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We have now established the general theory of differentials, and we are now going to
apply it.

1. PROJECTIVE SPACE AND THE EULER EXACT SEQUENCE

We next examine the differentials of projective space P
n
k , or more generally P

n
A where

A is an arbitrary ring. As projective space is covered by affine open sets, on which the
differentials form a rank n locally free sheaf, ΩPn

A
/A is also a rank n locally free sheaf.

1.1. Important Theorem (the Euler exact sequence). — The sheaf of differentials ΩPn
A

/A satisfies
the following exact sequence

0 → ΩPn
A

→ O(−1)⊕(n+1) → OPn
A

→ 0.

This is handy, because you can get a hold of Ω in a concrete way. Here is an explicit
example, to give you practice.

1.2. Exercise. Show that H1(Pn
A, Tn

Pn
A
) = 0. (This later turns out to be an important cal-

culation for the following reason. If X is a nonsingular variety, H1(X, TX) parametrizes
deformations of the variety. Thus projective space can’t deform, and is “rigid”.)
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Let’s prove the Euler exact sequence. I find this an amazing fact, and while I can prove
it, I don’t understand in my bones why this is true. Maybe someone can give me some
enlightenment.

Proof. (What’s really going on in this proof is that we consider those differentials on
A

n+1
A \ {0} that are pullbacks of differentials on P

n
A.)

I’ll describe a map O(−1)⊕(n+1) → O, and later identify the kernel with ΩX/Y . The map
is given by

(s0, s1, . . . , sn) 7→ x0s0 + x1s1 + · · ·+ xnsn.

Note that this is a degree 1 map.

Now I have to identify the kernel of this map with differentials, and I can do this on
each open set (so long as I do it in a way that works simultaneously for each open set).
So let’s consider the open set U0, where x0 6= 0, and we have coordinates xj/0 = xj/x0

(1 ≤ j ≤ n). Given a differential
f1(x1/0, . . . , xn/0) dx1/0 + · · ·+ fn(x1/0, . . . , xn/0) dxn/0

we must produce n+1 sections of O(−1). As motivation, let me just look at the first term,
and pretend that the projective coordinates are actual coordinates.

f1 dx1/0 = f1 d(x1/x0)

= f1

x0 dx1 − x1 dx0

x2
0

= −
x1

x2
0

f1 dx0 +
f1

x0

dx1

Note that x0 times the “coefficient of dx0” plus x1 times the “coefficient of dx1” is 0, and
also both coefficients are of homogeneous degree −1. Motivated by this, we take:

(1) f1 dx1/0 + · · · + fn dxn/0 7→

(

−
x1

x2
0

f1 − · · · −
xn

x2
0

fn,
f1

x0

,
f2

x0

, · · · ,
fn

x0

)

Note that over U0, this indeed gives an injection of ΩPn
A

to O(−1)⊕(n+1) that surjects onto
the kernel of O(−1)⊕(n+1) → OX (if (g0, . . . , gn) is in the kernel, take fi = x0gi for i > 0).

Let’s make sure this construction, applied to two different coordinate patches (say U0

and U1) gives the same answer. (This verification is best ignored on a first reading.) Note
that

f1 dx1/0 + f2 dx2/0 + · · · = f1 d
1

x0/1

+ f2 d
x2/1

x0/1

+ · · ·

= −
f1

x2
0/1

dx0/1 +
f2

x0/1

dx2/1 −
f2x2/1

x2
0/1

dx0/1 + · · ·

= −
f1 + f2x2/1 + · · ·

x2
0/1

dx0/1 +
f2x1

x0

dx2/1 + · · · .

