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Last day: More fun with curves: hyperelliptic curves; curves of genus at least 2;
elliptic curves take 1.

Today: elliptic curves; the Picard variety; “the moduli space of curves has dimension
3g − 3.”

This is the last class of the quarter! We’ll finish off using what we know (and a little of
what we’ll know soon) to learn a great deal about curves.

There will be one more homework out early next week, due Thursday of the week after,
covering this week’s notes. We may well have a question-and-answer question on the last
morning of class.

Once again, I’m going to use those important facts that we proved a couple of days ago,
so I’ll refer you to the class 34 crib sheet.

Let me first give you an exercise I should have given you last day.

Exercise. (a) Suppose C is a projective curve. Show that C − p is affine. (Hint: show that
n � 0, O(np) gives an embedding of C into some projective space P

m, and that there is
some hyperplane H meeting C precisely at p. Then C−p is a closed subscheme of Pn −H.)
(b) If C is a geometrically integral nonsingular curve over a field k (i.e. all of our standing
assumptions, minus projectivity), show that it is projective or affine.
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1. BACK TO ELLIPTIC CURVES

We’re in the process of studying elliptic curves, i.e. curves E (projective, geometrically
integral and nonsingular, over a field k) of genus 1, with a choice of a k-valued point p.
(It is typical to use the letter E for the curve rather than C.)

So far we have seen that they admit double covers of P1, and that if k = k, then the
elliptic curves are classified by the j-invariant. The double cover corresponded to the
invertible sheaf OE(2p). We’ll now consider OE(np) for larger n.

1.1. Degree 3. Consider the degree 3 invertible sheaf OE(3p). We consult our useful facts.
By Riemann-Roch, h0(E,OE(3p)) = deg(3p)−g+ 1 = 3. As deg E > 2g, this gives a closed
immersion. Thus we have a closed immersion E ↪→ P2

k as a cubic curve. Moreover, there is
a line in P2

k meeting E at point p with multiplicity 3. (Remark: a line in the plane meeting
a smooth curve with multiplicity at least 2 is said to be a tangent line. A line in the plane
meeting a smooth curve with multiplicity at least 3 is said to be a flex line.)

We can choose projective coordinates on P2
k so that p maps to [0; 1; 0], and the flex line

is the line at infinity z = 0. Then the cubic is of the following form:

?x3 + 0x2y + 0xy2 + 0y3

+ ?x2z + ?xyz + ?y2z

+ ?xz2 + ?yz2

+ ?z3 = 0

The co-efficient of x is not 0 (or else this cubic is divisible by z). We can scale x so that
the coefficient of x3 is 1. The coefficient of y2z is not 0 either (or else this cubic is singular
at x = z = 0). As k is algebraically closed, we can scale y so that the coefficient of y2z

is 1. (More precisely, we are changing variables, say y ′ = ay for some a ∈ k.) If the
characteristic of k is not 2, then we can then replace y by y+?x+?z so that the coefficients
of xyz and yz2 are 0, and if the characteristic of k is not 3, we can replace x by x+?z so that
the coefficient of x2z is also 0. In conclusion, if k is algebraically closed of characteristic
not 2 or 3, we can write our elliptic curve in the form

y2z = x3 + ax2z + bz3.

This is called Weierstrass normal form. (If only some of the “bonus hypotheses” k = k,
char k 6= 2, 3 is true, then we can perform only some of the reductions of course.)

Notice that we see the hyperelliptic description of the curve (by setting z = 1, or more
precisely, by working in the distinguished open set z 6= 0 and using inhomogeneous
coordinates). In particular, we can compute the j-invariant.
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Here is the geometric explanation of why the double cover description is visible in the
cubic description.

I drew a picture of the projective plane, showing the cubic, and where it met the z-axis
(the line at infinity) — where the z-axis and x-axis meet — it has a flex there. I drew
the lines through that point — vertical lines. Equivalently, you’re just taking 2 of the 3

sections: x and z. These are two sections of O(3p), but they have a common zero — a base
point at p. So you really get two sections of O(2p).

Exercise. Show that O(4p) embeds E in P3 as the complete intersection of two quadrics.

1.2. The group law.

1.3. Theorem. — The closed points of E are in natural bijection with Pic0(E), via x ↔ x − p. In
particular, as Pic0(E) is a group, we have endowed the closed points of E with a group structure.

For those of you familiar with the complex analytic picture, this isn’t surprising: E is
isomorphic to the complex numbers modulo a lattice: E ∼= C/Λ.

This is currently just a bijection of sets. Given that E has a much richer structure (it has
a generic point, and the structure of a variety), this is a sign that there should be a way of
defining some scheme Pic0(E), and that this should be an isomorphism of schemes.

Proof. For injectivity: O(x − p) ∼= O(y − p) implies O(x − y) ∼= O. But as E is not genus 0,
this is possible only if x = y.

