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Welcome back to the third quarter! The theme for this quarter, insofar as there is one,
will be “useful ideas to know”. We’ll start with differentials for the first three lectures.

I prefer to start any topic with a number of examples, but in this case I’m going to
spend a fair amount of time discussing technicalities, and then get to a number of exam-
ples. Here is the main message I want you to get. Differentials are an intuitive geometric
notion, and we’re going to figure out the right description of them algebraically. I find
the algebraic manifestation a little non-intuitive, so I always like to tie it to the geometry.
So please don’t tune out of the statements. Also, I want you to notice that although the
algebraic statements are odd, none of the proofs are hard or long.

This topic could have been done as soon as we knew about morphisms and quasico-
herent sheaves.

1. MOTIVATION AND GAME PLAN

Suppose X is a “smooth” k-variety. We hope to define a tangent bundle. We’ll see that
the right way to do this will easily apply in much more general circumstances.

• We’ll see that cotangent is more “natural” for schemes than tangent bundle. This is
similar to the fact that the Zariski cotangent space is more natural than the tangent space
(i.e. if A is a ring and m is a maximal ideal, then m/m2 is “more natural” than (m/m2)∨. So
we’ll define the cotangent sheaf first.

• Our construction will work for general X, even if X is not “smooth” (or even at all nice,
e.g. finite type). The cotangent sheaf won’t be locally free, but it will still be a quasicoher-
ent sheaf.

• Better yet, this construction will work “relatively”. For any X → Y, we’ll define ΩX/Y , a
quasicoherent sheaf on X, the sheaf of relative differentials. This will specialize to the earlier
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case by taking Y = Spec k. The idea is that this glues together the cotangent sheaves of
the fibers of the family. (I drew an intuitive picture in the “smooth” case. I introduced the
phrase “vertical (co)tangent vectors”.)

2. THE AFFINE CASE: THREE DEFINITIONS

We’ll first study the affine case. Suppose A is a B-algebra, so we have a morphism of
rings φ : B → A and a morphism of schemes Spec A → Spec B. I will define an A-module
ΩA/B in three ways. This is called the module of relative differentials or the module of Kähler
differentials. The module of differentials will be defined to be this module, as well as a
map d : A → ΩA/B satisfying three properties.
(i) additivity. da + da ′ = d(a + a ′)

(ii) Leibniz. d(aa ′) = a da ′ + a ′da

(iii) triviality on pullbacks. db = 0 for b ∈ φ(B).

As motivation, think of the case B = k. So for example, dan = nan−1da, and more
generally, if f is a polynomial in one variable, df(a) = f ′(a) da (where f ′ is defined
formally: if f =

∑
cix

i then f ′ =
∑

ciix
i−1).

I’ll give you three definitions of this sheaf in the affine case (i.e. this module). The first
is a concrete hands-on definition. The second is by universal property. And the third will
globalize well, and will allow us to define ΩX/Y conveniently in general.

The first two definitions are analogous to what we have seen for tensor product. Recall
that there are two common definitions of ⊗. The first is in terms of formal symbols satis-
fying some rules. This is handy for showing certain things, e.g. if M → M ′ is surjective,
then so is M ⊗ N → M ′ ⊗ N. The second is by universal property.

2.1. First definition of differentials: explicit description. We define ΩA/B to be finite
A-linear combinations of symbols “da” for a ∈ A, subject to the three rules (i)–(iii) above.
For example, take A = k[x, y], B = k. Then a sample differential is 3x2 dy + 4dx ∈ ΩA/B.
We have identities such as d(3xy2) = 3y2 dx + 6xy dy.

Key fact. Note that if A is generated over B (as an algebra) by xi ∈ A (where i lies in
some index set, possibly infinite), subject to some relations rj (where j lies in some index
set, and each is a polynomial in some finite number of the xi), then the A-module ΩA/B

is generated by the dxi, subject to the relations (i)—(iii) and drj = 0. In short, we needn’t
take every single element of A; we can take a generating set. And we needn’t take every
single relation among these generating elements; we can take generators of the relations.

2.2. Exercise. Verify the above key fact.

In particular:
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2.3. Proposition. — If A is a finitely generated B-algebra, then ΩA/B is a finite type (i.e. finitely
generated) A-module. If A is a finitely presented B-algebra, then ΩA/B is a finitely presented
A-module.

(“Finitely presented” algebra means finite number of generators (=finite type) and finite
number of relations. If A is Noetherian, then the two hypotheses are the same, so most of
you will not care.)

Let’s now see some examples. Among these examples are three particularly important
kinds of ring maps that we often consider: adding free variables; localizing; and taking
quotients. If we know how to deal with these, we know (at least in theory) how to deal
with any ring map.

2.4. Example: taking a quotient. If A = B/I, then ΩA/B = 0 basically immediately:
da = 0 for all a ∈ A, as each such a is the image of an element of B. This should be
believable; in this case, there are no “vertical tangent vectors”.