Under this map, the dx2/1 term goes to the second factor (where the factors are indexed 0

through n) in O(−1)⊕(n+1), and yields f2/x0 as desired (and similarly for dxj/1 for j > 2).
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Also, the dx0/1 term goes to the “zero” factor, and yields

(

n∑

j=1

fi(xi/x1)/(x0/x1)
2)/x1 = fixi/x2

0

as desired. Finally, the “first” factor must be correct because the sum over i of xi times the
ith factor is 0. �

Generalizations of the Euler exact sequence are quite useful. We won’t use them later
this year, so I’ll state them without proof. Note that the argument applies without change
if Spec A is replaced by an arbitrary base scheme. The Euler exact sequence further gen-
eralizes in a number of ways. As a first step, suppose V is a rank n + 1 locally free sheaf
(or vector bundle) on a scheme X. Then ΩPV/X sits in an Euler exact sequence:

0 → ΩPV/X → O(−1) ⊗ V∨ → OX → 0

If π : PV → X, the map O(−1)⊗V∨ → OX is induced by V∨ ⊗π∗O(1) ∼= (V∨ ⊗V)⊗OX →
OX, where V∨ ⊗ V → A is the trace map.

For another generalization, fix a base field, and let G(m, n + 1) be the space of vector
spaces of dimension m in an (n + 1)-dimensional vector space V . (This is called the
Grassmannian. We have not shown that this is actually a variety in any natural way, but it
is. The case m = 1 is P

n.) Then over G(m, n+ 1) we have a short exact sequence of locally
free sheaves

0 → S → V ⊗OG(m,n+1) → Q → 0

where V⊗OG(m,n+1) is a trivial bundle, and S is the “universal subbundle” (such that over
a point [V ′ ⊂ V] of the Grassmannian G(m, n + 1), S|[V ′⊂V ] is V if you can see what that
means). Then
(2) ΩG(m,n+1)/k

∼= Hom(Q, S).

1.3. Exercise. In the case of projective space, m = 1, S = O(−1). Verify (2) in this case.

This Grassmannian fact generalizes further to Grassmannian bundles.

2. VARIETIES OVER ALGEBRAICALLY CLOSED FIELDS

We’ll now discuss differentials in the case of interest to most people: varieties over
algebraically closed fields. I’d like to begin with a couple of remarks.

2.1. Remark: nonsingularity may be checked at closed points. Recall from the first quarter
a deep fact about regular local rings that we haven’t proved: Any localization of a reg-
ular local ring at a prime is again regular local ring. (For a reference, see Matsumura’s
Commutative Algebra, p. 139.) I’m going to continue to use this without proof. It is pos-
sible I’ll write up a proof later. But in any case, if this bothers you, you could re-define
nonsingularity of locally finite type schemes over fields to be what other people call “non-
singularity at closed points”, and the results of this section will hold.
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2.2. Remark for non-algebraically closed people. Even if you are interested in non-algebraically
closed fields, this section should still be of interest to you. In particular, if X is a variety
over a field k, and Xk = X×Spec kSpec k, then Xk nonsingular implies that X is nonsingular.
(You may wish to prove this yourself. By Remark 2.1, it suffices to check at closed points.)
Possible exercise. In fact if k is separably closed, then Xk is nonsingular if and only if X is
nonsingular, but this is a little bit harder.

Suppose for the rest of this section that X is a pure n-dimensional locally finite type
scheme over an algebraically closed field k (e.g. a k-variety).

2.3. Proposition. — ΩX/k is locally free of rank n if and only if X is nonsingular.

Proof. By Remark 2.1, it suffices to prove that ΩX/k is locally free of rank n if and only
if the closed points of X is nonsingular. Now ΩX/k is locally free of rank n if and only
if its fibers at all the closed points are rank n (recall that fibers jump in closed subsets).
As the fiber of the cotangent sheaf is canonically isomorphic to the Zariski tangent space
at closed points (done earlier), the Zariski tangent space at every closed point must have
dimension n, i.e. the closed points are all nonsingular. �

Using this Proposition, we can get a new result using a neat trick.

