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Last day: More fun with curves: Serre duality, criterion for closed immersion, a series
of useful remarks, curves of genus 0 and 2.

Today: hyperelliptic curves; curves of genus at least 2; elliptic curves take 1.

Last day we started studying curves in detail, using things we’d proved. Today, we’ll
continue to use these things. (See the “Class 34 crib sheet” for a reminder of what we
know.)

1. HYPERELLIPTIC CURVES

As usual, we begin by working over an arbitrary field k, and specializing only when
we need to. A curve C of genus at least 2 is hyperelliptic if it admits a degree 2 cover of P1.
This map is often called the hyperelliptic map.

Equivalently, C is hyperelliptic if it admits a degree 2 invertible sheaf L with h0(C,L) =

2.

1.1. Exercise.. Verify that these notions are the same. Possibly in the course of doing this,
verify that if C is a curve, and L has a degree 2 invertible sheaf with at least 2 (linearly
independent) sections, then L has precisely two sections, and that this L is base-point free
and gives a hyperelliptic map.

The degree 2 map C → P1 gives a degree 2 extension of function fields FF(C) over
FF(P1) ∼= k(t). If the characteristic is not 2, this extension is necessarily Galois, and the
induced involution on C is called the hyperelliptic involution.
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1.2. Proposition. — If L corresponds to a hyperelliptic cover C → P1, then L⊗(g−1) ∼= KC.

Proof. Compose the hyperelliptic map with the (g − 1)th Veronese map:

C
L

// P1
O

P1(g−1)
// Pg−1.

The composition corresponds to L⊗(g−1). This invertible sheaf has degree 2g − 2, and the
image is nondegenerate in Pg−1, and hence has at least g sections. But one of our useful
facts (and indeed an exercise) was that the only invertible sheaf of degree 2g − 2 with (at
least) g sections is the canonical sheaf. �

1.3. Proposition. — If a curve (of genus at least 2) is hyperelliptic, then it is hyperelliptic in “only
one way”. In other words, it admits only one double cover of P1.

Proof. If C is hyperelliptic, then we can recover the hyperelliptic map by considering
the canonical map: it is a double cover of a degree g − 1 rational normal curve (by the
previous Proposition), and this double cover is the hyperelliptic cover (also by the proof
of the previous Proposition). �

Next, we invoke the Riemann-Hurwitz formula. We assume the char k = 0, and k = k,
so we can invoke this black box. However, when we actually discuss differentials, and
prove the Riemann-Hurwitz formula, we will see that we can just require char k 6= 2 (and
k = k).

The Riemann-Hurwitz formula implies that hyperelliptic covers have precisely 2g + 2

(distinct) branch points. We will see in a moment that the branch points determine the
curve (Claim 1.4).

Assuming this, we see that hyperelliptic curves of genus g correspond to precisely 2g+

2 points on P1 modulo S2g+2, and modulo automorphisms of P1. Thus “the space of
hyperelliptic curves” has dimension

2g + 2 − dim Aut P1 = 2g − 1.

(As usual, this is not a well-defined statement, because as yet we don’t know what we
mean by “the space of hyperelliptic curves”. For now, take it as a plausibility statement.)
If we believe that the curves of genus g form a family of dimension 3g − 3, we have
shown that “most curves are not hyperelliptic” if g > 2 (or on a milder note, there exists
a hyperelliptic curve of each genus g > 2).

1.4. Claim. — Assume char k 6= 2 and k = k. Given n distinct points on P1, there is precisely
one cover branched at precisely these points if n is even, and none if n is odd.

In particular, the branch points determine the hyperelliptic curve. (We also used this
fact when discussing genus 2 curves last day.)
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Proof. Suppose we have a double cover of A1, C → A1, where x is the coordinate on
A1. This induces a quadratic field extension K over k(x). As char k 6= 2, this extension is
Galois. Let σ be the hyperelliptic involution. Let y be an element of K such that σ(y) = −y,
so 1 and y form a basis for K over the field k(x) (and are eigenvectors of σ). Now y2 ∈ k(x),
so we can replace y by an appropriate k(x)-multiple so that y2 is a polynomial, with no
repeated factors, and monic. (This is where we use the hypothesis that k is algebraically
closed, to get leading coefficient 1.) Thus y2 = xn +an−1x

n−1 + · · ·+a0. The branch points
correspond to those values of x for which there is exactly one value of y, i.e. the roots of
the polynomial. As we have no double roots, the curve is nonsingular. Let this cover be
C ′

→ A1. Both C and C ′ are normalizations of A1 in this field extension, and are thus
isomorphic. Thus every double cover can be written in this way, and in particular, if the
branch points are r1, . . . , rn, the cover is y2 = (x − r1) · · · (x − rn).