For surjectivity: any degree 1 invertible sheaf has a section, so if L is any degree 0

invertible sheaf, then O(L(p)) ∼= O(x) for some x. �

Note that more naturally, Pic1(E) is in bijection with the points of E (without any choice
of point p).

From now on, we will conflate closed points of E with degree 0 invertible sheaves on E.

Remark. The 2-torsion points in the group are the branch points in the double cover!
Reason: q is a 2-torsion point if and only if 2q ∼ 2p if and only if there is a section of
O(2p) vanishing at q to order 2. (This is characteristic-independent.) Now assume that
the characteristic is 0. (In fact, we’ll only be using the fact that the characteristic is not
2.) By the Riemann-Hurwitz formula, there are 3 non-trivial torsion points. (Again, given
the complex picture E ∼= C/Λ, this isn’t surprising.)

Follow-up remark. An elliptic curve with full level n-structure is an elliptic curve with an
isomorphism of its n-torsion points with (Z/n)2. (This notion will have problems if n is
divisible by char k.) Thus an elliptic curve with full level 2 structure is the same thing as
an elliptic curve with an ordering of the three other branch points in its degree 2 cover
description. Thus (if k = k) these objects are parametrized by the λ-line (see the discussion
last day).
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Follow-up to the follow-up. There is a notion of moduli spaces of elliptic curves with full
level n structure. Such moduli spaces are smooth curves (where this is interpreted appro-
priately), and have smooth compactifications. A weight k level n modular form is a section
of K⊗k where K is the canonical sheaf of this “modular curve”.

But let’s get back down to earth.

1.4. Proposition. — There is a morphism of varieties E → E sending a (degree 1) point to its
inverse.

In other words, the “inverse map” in the group law actually arises from a morphism
of schemes — it isn’t just a set map. This is another clue that Pic0(E) really wants to be a
scheme.

Proof. It is the hyperelliptic involution y 7→ −y! Here is why: if q and r are “hyperelliptic
conjugates”, then q + r ∼ 2p = 0. �

We can describe addition in the group law using the cubic description. (Here a picture
is absolutely essential, and at some later date, I hope to add it.) To find the sum of q and
r on the cubic, we draw the line through q and r, and call the third point it meets s. Then
we draw the line between p and s, and call the third point it meets t. Then q + r = t.
Here’s why: q + r + s = p + s + t gives (q − p) + (r − p) = (s − p).

(When the group law is often defined on the cubic, this is how it is done. Then you
have to show that this is indeed a group law, and in particular that it is associative. We
don’t need to do this — Pic0 E is a group, so it is automatically associative.)

Note that this description works in all characteristics; we haven’t required the cubic to
be in Weierstrass normal form.

1.5. Proposition. — There is a morphism of varieties E × E → E that on degree 1 points sends
(q, r) to q + r.

“Proof”. We just have to write down formulas for the construction on the cubic. This
is no fun, so I just want to convince you that it can be done, rather than writing down
anything explicit. They key idea is to define another map E × E → E, where if the input
is (a, b), the output is the third point where the cubic meets the line, with the natural
extension if the line doesn’t meet the curve at three distinct points. Then we can use this
to construct addition on the cubic. �

Aside: Discussion on group varieties and group schemes.

A group variety X over k is something that can be defined as follows: We are given an
element e ∈ X(k) (a k-valued point of X), and maps i : X → X, m : X×X → X. They satisfy
the hypotheses you’d expect from the definition of a group.
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(i) associativity:

X × X × X
(m,id)

//

(id,m)

��

X × X

m

��

X × X
m

// X

commutes.

(ii) X
e,id

// X × X
m

// X and X
id,e

// X × X
m

// X are both the identity.

(iii) X
i,id

// X × X
m

// X and X
id,i

// X × X
m

// X are both e.

More generally, a group scheme over a base B is a scheme X → B, with a section e : B → X,
and B-morphisms i : X → X, m : X ×B X → X, satisfying the three axioms above.

More generally still, a group object in a category C is the above data (in a category C),
satisfying the same axioms. The e map is from the final object in the category to the
group object.

You can check that a group object in the category of sets is in fact the same thing as a
group. (This is symptomatic of how you take some notion and make it categorical. You
write down its axioms in a categorical way, and if all goes well, if you specialize to the
category of sets, you get your original notion. You can apply this to the notion of “rings”
in an exercise below.)

1.6. The functorial description. It is often cleaner to describe this in a functorial way. Notice
that if X is a group object in a category C, then for any other element of the category, the
set Hom(Y, X) is a group. Moreover, given any Y1 → Y2, the induced map Hom(Y2, X) →

Hom(Y1, X) is group homomorphism.