2.4. Theorem. — If X is integral, there is an dense open subset U of X which is nonsingular.

Proof. The n = 0 case is immediate, so we assume n > 0.

We will show that the rank at the generic point is n. Then by uppersemicontinuity of
the rank of a coherent sheaf (done earlier), it must be n in an open neighborhood of the
generic point, and we are done by Proposition 2.3.

We thus have to check that if K is the fraction field of a dimension n integral finite-
type k-scheme, i.e. if K is a transcendence degree n extension of k, then ΩK/k is an n-
dimensional vector space. But any transcendence degree n > 1 extension is separably
generated: we can find n algebraically independent elements of K over k, say x1, . . . , xn,
such that K/k(x1, . . . , xn) is separable. (This is a fact about transcendence theory.) Then
ΩK/k is generated by dx1, . . . , dxn (as dx1, . . . , dxn generate Ωk(x1,...,xn)/k, and any element
of K is separable over k(x1, . . . , xn) — this is summarized most compactly using the affine
form of the relative cotangent sequence). �

2.5. Bertini’s Theorem. — Suppose X is a nonsingular closed subvariety of P
n
k (where the standing

hypothesis for this section, that k is algebraically closed, holds). Then there is an open subset of
hyperplanes H of P

n
k such that H doesn’t contain any component of X, and the scheme H ∩ X is

a nonsingular variety. More precisely, this is an open subset of the dual projective space P
n
k

∨. In
particular, there exists a hyperplane H in P

n
k not containing any component of X such that the

scheme H ∩ X is also a nonsingular variety.

4



(We’ve already shown in our section on cohomology that if X is connected, then H ∩ X

is connected.)

We may have used this before to show the existence of nonsingular curves of any genus,
for example, although I don’t think we did. (We discussed Bertini in class 35, p. 4.)

Note that this implies that a general degree d > 0 hypersurface in P
n
k also intersects X

in a nonsingular subvariety of codimension 1 in X: replace X ↪→ P
n with the composition

X ↪→ P
n

↪→ P
N where the latter morphism is the dth Veronese map.

Proof. In order to keep the language of the proof as clean as possible, I’ll assume X is
irreducible, but essentially the same proof applies in general.

The central idea of the proof is quite naive and straightforward. We’ll describe the
hyperplanes that are “bad”, and show that they form a closed subset of dimension at
most n−1 of P

n
k

∨, and hence that the complement is a dense open subset. More precisely,
we will define a projective variety Y ⊂ X × P

n
k

∨ that will be:
Y = {(p ∈ X, H ⊂ P

n
k) : p ∈ H, p is a singular point of H ∩ X, or X ⊂ H}

We will see that dim Y ≤ n − 1. Thus the image of Y in P
n
k

∨ will be a closed subset (the
image of a closed subset by a projective hence closed morphism!), of dimension of n − 1,
and its complement is open.

We’ll show that Y has dimension n − 1 as follows. Consider the map Y → X, send-
ing (p, H) to p. Then a little thought will convince you that there is a (n − dim X − 1)-
dimensional family of hyperplanes through p ∈ X such that X∩H is singular at p, or such
that X is contained in H. (Those two conditions can be summarized quickly as: H contains
the “first-order formal neighborhood of p in X”, SpecOX,p/m2 where m is the maximal
ideal of OX,p.) Hence we expect Y to be a projective bundle, whose fibers are dimension
n − dim X − 1, and hence that Y has dimension at most dim X + (n − dim X − 1) = n − 1.
In fact this is the case, but we’ll show a little less (e.g. we won’t show that Y → X is a pro-
jective bundle) because we don’t need to prove this full statement to complete our proof
of Bertini’s theorem.

