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Last day: The Leray spectral sequence. Beginning fun with curves: ΩC, and the
Riemann-Hurwitz formula.

Today: More fun with curves: Serre duality, criterion for closed immersion, series of
useful remarks, curves of genus 0 and 2

1. LAST DAY

Last day we began to talk about curves over a field k. Our standing assumptions will
be that a curve C is projective, geometrically integral and nonsingular over a field k.

(People happy to work over algebraically closed fields can continue to ignore the ad-
verb “geometrically”.)

I’m in the process of telling you a few facts that we will prove next quarter. We will use
these facts to prove lots of things about curves.

Last day I defined ΩC, sheaf of differentials on C. I really should have called it ΩC/k ,
to make clear that this sheaf on C depends on the structure morphism C → k. I stated
that ΩC/k is an invertible sheaf, and told you that we will soon see that has degree
deg ΩC = 2gc − 2 . I stated that differentials pullback under covers f : C → C ′ (i.e. that

there is a morphism f∗ΩC ′/k → ΩC/k), and if we are in characteristic 0, then this yields an
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inclusion of invertible sheaves, which yields 0 → f∗ΩC ′ → ΩC → R → 0, where R cor-
responds to the ramification divisor on C, which keeps track of the branching of C → C ′.
From this I claimed that we will deduce the Riemann-Hurwitz formula

2gC − 2 = d(2gC ′ − 2) + deg R

1.1. Serre duality. (We are not requiring k to be algebraically closed.) In general, nonsin-
gular varieties will have a special invertible sheaf KX which is the determinant of ΩX. This
invertible sheaf is called the canonical bundle, and will later be defined in much greater
generality. In our case, X = C is a curve, so KC = ΩC, and from here on in, we’ll use
KC instead of ΩC. The reason it is called the dualizing sheaf is because it arises in Serre
duality. Serre duality states that H1(C,K) ∼= k, or more precisely that there is a trace mor-
phism H1(C,K) → k that is an isomorphism. (Example: if C = P1, then we indeed have
h1(P1,O(−2)) = 1.)

Further, for any coherent sheaf F , the natural map

H0(C,F) ⊗k H1(C,K⊗ F∨) → H1(C,K)

is a perfect pairing. Thus in particular, h0(C,F) = h1(C,K ⊗ F∨). Recall we defined the
arithmetic genus of a curve to be h1(C,OC). Then h0(C,K) = g as well.

Recall that Riemann-Roch for a invertible sheaf L states that
h0(C,L) − h1(C,L) = degL − g + 1.

Applying this to L = K, we get
degK = h0(C,K)−h1(C,K)+g− 1 = h1(C,O)−h0(C,O)+g− 1 = g− 1+g− 1 = 2g− 2

as promised earlier.

1.2. A criterion for when a morphism is a closed immersion. We’ll also need a criterion
for when something is a closed immersion. To help set it up, let’s observe some facts
about closed immersions. Suppose f : X → Y is a closed immersion. Then f is projective,
and it is injective on points. This is not enough to ensure that it is a closed immersion,
as the example of the normalization of the cusp shows (Figure 1). Another example is
the Frobenius morphism from A1 to A1, given by k[t] → k[u], u → tp, where k has
characteristic p.

The additional information you need is that the tangent map is an isomorphism at all
closed points. (Exercise: show this is false in those two examples.)

1.3. Theorem. — Suppose k is an algebraically closed field, and f : X → Y is a projective morphism
of finite-type k-schemes that is injective on closed points and injective on tangent vectors of closed
points. Then f is a closed immersion.

The example of Spec C → Spec R shows that we need the hypothesis that k is alge-
braically closed.
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FIGURE 1. Projective morphisms that are injective on points need not be
closed immersions

FIGURE 2. We need the projective hypothesis in Theorem 1.3

We need the hypothesis of projective morphism, as shown by the following example
(which was described at the blackboard, see Figure 2). We map A

1 to the plane, so that its
image is a curve with one node. We then consider the morphism we get by discarding one
of the preimages of the node. Then this morphism is an injection on points, and is also
injective on tangent vectors, but it is not a closed immersion. (In the world of differential
geometry, this fails to be an embedding because the map doesn’t give a homeomorphism
onto its image.)

Suppose f(p) = q, where p and q are closed points. We will use the hypothesis that X

and Y are k-schemes where k is algebraically closed at only one point of the argument:
that the map induces an isomorphism of residue fields at p and q.
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(For those of you who are allergic to algebraically closed fields: still pay attention, as
we’ll use this to prove things about curves over k where k is not necessarily algebraically
closed.)