We now consider the situation over P1. A double cover can’t be branched over an odd
number of points by the Riemann-Hurwitz formula. Given an even number of points r1,
. . . , rn in P1, choose an open subset A1 containing all n points. Construct the double cover
of A1 as explained in the previous paragraph: y2 = (x − r1) · · · (x − rn). Then take the
normalization of P1 in this field extension. Over the open A1, we recover this cover. We
just need to make sure we haven’t accidentally acquired a branch point at the missing
point ∞ = P1 − A1. But the total number of branch points is even, and we already have
an even number of points, so there is no branching at ∞. �

Remark. If k is not algebraically closed (but of characteristic not 2), the above argument
shows that if we have a double cover of A1, then it is of the form y2 = af(x), where f

is monic, and a ∈ k∗/(k∗)2. So (assuming the field doesn’t contain all squares) a double
cover does not determine the same curve. Moreover, see that this failure is classified
by k∗/(k∗)2. Thus we have lots of curves that are not isomorphic over k, but become
isomorphic over k. These are often called twists of each other.

(In particular, even though haven’t talked about elliptic curves yet, we definitely have
two elliptic curves over Q with the same j-invariant, that are not isomorphic.)

2. CURVES OF GENUS 3

Suppose C is a curve of genus 3. Then K has degree 2g − 2 = 4, and has g = 3 sections.

2.1. Claim. — K is base-point-free, and hence gives a map to P2.

Proof. We check base-point-freeness by working over the algebraic closure k. For any
point p, by Riemann-Roch,

h0(C,K(−p)) − h0(C,O(p)) = deg(K(−p)) − g + 1 = 3 − 3 + 1 = 1.

But h0(C,O(p)) = 0 by one of our useful facts, so
h0(C,K(−p)) = 2 = h0(C,K) − 1.

Thus p is not a base-point of K, so K is base-point-free. �

3



The next natural question is: Is this a closed immersion? Again, we can check over
algebraic closure. We use our “closed immersion test” (again, see our useful facts). If it
isn’t a closed immersion, then we can find two points p and q (possibly identical) such
that

h0(C,K) − h0(C,K(−p − q)) = 2,

i.e. h0(C,K(−p − q)) = 2. But by Serre duality, this means that h0(C,O(p + q)) = 2. We
have found a degree 2 divisor with 2 sections, so C is hyperelliptic. (Indeed, I could have
skipped that sentence, and made this observation about K(−p − q), but I’ve done it this
way in order to generalize to higher genus.) Conversely, if C is hyperelliptic, then we
already know that K gives a double cover of a nonsingular conic in P2 (also known as a
rational normal curve of degree 2).

Thus we conclude that if C is not hyperelliptic, then the canonical map describes C as
a degree 4 curve in P2.

Conversely, any quartic plane curve is canonically embedded. Reason: the curve has
genus 3 (we can compute this — see our discussion of Hilbert functions), and is mapped
by an invertible sheaf of degree 4 with 3 sections. Once again, we use the useful fact
saying that the only invertible sheaf of degree 2g − 2 with g sections is K.

Exercise. Show that the nonhyperelliptic curves of genus 3 form a family of dimension
6. (Hint: Count the dimension of the family of nonsingular quartics, and quotient by
Aut P2 = PGL(3).)

The genus 3 curves thus seem to come in two families: the hyperelliptic curves (a fam-
ily of dimension 5), and the nonhyperelliptic curves (a family of dimension 6). This is
misleading — they actually come in a single family of dimension 6.

In fact, hyperelliptic curves are naturally limits of nonhyperelliptic curves. We can
write down an explicit family. (This next paragraph will necessarily require some hand-
waving, as it involves topics we haven’t seen yet.) Suppose we have a hyperelliptic curve
branched over 2g + 2 = 8 points of P1. Choose an isomorphism of P1 with a conic in P2.
There is a nonsingular quartic meeting the conic at precisely those 8 points. (This requires
Bertini’s theorem, so I’ll skip that argument.) Then if f is the equation of the conic, and
g is the equation of the quartic, then f2 + t2g is a family of quartics that are nonsingular
for most t (nonsingular is an open condition as we will see). The t = 0 case is a double
conic. Then it is a fact that if you normalize the family, the central fiber (above t = 0)
turns into our hyperelliptic curve. Thus we have expressed our hyperelliptic curve as a
limit of nonhyperelliptic curves.

3. GENUS AT LEAST 3

We begin with two exercises in general genus, and then go back to genus 4.