We can instead define a group object in a category to be an object X, along with mor-
phisms m : X×X → X, i : X → X, and e : final object → X, such that these induce a natural
group structure on Hom(Y, X) for each Y in the category, such that the forgetful maps are
group homomorphisms. This is much cleaner!

Exercise. Verify that the axiomatic definition and the functorial definition are the same.

Exercise. Show that (E, p) is a group scheme. (Caution! we’ve stated that only the closed
points form a group — the group Pic0. So there is something to show here. The main idea
is that with varieties, lots of things can be checked on closed points. First assume that
k = k, so the closed points are dimension 1 points. Then the associativity diagram is
commutative on closed points; argue that it is hence commutative. Ditto for the other
categorical requirements. Finally, deal with the case where k is not algebraically closed,
by working over the algebraic closure.)

We’ve seen examples of group schemes before. For example, A1
k is a group scheme

under addition. Gm = Spec k[t, t−1] is a group scheme.
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Easy exercise. Show that A1
k is a group scheme under addition, and Gm is a group scheme

under multiplication. You’ll see that the functorial description trumps the axiomatic de-
scription here! (Recall that Hom(X, A1

k) is canonically Γ(X,OX), and Hom(X, Gm) is canon-
ically Γ(X,OX)∗.)

Exercise. Define the group scheme GL(n) over the integers.

Exercise. Define µn to be the kernel of the map of group schemes Gm → Gm that is
“taking nth powers”. In the case where n is a prime p, which is also char k, describe µp.
(I.e. how many points? How “big” = degree over k?)

Exercise. Define a ring scheme. Show that A1
k is a ring scheme.

1.7. Hopf algebras. Here is a notion that we’ll certainly not use, but it is easy enough to
define now. Suppose G = Spec A is an affine group scheme, i.e. a group scheme that is an
affine scheme. The categorical definition of group scheme can be restated in terms of the
ring A. Then these axioms define a Hopf algebra. For example, we have a “comultiplication
map” A → A ⊗ A. Exercise. As A

1
k is a group scheme, k[t] has a Hopf algebra structure.

Describe the comultiplication map k[t] → k[t] ⊗k k[t].

2. FUN COUNTEREXAMPLES USING ELLIPTIC CURVES

We have a morphism (×n) : E → E that is “multiplication by n”, which sends p to
np. If n = 0, this has degree 0. If n = 1, it has degree 1. Given the complex picture of a
torus, you might not be surprised that the degree of ×n is n2. If n = 2, we have almost
shown that it has degree 4, as we have checked that there are precisely 4 points q such
that 2p = 2q. All that really shows is that the degree is at least 4.

2.1. Proposition. — For each n > 0, the “multiplication by n” map has positive degree. In other
words, there are only a finite number of n torsion points.

Proof. We prove the result by induction; it is true for n = 1 and n = 2.

If n is odd, then assume otherwise that nq = 0 for all closed points q. Let r be a non-
trivial 2-torsion point, so 2r = 0. But nr = 0 as well, so r = (n−2[n/2])r = 0, contradicting
r 6= 0.

If n is even, then [×n] = [×2]◦ [×(n/2)], and by our inductive hypothesis both [×2] and
[×(n/2)] have positive degree. �

In particular, the total number of torsion points on E is countable, so if k is an uncount-
able field, then E has an uncountable number of closed points (consider an open subset
of the curve as y2 = x3 + ax + b; there are uncountably many choices for x, and each of
them has 1 or 2 choices for y).

Thus almost all points on E are non-torsion. I’ll use this to show you some pathologies.

6



An example of an affine open set that is not distinguished. I can give you an affine scheme X

and an affine open subset Y that is not distinguished in X. Let X = E − p, which is affine
(easy, or see Exercise ).

Let q be another point on E so that q−p is non-torsion. Then E−p−q is affine (Exercise ).
Assume that it is distinguished. Then there is a function f on E − p that vanishes on q (to
some positive order d). Thus f is a rational function on E that vanishes at q to order d,
and (as the total number of zeros minus poles of f is 0) has a pole at p of order d. But then
d(p − q) = 0 in Pic0 E, contradicting our assumption that p − q is non-torsion.

An Example of a scheme that is locally factorial at a point p, but such that no affine open
neighborhood of p has ring that is a Unique Factorization Domain.

Consider p ∈ E. Then an open neighborhood of E is of the form E − q1 − · · · − qn. I
claim that its Picard group is nontrivial. Recall the exact sequence:

Zn
(a1,...,an)7→a1q1+···+anqn

// Pic E // Pic(E − q1 − · · · − qn) // 0 .

But the group on the left is countable, and the group in the middle is uncountable, so the
group on the right is non-zero.

Example of variety with non-finitely-generated space of global sections.

This is related to Hilbert’s fourteenth problem, although I won’t say how.

Before we begin we have a preliminary exercise.