Let’s put this strategy into action. We first define Y more precisely, in terms of equations
on P

n × P
n∨, where the coordinates on P

n are x0, . . . xn, and the dual coordinates on P
n∨

are a0, . . . , an. Suppose X is cut out by f1, . . . , fr. (We will soon verify that this definition
of Y is independent of these equations.) Then we take these equations as some of the
defining equations of Y. (So far we have defined the subscheme X × P

n∨.) We also add
the equation a0x0 + · · ·+ anxn = 0. (So far we have described the subscheme of P

n × P
n∨

corresponding to points (p, H) where p ∈ X and p ∈ H.) Note that the Jacobian matrix






∂f1

∂x1
(p) · · · ∂fr

∂x1
(p)

... . . . ...
∂f1

∂xn
(p) · · · ∂fr

∂xn
(p)







has corank equal to dim X at all closed points of X — this is precisely the Jacobian con-
dition for nonsingularity (class 12, p. 3, 1.6). (Although we won’t use this fact, in fact it
has that corank dim X everywhere on X. Reason: the locus where the corank jumps is a
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closed locus, as this is described by equations, namely determinants of minors. Thus as
the corank is constant at all closed points, it is constant everywhere.) We then require that
the Jacobian matrix with a new row (a0, · · · , an) has corank ≥ dim X (hence = dim X).
This is cut out by equations (determinants of minors). By the Jacobian description of the
Zariski tangent space, this condition encodes the requirement that the Zariski tangent
space of H ∩ X at p has dimension precisely dim X, which is dim H ∩ X + 1 (i.e. H ∩ X is
singular at p) if H does not contain X, or if H contains X. This is precisely the notion that
we hoped to capture.

Before getting on with our proof, let’s do an example to convince ourselves that this
algebra is describing the geometry we desire. Consider the plane conic x2

0 − x2
1 − x2

2 = 0

over a field of characteristic not 2, which I picture as the circle x2 + y2 = 1 from the
real picture in the chart U0. (At this point I drew a picture.) Consider the point (1, 1, 0),
corresponding to (1, 0) on the circle. We expect the tangent line in the affine plane to be
x = 1, which should correspond to x0 − x1 = 0. Let’s see what the algebra gives us.
The Jacobian matrix is

(

2x0 −2x1 −2x2

)

=
(

2 −2 0
)

, which indeed has rank 1 as

expected. Our recipe asks that the matrix
(

2 −2 0

a0 a1 a2

)

have rank 1, which means that
(a0, a1, a2) = (a0, −a0, 0), and also that a0x0 + a1x1 + a2x2 = 0, which is precisely what
we wanted!

Returning to our construction, we can see that the Y just described is independent of
the choice of f1, . . . , fr (although we won’t need this fact).

Here’s why. It suffices to show that if we add in a redundant equation (some homo-
geneous f0 that is a k[x0, . . . , xn]-linear combination of the fi), we get the same Y (as then
if we had a completely different set of f’s, we could add them in one at a time, and then
remove the old f’s one at a time). If we add in a redundant equation, then that row in the
Jacobian matrix will be a k[x0, . . . , xn]-linear combination of other rows, and thus the rank
remains unchanged. (There is a slight issue I am glossing over here — f0 may vanish on
Y despite not being a linear combination of f1, . . . , fn.)

We’ll next show that dim Y = n − 1. For each p ∈ X, let Zp be the locus of hyperplanes
containing p, such that H ∩ X is singular at p, or else contains all of X; what is the di-
mension of Zp? (For those who have heard of these words: what is the dimension of the
locus of hyperplanes containing a first-order formal neighborhood of p in X?) Suppose
dim X = d. Then this should impose d + 1 conditions on hyperplanes. This means that it
is a codimension d + 1, or dimension n − d − 1, projective space. Thus we should expect
Y → X to be a projective bundle of relative dimension n−d−1 over a variety of dimension
d, and hence that dim Y = n−1. For convenience, I’ll verify a little less: that dim Y ≤ n−1.

