. Now the extended Cech
resolution (with I'(7r,(m)) tacked on the front) is an exact sequence of flat modules, and
hence remains exact upon tensoring with k(y) (or indeed anything else). (Useful transla-
tion: cohomology commutes with base change.) Thus I'(7,.F(m)) ® k(y) = I'(7.F(m)ly).
Thus the dimension of the Hilbert function is the rank of the locally free sheaf at that
point, which is locally constant. O

3. START OF THURSDAY’S CLASS: REVIEW

At this point, you've already seen a large number of facts about flatness. Don’t be
overwhelmed by them; keep in mind that you care about this concept because we have
answered questions we cared about even before knowing about flatness. Here are three
examples. (i) If you have a short exact sequence where the last is locally free, then you
can tensor with anything and the exact sequence will remain exact. (ii) We described a
morphism that is proper but not projective. (iii) We showed that you can’t always glue a
scheme to itself.

Here is a summary of what we know, highlighting the hard things.
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e definition; basic properties (pullback and localization). flat base change commutes
with higher pushforwards

e Tor: definition and symmetry. (Hence tensor exact sequences of flats with anything
and keep exactness.)

e ideal-theoretic criterion: Tor;(M,A/I) = 0 for all I. (flatness over PID = torsion-
free; over dual numbers) (important special case: DVR)

e for coherent modules over Noetherian local rings, flat=locally free

e flatness is open in good circumstances (flat + 1ft of IN is open; we should need only
weaker hypotheses)

e culer characteristics behave well in projective flat families. In particular, the degree
of an invertible sheaf on a flat projective family of curves is locally constant.

4. COHOMOLOGY AND BASE CHANGE THEOREMS

Here is the type of question we are considering. We’d like to see how higher pushfor-
wards behave with respect to base change. For example, we’ve seen that higher pushfor-
ward commutes with flat base change. A special case of base change is the inclusion of
a point, so this question specializes to the question: can you tell the cohomology of the
fiber from the higher pushforward? The next group of theorems I'll discussed deal with
this issue. I'll prove things for projective morphisms. The statements are true for proper
morphisms of Noetherian schemes too; the one fact you'll see that I need is the follow-
ing: that the higher direct image sheaves of coherent sheaves under proper morphisms
are also coherent. (I'm largely following Mumford’s Abelian Varieties. The geometrically
interesting theorems all flow from the following neat but unmotivated result.

4.1. Key theorem. — Suppose 7t : X — Spec B is a projective morphism of Noetherian [needed?]
schemes, and F is a coherent sheaf on X, flat over Spec B. Then there is a finite complex

0K oK' = ... 5 K" =0
of finitely generated projective B-modules and an isomorphism of functors
(1) HP(X xg A, F @A) = HP(K*®g A)
forall p > 0 in the category of B-algebras A.

In fact, K" will be free for i > 0. For i = 0, it is projective hence flat hence locally free
(by an earlier theorem) on Y.

Translation/idea: Given 7t : X — Spec B, we will have a complex of vector bundles on
the target that computes cohomology (higher-pushforwards), “universally” (even after
any base change). The idea is as follows: take the Cech complex, produce a “quasiisomor-
phic” complex (a complex with the same cohomology) of free modules. For those taking
derived category class: we have an isomorphic object in the derived category which is
easier to deal with as a complex. We'll first construct the complex so that (1) holds for
B = A, and then show the result for general A later. Let’s put this into practice.
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4.2. Lemma. — Let C* be a complex of B-modules such that H*(C*) are finitely generated B-
modules, and that CP # 0 only if 0 < p <. Then there exists a complex K* of finitely generated
B-modules such that KP # 0 only if 0 < p < nand KP is free for p > 1, and a homomorphism of
complexes ¢ : K* — C* such that ¢ induces isomorphisms H'(K*) — HY(C*) for all 1.

Note that X' is B-flat for i > 0. Moreover, if CP are B-flat, then K° is B-flat too.

For all of our purposes except for a side remark, I'd prefer a cleaner statement, where
C* is a complex of B-modules, with C? # 0 only if p < n (in other words, there could be
infinitely many non-zero C?’s). The proof is then about half as long

Proof. Step 1. We’ll build this complex inductively, and worry about K® when we get there.

sm 6m+l
Km_>Km+l _>Km+2—>...

lcbm l¢m+1 ld’erZ

Cmf1 cm = Cm+1 ﬁ Cm+2 e .

We assume we’ve defined (KP?, ¢, 87) for p > m + 1 such that these squares commute,
and the top row is a complex, and ¢P defines an isomorphism of cohomology H9(K*) —
HY9(C*) for ¢ > m + 2 and a surjection ker ™" — H™"(C*), and the KP are finitely
generated B-modules.

We’ll adjust the complex to make ¢,;1 an isomorphism of cohomology, and then again
to make ¢, a surjection on cohomology. Let B™ = ker(6™" : H™(K*) — H™(C)).
Then we choose generators, and make these Ki*. We have a new complex. We get the
0-maps on cohomology at level m. We then add more in to surject on cohomology on
level m.