Exercise. Suppose X is a scheme, and L is the total space of a line bundle corresponding
to invertible sheaf L, so L = Spec⊕n≥0(L

∨)⊗n. Show that H0(L,OL) = ⊕H0(X, (L∨)⊗n).

Let E be an elliptic curve over some ground field k, N a degree 0 non-torsion invertible
sheaf on E, and P a positive-degree invertible sheaf on E. Then H0(E, Nm ⊗Pn) is nonzero
if and only if either (i) n > 0, or (ii) m = n = 0 (in which case the sections are elements of
k). Thus the ring R = ⊕m,n≥0H

0(E, Nm ⊗ Pn) is not finitely generated.

Now let X be the total space of the vector bundle N ⊕ P over E. Then the ring of global
sections of X is R.

3. MORE SERIOUS STUFF

I’ll conclude the quarter by showing the following.

• If C has genus g, then “Pic0(C) has dimension g”.
• “The moduli space of curves of genus g “is dimension 3g − 3.”

We’ll work over an algebraically closed field k. We haven’t yet made the above notions
precise, so what follows are just plausibility arguments. (It is worth trying to think of a
way of making these notions precise! There are several ways of doing this usefully.)

7



3.1. The Picard group has dimension g: “dim Pic0 C = g”. There are quotes around this
equation because so far, Pic0 C is simply a set, so this will just be a plausibility argument.
Let p be any (closed, necessarily degree 1) point of C. Then twisting by p gives an iso-
morphism of Picd C and Picd+1 C, via L ↔ L(p). Thus we’ll consider Picd C, where d � 0

(in fact d > degK = 2g − 2 will suffice). Say dim Picd C = h. We ask: how many degree d

effective divisors are there (i.e. what is the dimension of this family)? The answer is clearly
d, and Cd surjects onto this set (and is usually d!-to-1).

But we can count effective divisors in a different way. There is an h-dimensional family
of line bundles by hypothesis, and each one of these has a (d − g + 1)-dimensional family
of non-zero sections, each of which gives a divisor of zeros. But two sections yield the
same divisor if one is a multiple of the other. Hence we get: h+(d−g+1)−1 = h+d−g.

Thus d = h + d − g, from which h = g as desired.

Note that we get a bit more: if we believe that Picd has an algebraic structure, we have
a fibration (Cd)/Sd → Picd, where the fibers are isomorphic to Pd−g. In particular, Picd is
reduced, and irreducible.

3.2. The moduli space of genus g curves has dimension 3g − 3. Let Mg be the set
of nonsingular genus g curves, and pretend that we can give it a variety structure. Say
Mg has dimension p. By our useful Riemann-Roch facts, if d � 0, and D is a divisor of
degree d, then h0(C,O(D)) = d − g + 1. If we take two general sections s, t of the line
bundle O(D), we get a map to P1, and this map is degree d. Conversely, any degree d

cover f : C → P1 arises from two linearly independent sections of a degree d line bundle.
Recall that (s, t) gives the same map to P1 as (s ′, t ′) if and only (s, t) is a scalar multiple
of (s ′, t ′). Hence the number of maps to P

1 arising from a fixed curve C and a fixed line
bundle L correspond to the choices of two sections (2(d − g + 1)), minus 1 to forget the
scalar multiple, for a total of 2d − 2g + 1. If we let the the line bundle vary, the number of
maps from a fixed curve is 2d − 2g + 1 + dim Picd(C) = 2d − g + 1. If we let the curve also
vary, we see that the number of degree d genus g covers of P1 is p + 2d − g + 1 .

But we can also count this number using the Riemann-Hurwitz formula. I’ll need one
believable fact: there are a finite number of degree d covers with a given set of branch
points. (In the complex case, this is believable for the following reason. If C → P1 is
a branched cover of P1, branched over p1, . . . , pr, then by discarding the branch points
and their preimages, we have an unbranched cover C ′

→ P1 − {p1, . . . , pr}. Then you
can check that (i) the original map C → P1 is determined by this map (because C is
the normalization of P

1 in this function field extension FF(C ′)/FF(P1)), and (ii) there are
a finite number of such covers (corresponding to the monodromy data around these r

points; we have r elements of Sd once we take branch cuts). This last step is where the
characteristic 0 hypothesis is necessary.)

By the Riemann-Hurwitz formula, for a fixed g and d, the total amount of branching
is 2g + 2d − 2 (including multiplicity). Thus if the branching happens at no more than
2g + 2d − 2 points, and if we have the simplest possible branching at 2g + 2d − 2 points,
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the covering curve is genus g. Thus
p + 2d − g + 1 = 2g + 2d − 2,

from which p = 3g − 3 .

Thus there is a 3g−3-dimensional family of genus g curves! (By showing that the space
of branched covers is reduced and irreducible, we could again “show” that the moduli
space is reduced and irreducible.)

E-mail address: vakil@math.stanford.edu
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