Suppose Y has dimension N. Let H1, . . . , Hd be general hyperplanes such that H1∩· · ·∩
Hd ∩ X is a finite set of points (this was an exercise from long ago, class 31, ex. 1.5, p. 4).
Then if π : Y → X is the projection to X, then (using Krull’s Principal Ideal Theorem)

n − d − 1 = dim Y ∩ π∗H1 ∩ · · · ∩ π∗Hd ≥ dim Y − d

from which dim Y ≤ n − 1. �
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2.6. Exercise-. Show that Bertini’s theorem still holds even if X is singular in dimension 0.
(This isn’t that important.)

2.7. Remark.. The image in P
n tends to be a divisor. This is classically called the dual

variety. The following exercise will give you some sense of it.

2.8. Exercise. Suppose C ⊂ P
2 is a nonsingular conic over a field of characteristic not

2. Show that the dual variety is also a conic. (More precisely, suppose C is cut out by
f(x0, x1, x2) = 0. Show that {(a0, a1, a2) : a0x0 + a1x1 + a2x2 = 0} is cut out by a quadratic
equation.) Thus for example, through a general point in the plane, there are two tangents
to C. (The points on a line in the dual plane corresponds to those lines through a point of
the original plane.)

We’ll soon find the degree of the dual to a degree d curve (after we discuss the Riemann-
Hurwitz formula), at least modulo some assumptions.

2.9. The Riemann-Hurwitz formula.

We’re now ready to discuss and prove the Riemann-Hurwitz formula. We continue to
work over an algebraically closed field k. Everything below can be mildly modified to
work for a perfect field, e.g. any field of characteristic 0, and I’ll describe this at the end of
the discussion (Remark 2.17).

Definition (separable morphisms). A finite morphism between integral schemes f : X → Y

is said to be separable if it is dominant, and the induced extension of function fields
FF(X)/FF(Y) is a separable extension. (Similarly, a generically finite morphism is gener-
ically separable if it is dominant, and the induced extension of function fields is a separable
extension. We may not use this notion.) Note that this comes for free in characteristic 0.

2.10. Proposition. — If f : X → Y is a finite separable morphism of nonsingular integral curves,
then we have an exact sequence

0 → f∗ΩY/k → ΩX/k → ΩX/Y → 0.

Proof. We have right-exactness by the relative cotangent sequence, so we need to check
only that φ : f∗ΩY/k → ΩX/k is injective. Now ΩY/k is an invertible sheaf on Y, so f∗ΩY/k

is an invertible sheaf on X. Thus it has no torsion subsheaf, so we need only check that
φ is an inclusion at the generic point. We thus tensor with Oη where η is the generic
point of X. This is an exact functor (it is localization), and Oη ⊗ ΩX/Y = 0 (as FF(X)/FF(Y)

is a separable by hypothesis, and Ω for separable field extensions is 0 by Ex. 2.10, class
37, which was also Ex. 4, problem set 17). Also, Oη ⊗ f∗ΩY/k and Oη ⊗ ΩX/k are both
one-dimensional Oη-vector spaces (they are the stalks of invertible sheaves at the generic
point). Thus by considering

Oη ⊗ f∗ΩY/k → Oη ⊗ ΩX/k → Oη ⊗ ΩX/Y → 0
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(which is
Oη → Oη → 0 → 0)

we see that Oη⊗f∗ΩY/k → Oη⊗ΩX/k is injective, and thus that f∗ΩY/k → ΩX/k is injective.
�

2.11. It is worth noting what goes wrong for non-separable morphisms. For example,
suppose k is a field of characteristic p, consider the map f : A

1
k = Spec k[t] → A

1
k =

Spec k[u] given by u = tp. Then ΩA1
k
/k is the trivial invertible sheaf generated by dt. As

another (similar but different) example, if K = k(x) and K ′ = K(xp), then the inclusion
K ′

↪→ K induces f : Spec K[t] → Spec K ′[t]. Once again, Ωf is an invertible sheaf, generated
by dx (which in this case is pulled back from ΩK/K ′ on Spec K). In both of these cases, we
have maps from one affine line to another, and there are vertical tangent vectors.