Exercise Suppose C is a genus g curve. Show that if C is not hyperelliptic, then the canoni-
cal bundle gives a closed immersion C ↪→ Pg−1. (In the hyperelliptic case, we have already
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seen that the canonical bundle gives us a double cover of a rational normal curve.) Hint:
follow the genus 3 case. Such a curve is called a canonical curve.

Exercise. Suppose C is a curve of genus g > 1, over a field k that is not algebraically
closed. Show that C has a closed point of degree at most 2g − 2 over the base field. (For
comparison: if g = 1, there is no such bound!)

We next consider nonhyperelliptic curves C of genus 4. Note that degK = 6 and
h0(C,K) = 4, so the canonical map expresses C as a sextic curve in P3. We shall see
that all such C are complete intersections of quadric surfaces and cubic surfaces, and vice
versa.

By Riemann-Roch, K⊗2 has degK⊗2 − g + 1 = 12 − 4 + 1 = 9 sections. That’s one less
than dim Sym2 Γ(C,K) =

(

4+1

2

)

. Thus there is at least one quadric in P3 that vanishes on
our curve C. Translation: C lies on at least on quadric Q. Now quadrics are either double
planes, or the union of two planes, or cones, or nonsingular quadrics. (They corresponds
to quadric forms of rank 1, 2, 3, and 4 respectively.) Note that C can’t lie in a plane, so Q

must be a cone or nonsingular. In particular, Q is irreducible.

Now C can’t lie on two (distinct) such quadrics, say Q and Q ′. Otherwise, as Q and Q ′

have no common components (they are irreducible and not the same!), Q ∩ Q ′ is a curve
(not necessarily reduced or irreducible). By Bezout’s theorem, it is a curve of degree 4.
Thus our curve C, being of degree 6, cannot be contained in Q ∩ Q ′.

We next consider cubics. By Riemann-Roch, K⊗3 has degK⊗3 − g + 1 = 18 − 4 + 1 = 15

sections. Now dim Sym3 Γ(C,K) has dimension
(

4+2

3

)

= 20. Thus C lies on at least a 5-
dimensional vector space of cubics. Admittedly 4 of them come from multiplying the
quadric Q by a linear form (?w + ?x + ?y + ?z). But hence there is still one cubic K whose
underlying form is not divisible by the quadric form Q (i.e. K doesn’t contain Q.) Then K

and Q share no component, so K ∩ Q is a complete intersection. By Bezout’s theorem, we
obtain a curve of degree 6. Our curve C has degree 6. This suggests that C = K ∩ Q. In
fact, K∩Q and C have the same Hilbert polynomial, and C ⊂ K∩Q. Hence C = K∩Q by
the following exercise.

Exercise. Suppose X ⊂ Y ⊂ Pn are a sequence of closed subschemes, where X and Y

have the same Hilbert polynomial. Show that X = Y. Hint: consider the exact sequence

0 → IX/Y → OY → OX → 0.

Show that if the Hilbert polynomial of IX/Y is 0, then IX/Y must be the 0 sheaf.

We now consider the converse, and who that any nonsingular complete intersection C

of a quadric surface with a cubic surface is a canonically embedded genus 4 curve. It is not
hard to check that it has genus 3 (again, using our exercises involving Hilbert functions).
Exercise. Show that OC(1) has 4 sections. (Translation: C doesn’t lie in a hyperplane.)
Hint: long exact sequences! Again, the only degree 2g − 2 invertible sheaf with g sections
is the canonical sheaf, so OC(1) ∼= KC, and C is indeed canonically embedded.
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Exercise. Conclude that nonhyperelliptic curves of genus 4 “form a family of dimension
9 = 3g − 3”. (Again, this isn’t a mathematically well-formed question. So just give a
plausibility argument.)

On to genus 5!

Exercise. Suppose C is a nonhyperelliptic genus 5 curve. The canonical curve is degree
8 in P4. Show that it lies on a three-dimensional vector space of quadrics (i.e. it lies on 3

independent quadrics). Show that a nonsingular complete intersection of 3 quadrics is a
canonical genus 5 curve.

In fact a canonical genus 5 is always a complete intersection of 3 quadrics.

Exercise. Show that the complete intersections of 3 quadrics in P4 form a family of
dimension 12 = 3g − 3.

This suggests that the nonhyperelliptic curves of genus 5 form a dimension 12 family.

So we’ve managed to understand curves of genus up to 5 (starting with 3) by thinking
of canonical curves as complete intersections. Sadly our luck has run out.

Exercise. Show that if C ⊂ Pg−1 is a canonical curve of genus g ≥ 6, then C is not a
complete intersection. (Hint: Bezout.)