2.5. Example: adding variables. If A = B[x1, . . . , xn], then ΩA/B = Adx1 ⊕ · · · ⊕ Adxn.
(Note that this argument applies even if we add an arbitrarily infinite number of inde-

terminates.) The intuitive geometry behind this makes the answer very reasonable. The
cotangent bundle should indeed be trivial of rank n.

2.6. Example: two variables and one relation. If B = C, and A = C[x, y]/(y2 − x3), then
ΩA/B = C dx ⊕ C dy/(2y dy − 3x2 dx).

2.7. Example: localization. If S is a multiplicative set of B, and A = S−1B, then ΩA/B = 0.
Reason: Note that the quotient rule holds. (If b = as, then db = a ds+s da, which can be
rearranged to give da = (s db−b ds)/s2.) Thus if a = b/s, then da = (s db−b ds)/s2 = 0.
(If A = Bf for example, this is intuitively believable; then Spec A is an open subset of
Spec B, so there should be no “vertical cotangent vectors”.)

2.8. Exercise: localization (stronger form). If S is a multiplicative set of A, show that
there is a natural isomorphism ΩS−1A/B

∼= S−1ΩA/B. (Again, this should be believable
from the intuitive picture of “vertical cotangent vectors”.) If T is a multiplicative set of
B, show that there is a natural isomorphism ΩS−1A/T−1B

∼= S−1ΩA/B where S is the multi-
plicative set of A that is the image of the multiplicative set T ⊂ B.

2.9. Exercise. (a) (pullback of differentials) If

A ′ Aoo

B ′

OO

B

OO

oo

is a commutative diagram, show that there is a natural homomorphism of A ′-modules
A ′ ⊗A ΩA/B → ΩA ′/B ′ . An important special case is B = B ′.

3



(b) (differentials behave well with respect to base extension, affine case) If furthermore the above
diagram is a tensor diagram (i.e. A ′ ∼= B ′ ⊗B A) then show that A ′ ⊗A ΩA/B → ΩA ′/B ′ is
an isomorphism.

2.10. Exercise. Suppose k is a field, and K is a separable algebraic extension of k. Show
that ΩK/k = 0.

2.11. Exercise (Jacobian description of ΩA/B). — Suppose A = B[x1, . . . , xn]/(f1, . . . , fr).
Then ΩA/B = {⊕iBdxi}/{dfj = 0} maybe interpreted as the cokernel of the Jacobian matrix
J : A⊕r → A⊕n.

I now want to tell you two handy (geometrically motivated) exact sequences. The ar-
guments are a bit tricky. They are useful, but a little less useful than the foundation facts
above.

2.12. Theorem (the relative cotangent sequence, affine version). — Suppose C → B → A are ring
homomorphisms. Then there is a natural exact sequence of A-modules

A ⊗B ΩB/C → ΩA/C → ΩA/B → 0.

Before proving this, I drew a picture motivating the statement. I drew pictures of two
maps of schemes, Spec A

f // Spec B
g

// Spec C , where Spec C was a point, Spec B was
A1 (or a “smooth curve”), and Spec A was A2 (or a “smooth surface”). The tangent space
to a point upstairs has a subspace that is the tangent space to the vertical fiber. The
cokernel is the pullback of the tangent space to the image point in Spec B. Thus we have
an exact sequence 0 → TSpec A/ Spec B → TSpec A/ Spec C → f∗TSpec B/ Spec C → 0. We want the
corresponding sequence of cotangent vectors, so we dualize. We end up with precisely
the statement of the Theorem, except we also have left-exactness. This discrepancy is
because the statement of the theorem is more general; we’ll see that in the “smooth” case,
we’ll indeed have left-exactness.

Proof. (Before we start, note that surjectivity is clear, from da 7→ da. The composition over
the middle term is clearly 0: db → db → 0.) We wish to identify ΩA/B as the cokernel
of A ⊗B ΩB/C → ΩA/C. Now ΩA/B is exactly the same as ΩA/C, except we have extra
relations: db = 0 for b ∈ B. These are precisely the images of 1 ⊗ db on the left. �

2.13. Theorem (Conormal exact sequence, affine version). — Suppose B is a C-algebra, I is an
ideal of B, and A = B/I. Then there is a natural exact sequence of A-modules

I/I2 δ:i→=1⊗di// A ⊗B ΩB/C
a⊗db7→a db // ΩA/C

// 0.

Before getting to the proof, some discussion is necessary. (The discussion is trickier
than the proof itself!)
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The map δ is a bit subtle, so I’ll get into its details before discussing the geometry. For
any i ∈ I, δi = 1 ⊗ di. Note first that this is well-defined: If i, i ′ ∈ I, i ≡ i ′ (mod I2),
say i − i ′ = i ′′i ′′′ where i ′′, i ′′′ ∈ I, then δi − δi ′ = 1 ⊗ (i ′′ di ′′′ + i ′′′ di ′′) ∈ IΩB/C is 0 in
A ⊗B ΩB/C = (B/I) ⊗B ΩB/C. Next note that I/I2 indeed is an A = (B/I)-module. Finally,
note that the map I/I2 → A ⊗B ΩB/C is indeed a homomorphism of A-modules: If a ∈ A,
b ∈ I, then ab 7→ 1 ⊗ d(ab) = 1 ⊗ (a db + b da) = 1 ⊗ (a db) = a(1 ⊗ db).