2.12. The sheaf ΩX/Y on the right side of Proposition 2.10 is a coherent sheaf not supported
at the generic point. Hence it is supported at a finite number of points. These are called
the ramification points (and the images downstairs are called the branch points). I drew a
picture here.

Let’s check out what happens at closed points. We have two discrete valuation rings,
say Spec A → Spec B. I’ve assumed that we are working over an algebraically closed field
k, so this morphism B → A induces an isomorphism of residue fields (with k). Suppose
their uniformizers are s and t respectively, with t 7→ usn where u is a unit of A. Then

dt = d(usn) = unsn−1 ds + sn du.

This vanishes to order at least n − 1, and precisely n − 1 if n doesn’t divide the character-
istic. The former case is called tame ramification, and the latter is called wild ramification.
We call this order the ramification order at this point of X.

Define the ramification divisor on X as the sum of all points with their corresponding
ramifications (only finitely many of which are non-zero). The image of this divisor on Y

is called the branch divisor.

2.13. Straightforward exercise: interpreting the ramification divisor in terms of number of preim-
ages. Suppose all the ramification above y ∈ Y is tame. Show that the degree of the
branch divisor at y is deg(f : X → Y) − #f−1(y). Thus the multiplicity of the branch
divisor counts the extent to which the number of preimages is less than the degree.

2.14. Proposition. — Suppose R is the ramification divisor of f : X → Y. Then ΩX(−R) ∼= f∗ΩY .

Note that we are making no assumption that X or Y is projective.

Proof. This says that we can interpret the invertible sheaf f∗ΩY over an open set of X as
those differentials on X vanishing along the ramification divisor. But that is the content of
Proposition 2.10. �

8



Then the Riemann-Hurwitz formula follows!

2.15. Theorem (Riemann-Hurwitz). — Suppose f : X → Y is a finite separable morphism of
curves. Let n = deg f. Then 2g(X) − 2 = n(2g(Y) − 2) + deg R.

Note that we now need the projective hypotheses in order to take degrees of invertible
sheaves.

Proof. This follows by taking the degree of both sides of Proposition 2.14 (and using the
fact that the pullback of a degree d line bundle by a finite degree n morphism is dn, which
was an earlier exercise, Ex. 3.1, class 29, p. 3, or Ex. 2, problem set 13). �

2.16. Exercise: degree of dual curves. Describe the degree of the dual to a nonsingular
degree d plane curve C as follows. Pick a general point p ∈ P

2. Find the number of
tangents to C through p, by noting that projection from p gives a degree d map to P

1

(why?) by a curve of known genus (you’ve calculated this before), and that ramification
of this cover of P

1 corresponds to a tangents through p. (Feel free to make assumptions,
e.g. that for a general p this branched cover has the simplest possible branching — this
should be a back-of-an-envelope calculation.)

2.17. Remark: Riemann-Hurwitz over perfect fields. This discussion can be extended to work
when the base field is not algebraically closed; perfect will suffice. The place we assumed
that the base field was algebraically closed was after we reduced to understanding the
ramification of the morphism of the spectrum of one discrete valuation ring over our base
field k to the spectrum of another, and we assumed that this map induced an isomorphism
of residue fields. In general, it can be a finite extension. Let’s analyze this case explicitly.
Consider a map Spec A → Spec B of spectra of discrete valuation rings, corresponding to
a ring extension B → A. Let s be the uniformizer of A, and t the uniformizer of B. Let m

be the maximal ideal of A, and n the maximal ideal of A. Then as A/m is a finite extension
of B/n, it is generated over B/n by a single element (we’re invoking here the theorem of
the primitive element, and we use the “perfect” assumption here). Let s ′ be any lift of this
element of A/m to A. Then A is generated over B by s and s ′, so ΩA/B is generated by ds

and ds ′. The contribution of ds is as described above. You can show that ds ′ = 0. Thus
all calculations above carry without change, except for the following.