Now what happens when we get to m = 0? We have maps of complexes, where ev-
erything in the top row is free, and we have an isomorphism of cohomology everywhere
except for K°, where we have a surjection of cohomology. Replace K° by K°/ ker §°Nker .
Then this gives an isomorphism of cohomology.

Step 2. We need to check that K° is B-flat. Note that everything else in this quasiisomor-
phism is B-flat. Here is a clever trick: construct the mapping cylinder (call it M*):

0K = C’pK'=C'oK2— .- 5 C" @K C"— 0.
Then we have a short exact sequence of complexes
0—-C"->M" =K 1] =0

(where K*[1] is just the same complex as K*, except slid over by one) yielding isomor-
phisms of cohomology H*(K*) — H*(C*), from which H*(M*) = 0. (This was an earlier
exercise: given a map of complexes induces an isomorphism on cohomology, the map-
ping cylinder is exact.) Now look back at the mapping cylinder M*, which we now realize
is an exact sequence. All terms in it are flat except possibly K°. Hence K is flat too (also
by an earlier exercise)! O



4.3. Lemma. — Suppose K* — C* is a morphism of finite complexes of flat B-modules induc-
ing isomorphisms of cohomology (a “quasiisomorphism”). Then for every B-algebra A, the maps
HP(C* ®p A) — HP(K* ®p A) are isomorphisms.

Proof. Consider the mapping cylinder M*, which we know is exact. Then M* ®p A is
still exact! (The reason was our earlier exercise that any exact sequence of flat modules
tensored with anything remains flat.) But M* ®g A is the mapping cylinder of K* ®g A —
C* ®g A, so this is a quasiisomorphism too. 0

Now let’s prove the theorem!

Proof of theorem 4.1. Choose a finite covering (e.g. the standard covering). Take the Cech
complex C* for F. Apply the first lemma to get the nicer version K* of the same complex
C*. Apply the second lemma to see that if you tensor with B and take cohomology, you
get the same answer whether you use K* or C*. O

We are now ready to put this into use. We will use it to discuss a trio of facts: the Semi-
continuity Theorem, Grauert’s Theorem, and the Cohomology and Base Change Theo-
rem. (We'll prove the first two.) The theorem of constancy of euler characteristic in flat
families also fits in this family.

These theorems involve the following situation. Suppose F is a coherent sheaf on X,
m: X — Y projective, Y (hence X) Noetherian, and F flat over Y.

Here are two related questions. Is RP7, F locally free? Is ¢P : RPr, F®k(y) — HP (X, Fy)
an isomorphism?

We have shown Key theorem 4.1, that if Y is affine, say Y = Spec B, then we can compute
the pushforwards of F by a complex of locally free modules

0-M=oM ... oMM 0

where in fact MP is free for p > 1. Moreover, this computes pushforwards “universally”:
after a base change, this remains true.

Now the dimension of the left is uppersemicontinuous by uppersemicontinuity of fiber
dimension of coherent sheaves. The semicontinuity theorem states that the dimension of
the right is also uppersemicontinuous. More formally:

4.4. Semicontinuity theorem. — Suppose X — Y is a projective morphisms of Noetherian
schemes, and F is a coherent sheaf on X flat over Y. Then for each p > 0, the function Y — 7Z
given by y — dimyy) HP (X, Fy) is upper semicontinuous on Y.

So “cohomology groups jump in projective flat families”. Again, we can replace pro-
jective by proper once we’ve shown finite-dimensionality of higher pushforwards (which
we haven’t). For pedants: can the Noetherian hypotheses be excised?
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Here is an example of jumping in action. Let C be a positive genus nonsingular projec-
tive irreducible curve, and consider the projection w: E x E — E. Let £ be the invertible
sheaf (line bundle) corresponding to the divisor that is the diagonal, minus the section
Po € E. then L, is trivial, but £, is non-trivial for any p # p, (as we’ve shown earlier in
the “fun with curves” section). Thus h°(E, £,) is 0 in general, but jumps to 1 for p = po.

Remark. Deligne showed that in the smooth case, at least over C, there is no jumping of
cohomology of the structure sheaf.

Proof. The result is local on Y, so we may assume Y is affine. Let K* be a complex as in
the key theorem 4.1. By localizing further, we can assume K* is locally free. So we are
computing cohomology on any fiber using a complex of vector bundles.

Then fory € Y

dimk(y) Hp(Xy, ",E‘y) = dimk(y) ker(dp ®A k(y)) — dimk(y) im(dp_] ®A k(y))
= dimy) (K? @ k(y)) — dimy(y) im(d® ®a k(y)) — dimygy) im(dP @4 k(y))

(Side point: by taking alternating sums of these terms, we get a second proof of Theo-
rem 1.1 that x(Xy, F,) = >_(—1)*h'(X,, F,) is a constant function of y. I mention this be-
cause if extended the fact that higher cohomology of coherents is coherent under proper
pushforwards, we’d also have Theorem 1.1 in this case.)