Having dispatched that formalism, let me get back to the geometry. I drew a picture
where Spec C is a point, Spec B is a plane, and Spec A is something smooth in it. Let j

be the inclusion. Then we have 0 → TSpec A/ Spec C → j∗TSpec B/ Spec C → NSpec B/ Spec C → 0.
Dualizing it, we get 0 → N∨

A/B → A ⊗ ΩB/C → ΩA/C → 0. This exact sequence reminds
me of several things above and beyond the theorem. First of all, I/I2 will later be the
conormal bundle — hence the name of the theorem. Second, in good circumstances, the
conormal exact sequence of Theorem 2.13 will be injective on the left.

2.14. Aside: Why should I/I2 be the conormal bundle?. We’ll define I/I2 to be the conor-
mal bundle later, so I’ll try to give you an idea as to why this is reasonable. You be-
lieve now that m/m2 should be the cotangent space to a point in A

n. In other words,
(x1, . . . , xn)/(x1, . . . , xn)2 is the cotangent space to ~0 in An. Translation: it is the conormal
space to the point ~0 ∈ An. Then you might believe that in An+m, (x1, . . . , xn)/(x1, . . . , xn)2

is the conormal bundle to the coordinate n-plane A
m ⊂ A

n+m.

Let’s finally prove the conormal exact sequence.

Proof of the conormal exact sequence (affine version) 2.13. We need to identify the cokernel of
δ : I/I2 → A⊗B ΩB/C with ΩA/C. Consider A⊗B ΩB/C. As an A-module, it is generated by
db (b ∈ B), subject to three relations: dc = 0 for c ∈ φ(C) (where φ : C → B describes B

as a C-algebra), additivity, and the Leibniz rule. Given any relation in B, d of that relation
is 0.

Now ΩA/C is defined similarly, except there are more relations in A; these are precisely
the elements of i ∈ B. Thus we obtain ΩA/C by starting out with A ⊗B ΩB/C, and adding
the additional relations di where i ∈ I. But this is precisely the image of δ! �

2.15. Second definition: universal property. Here is a second definition that we’ll use at
least once, and is certainly important philosophically. Suppose A is a B-algebra, and M

is a A-module. An B-linear derivation of A into M is a map d : A → M of B-modules (not
necessarily A-modules) satisfying the Leibniz rule: d(fg) = f dg + g df. As an example,
suppose B = k, and A = k[x], and M = A. Then an example of a k-linear derivation is
d/dx. As a second example, if B = k, A = k[x], and M = k. Then an example of a k-linear
derivation is d/dx|0.
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Then d : A → ΩA/B is defined by the following universal property: any other B-linear
derivation d ′ : A → M factors uniquely through d:

A
d

""DD
DD

DD
DD

d ′

// M

ΩA/B

f

<<yyyyyyyy

Here f is a map of A-modules. (Note again that d and d ′ are not! They are only B-linear.)
By universal property nonsense, if it exists, it is unique up to unique isomorphism. The
candidate I described earlier clearly satisfies this universal property (in particular, it is a
derivation!), hence this is it. [Thus Ω is the “unversal derivation”. I should rewrite this
paragraph at some point.]

The next result will give you more evidence that this deserves to be called the (relative)
cotangent bundle.

2.16. Proposition. Suppose B is a k-algebra, with residue field k. Then the natural map δ :

m/m2 → ΩB/k ⊗B k is an isomorphism.

I skipped this proof in class, but promised it in the notes.

Proof. By the conormal exact sequence 2.13 with I = m and A = C = k, δ is a surjection
(as Ωk/k = 0), so we need to show that it is injection, or equivalently that Homk(ΩB/k ⊗B

k, k) → Homk(m/m2, k) is a surjection. But any element on the right is indeed a derivation
from B to k (an earlier exercise from back in the dark ages on the Zariski tangent space),
which is precisely an element of HomB(ΩB/k, k) (by the universal property of ΩB/k), which
is canonically isomorphic to Homk(ΩB/k ⊗B k, k) as desired. �

Remark. As a corollary, this (in combination with the Jacobian exercise 2.11 above) gives
a second proof of an exercise from the first quarter, showing the Jacobian criterion for
nonsingular varieties over an algebraically closed field.

Aside. If you wish, you can use the universal property to show that ΩA/B behaves well
with respect to localization. For example, if S is a multiplicative set of A, then there is a
natural isomorphism ΩS−1A/B

∼= S−1ΩA/B. This can be used to give a different solution
to Exercise 2.8. It can also be used to give a second definition of ΩX/Y for a morphism
of schemes X → Y (different from the one given below): we define it as a quasicoherent
sheaf, by describing how it behaves on affine open sets, and showing that it behaves well
with respect to distinguished localization.

Next day, I’ll give a third definition which will globalize well, and we’ll see that we
already understand differentials for morphisms of schemes.
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