(i) We have to compute the degree of the ramification divisor appropriately: we need
to include as a factor the degree of the field extension of the residue field of the point on
the source (over k).

(ii) Exercise 2.13 doesn’t work, but can be patched by replacing #f−1(y) with the num-
ber of geometric preimages.

As an example of what happens differently in (ii), consider the degree 2 finite morphism
X = Spec Z[i] → Y = Spec Z. We can compute ΩZ[i]/Z directly, as Z[i] ∼= Z[x]/(x2 + 1):
ΩZ[i]/Z

∼= Z[i]dx/(2dx). In other words, it is supported at the prime (1 + i) (the unique
prime above [(2)] ∈ Spec Z). However, the number of preimages of points in Spec Z is not
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always 2 away from the point [(2)]; half the time (including, for example, over [(3)]) there
is one point, but the field extension is separable.

2.18. Exercise (aside): Artin-Schreier covers. In characteristic 0, the only connected un-
branched cover of A

1 is the isomorphism A
1

∼
//

A
1 ; that was an earlier example/exercise,

when we discussed Riemann-Hurwitz the first time. In positive characteristic, this needn’t
be true, because of wild ramification. Show that the morphism corresponding to k[x] →
k[x, y]/(yp − xp − y) is such a map. (Once the theory of the algebraic fundamental group
is developed, this translates to: “A

1 is not simply connected in characteristic p.”)

2.19. The conormal exact sequence for nonsingular varieties.

Recall the conormal exact sequence. Suppose f : X → Y morphism of schemes, Z ↪→ X

closed subscheme of X, with ideal sheaf I. Then there is an exact sequence of sheaves on
Z:

I/I2 δ
// ΩX/Y ⊗OZ

// ΩZ/Y
// 0.

I promised you that in good situations this is exact on the left as well, as our geometric
intuition predicts. Now let Z = Spec k (where k = k), and Y a nonsingular k-variety,
and X ⊂ Y an irreducible closed subscheme cut out by the quasicoherent sheaf of ideals
I ⊂ OY .

2.20. Theorem (conormal exact sequence for nonsingular varieties). — X is nonsingular if and
only if (i) ΩX/k is locally free, and (ii) the conormal exact sequence is exact on the left also:

0 // I/I2 δ
// ΩX/Y ⊗OZ

// ΩZ/Y
// 0.

Moreover, if Y is nonsingular, then I is locally generated by codim(X, Y) elements, and I/I2 is a
locally free of rank codim(X, Y).

This latter condition is the definition of something being a local complete intersection in a
nonsingular scheme.

You can read a proof of this in Hartshorne II.8.17. I’m not going to present it in class, as
we’ll never use it. The only case I’ve ever seen used is the implication that if X is nonsin-
gular, then (i) and (ii) hold; and we’ve already checked (i). This implication (that in the
case of a nonsingular subvariety of a nonsingular variety, the conormal and hence nor-
mal exact sequence is exact) is very useful for relating the differentials on a nonsingular
subvariety to the normal bundle.

The real content is that in the case of a nonsingular subvariety of a nonsingular variety,
the conormal exact sequence is exact on the left as well, and in this nice case we have a
short exact sequence of locally free sheaves (vector bundles). By dualizing, i.e. applying
Hom(·,OX), we obtain the normal exact sequence

0 → TX/k → TY/k → NX/Y → 0
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which is very handy. Note that dualizing an exact sequence will give you a left-exact
sequence in general, but dualizing an exact sequence of locally free sheaves will always
be locally free. (In fact, all you need is that the third term is locally free. I could make this
an exercise; it may also follow if I define Ext soon after defining Tor, as an exercise.)

E-mail address: vakil@math.stanford.edu
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