Now dimy ) im(dP ® k(y)) is a lower semicontinuous function on Y. Reason: the locus
where the dimension is less than some number ¢ is obtained by setting all q x g minors
of the matrix K? — KP*! to 0. So we’re done! [l

5. LINE BUNDLES ARE TRIVIAL IN A ZARISKI-CLOSED LOCUS, AND GLIMPSES OF THE
RELATIVE PICARD SCHEME

(This was discussed on Thursday May 4, but fits in well here.)

5.1. Proposition. — Suppose L is an invertible sheaf on an integral projective scheme X such that
both L and LV have non-zero sections. Then L is the trivial sheaf.

As usual, “projective” may be replaced by “proper”. The only fact we need (which we
haven’t proved) is that the only global functions on proper schemes are constants. (We
haven’t proved that. It follows easily from the valuative criterion of properness — but we
haven’t proved that either!)

Proof. Suppose s and t are the non-zero sections of £ and LY. Then they are both non-
zero at the generic point (or more precisely, in the stalk at the generic point). (Otherwise,
they would be the zero-section — this is where we are using the integrality of X.) Under
the map £ ® LY — O, s ® t maps to st, which is also non-zero. But the only global
functions (global sections of Ox) are the constants, so st is a non-zero constant. But then s
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is nowhere 0 (or else st would be somewhere zero), so £ has a nowhere vanishing section,
and hence is trivial (isomorphic to Ox). O

Now suppose X — Y is a flat projective morphism with integral fibers. (It is a “flat
family of geometrically integral schemes”.) Suppose that £ is an invertible sheaf. Then
the locus of y € Y where L, is trivial on X, is a closed set. Reason: the locus where
h°(Xy, £,) > 1is closed by the Semicontinuity Theorem 4.4, and the same holes for the
locus where h%(Xy, £Y) > 1.

(Similarly, if £" and L£" are two invertible sheaves on the family X, the locus of points y
where £ = £" is a closed subset: just apply the previous paragraph to £ := L' ® (£")Y.)

In fact, we can jazz this up: for any £, there is in a natural sense a closed subscheme
where L is trivial. More precisely, we have the following theorem.

5.2. Seesaw Theorem. — Suppose 7 : X — Y is a projective flat morphism to a Noetherian
scheme, all of whose fibers are geometrically integral schemes, and L is an invertible sheaf on X.
Then there is a unique closed subscheme Y' — Y such that for any fiber diagram

X xyZ X

such that g*L = p*M for some invertible sheaf M on Z, then f factors (uniquely) through
Y =Y.

I want to make three comments before possibly proving this.
e | have no idea why it is called the seesaw theorem.

e As a special case, there is a “largest closed subscheme” on which the invertible sheaf
is the pullback of a trivial invertible sheaf.

e Also, this is precisely the statement that the functor is representable Y’ — Y, and that
this morphism is a closed immersion.

I'm not going to use this, so I won't prove it. But a slightly stripped down version of
this appears in Mumford (p. 89), and you should be able to edit his proof so that it works
in this generality.

There is a lesson I want to take away from this: this gives evidence for existence of a
very important moduli space: the Picard scheme. The Picard scheme PicX/Y — Y is a
scheme over Y which represents the following functor: Given any T — Y, we have the set
of invertible sheaves on X xy T, modulo those invertible sheaves pulled back from T. In
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other words, there is a natural bijection between diagrams of the form

L
Xx1Y—=X
T Y
and diagrams of the form
PiCx /Y
T Y.

It is a hard theorem (due to Grothendieck) that (at least if Y is reasonable, e.g. locally
Noetherian — I haven’t consulted the appropriate references) Pic X/Y — Y exists, i.e. that
this functor is representable. In fact Pic X/Y is of finite type.

We’ve seen special cases before when talking about curves: if C is a geometrically inte-
gral curve over a field k, of genus g, Pic C = Pic C/k is a dimension g projective nonsin-
gular variety.

Given its existence, it is easy to check that Picx/y is a group scheme over Y, using our
functorial definition of group schemes.

5.3. Exercise. Do this!

The group scheme has a zero-section 0 : Y — Picx/y. This turns out to be a closed
immersion. The closed subscheme produced by the Seesaw theorem is precisely the pull-
back of the O-section. I suspect that you can use the Seesaw theorem to show that the
zero-section is a closed immersion.

5.4. Exercise. Show that the Picard scheme for X — Y (with our hypotheses: the morphism
is flat and projective, and the fibers are geometrically integral) is separated over Y by
showing that it satisfies the valuative criterion of separatedness.

Coming up soon: Grauert’s Theorem and Cohomology and base change!

E-mail address: vakil@math.stanford.edu
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