4. GENUS 1

Finally, we come to the very rich case of curves of genus 1.

Note that K is an invertible sheaf of degree 2g − 2 = 0 with g = 1 section. But the only
degree 0 invertible sheaf with a section is the trivial sheaf, so we conclude that K ∼= O.

Next, note that if degL > 0, then Riemann-Roch and Serre duality gives
h0(C,L) = h0(C,L) − h0(C,K⊗ L∨) = h0(C,L) − h0(C,L∨) = degL

as an invertible sheaf L∨ of negative degree necessarily has no sections.

An elliptic curve is a genus 1 curve E with a choice of k-valued point p. (Note: it is not
the same as a genus 1 curve — some genus 1 curves have no k-valued points. However,
if k = k, then any closed point is k-valued; but still, the choice of a closed point should
always be considered part of the definition of an elliptic curve.)

Note that OE(2p) has 2 sections, so the argument given in the hyperelliptic section
shows that E admits a double cover of P1. One of the branch points is 2p: one of the
sections of OE(2p) vanishes to p of order 2, so there is a point of P1 consists of p (with
multiplicity 2). Assume now that k = k, so we can use the Riemann-Hurwitz formula.
Then the Riemann-Hurwitz formula shows that E has 4 branch points (p and three others).
Conversely, given 4 points in P1, we get a map (y2 = · · · ). This determines C (as shown
in the hyperelliptic section). Thus elliptic curves correspond to 4 points in P1, where one
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is marked p, up to automorphisms of P1. (Equivalently, by placing p at ∞, elliptic curves
correspond to 3 points in A1, up to affine maps x 7→ ax + b.)

If the three other points are temporarily labeled q1, q2, q3, there is a unique automor-
phism of P1 taking p, q1, q2 to (∞, 0, 1) respectively (as Aut P1 is three-transitive). Suppose
that q3 is taken to some number λ under this map. Notice that λ 6= 0, 1, ∞.

• If we had instead sent p, q2, q1 to (∞, 0, 1), then q3 would have been sent to 1 − λ.
• If we had instead sent p, q1, q3 to (∞, 0, 1), then q2 would have been sent to 1/λ.
• If we had instead sent p, q3, q1 to (∞, 0, 1), then q2 would have been sent to 1 −

1/λ = (λ − 1)/λ.
• If we had instead sent p, q2, q3 to (∞, 0, 1), then q2 would have been sent to 1/(1−

λ).
• If we had instead sent p, q3, q2 to (∞, 0, 1), then q2 would have been sent to 1 −

1/(1 − λ) = λ/(λ − 1).

Thus these six values (in bijection with S3) yield the same elliptic curve, and this elliptic
curve will (upon choosing an ordering of the other 3 branch points) yield one of these six
values.

Thus the elliptic curves over k corresponds to k-valued points of P1 − {0, 1, λ}, modulo
the action of S3 on λ given above. Consider the subfield of k(λ) fixed by S3. By Luroth’s
theorem, it must be of the form k(j) for some j ∈ k(λ). Note that λ should satisfy a sextic
polynomial over k(λ), as for each j-invariant, there are six values of λ in general.

At this point I should just give you j:

j = 28 (λ2 − λ + 1)3

λ2(λ − 1)2
.

But this begs the question: where did this formula come from? How did someone think
of it?

Far better is to guess what j is. We want to come up with some j(λ) such that j(λ) =

j(1/λ) = · · · . Hence we want some expression in λ that is invariant under this S3-action.
A silly choice would be the product of the six numbers λ(1/λ) · · · as this is 1.

A better idea is to add them all together. Unfortunately, if you do this, you’ll get 3.
(Here is one reason to realize this can’t work: if you look at the sum, you’ll realize that
you’ll get something of the form “degree at most 3” divided by “degree at most 2” (before
cancellation). Then if j ′ = p(λ)/q(λ), then λ satisfies (at most) a cubic over j. But we said
that λ should satisfy a sextic over j ′. The only way we avoid a contradiction is if j ′ ∈ k.

Our next attempt is to add up the six squares. When you do this by hand (it isn’t hard),
you get

j ′′ =
2λ6 − 6λ5 + 9λ4 − 8λ3 + 9λ2 − 6λ + 2

λ2(λ − 1)2
.
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This works just fine: k(j) ∼= k(j ′′). If you really want to make sure that I’m not deceiving
you, you can check (again by hand) that

2j/28 =
2λ6 − 6λ5 + 12λ4 − 14λ3 + 12λ2 − 6λ + 2

λ2(λ − 1)2
.

The difference is 3.
E-mail address: vakil@math.stanford.edu
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