This is the hardest result of today. We will kill the problem in old-school French style:
death by a thousand cuts.

Proof. We may assume that Y is affine, say Spec B.

I next claim that f has finite fibers, not just finite fibers above closed points: the fiber
dimension for projective morphisms is upper-semicontinuous (Class 32 Exercise 2.3), so
the locus where the fiber dimension is at least 1 is a closed subset, so if it is non-empty,
it must contain a closed point of Y. Thus the fiber over any point is a dimension 0 finite
type scheme over that point, hence a finite set.

Hence f is a projective morphism with finite fibers, thus affine, and even finite (Class
32 Corollary 2.4).

Thus X is affine too, say Spec A, and f corresponds to a ring morphism B → A. We wish
to show that this is a surjection of rings, or (equivalently) of B-modules. We will show
that for any maximal ideal n of B, Bn → An is a surjection of Bn-modules. (This will show
that B → A is a surjection. Here is why: if K is the cokernel, so B → A → K → 0, then
we wish to show that K = 0. Now A is a finitely generated B-module, so K is as well,
being a homomorphic image of A. Thus Supp K is a closed set. If K 6= 0, then Supp K is
non-empty, and hence contains a closed point [n]. Then Kn 6= 0, so from the exact sequence
Bn → An → Kn → 0, Bn → An is not a surjection.)

If An = 0, then clearly Bn surjects onto An, so assume otherwise. I claim that An =

A⊗B Bn is a local ring. Proof: Spec An → Spec Bn is a finite morphism (as it is obtained by
base change from Spec A → Spec B), so we can use the going-up theorem. An 6= 0, so An

has a prime ideal. Any point p of Spec An maps to some point of Spec Bn, which has [n] in
its closure. Thus there is a point q in the closure of p that maps to [n]. But there is only
one point of Spec An mapping to [n], which we denote [m]. Thus we have shown that m

contains all other prime ideals of Spec An, so An is a local ring.

Injectivity of tangent vectors means surjectivity of cotangent vectors, i.e. n/n2
→ m/m2

is a surjection, i.e. n → m/m2 is a surjection. Claim: nAn = mAn. Reason: By Nakayama’s
lemma for the local ring An and the An-module mAn, we conclude that nAn = mAn.

Next apply Nakayama’s Lemma to the Bn-module An. The element 1 ∈ An gives a
generator for An/nAn = An/mAn, which equals Bn/nBn (as both equal k), so we conclude
that 1 also generates An as a Bn-module as desired. �

1.4. Exercise. Use this to show that the dth Veronese morphism from Pn
k , corresponding to

the complete linear series (see Class 22) |OP
n
k
(d)|, is a closed immersion. Do the same for

the Segre morphism from P
m
k ×Spec k P

n
k . (This is just for practice for using this criterion.
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This is a weaker result than we had before; we’ve earlier checked this over an arbitrary
base ring, and we are now checking it only over algebraically closed fields.)

2. A SERIES OF USEFUL REMARKS

Suppose now that L is an invertible sheaf on a curve C (which as always in this dis-
cussion is projective, geometrically integral and nonsingular, over a field k which is not
necessarily algebraically closed). I’ll give a series of small useful remarks that we will
soon use to great effect.

2.1. h0(C,L) = 0 if degL < 0. Reason: if there is a non-zero section, then the degree of
L can be interpreted as the number of zeros minus the number of poles. But there are no
poles, so this would have to be non-negative. A slight refinement gives:

2.2. h0(C,L) = 0 or 1 if degL = 0. This is because if there is a section, then the degree
of L is the number of zeros minus the number of poles. Then as there are no poles, there
can be no zeros. Thus the section (call it s) vanishes nowhere, and gives a trivialization
for the invertible sheaf. (Recall how this works: we have a natural bijection for any open
set Γ(U,L) ↔ Γ(U,OU), where the map from left to right is s ′ 7→ s ′/s, and the map from
right to left is f 7→ sf.) Thus if there is a section, L ∼= O. But we’ve already checked that
for a geometrically integral and nonsingular curve C, h0(C,L) = 1.

2.3. Suppose p is any closed point of degree 1. (In other words, the residue field of p is k.)
Then h0(C,L) − h0(C,L(−p)) = 0 or 1. Reason: consider 0 → OC(−p) → OC → Op → 0,
tensor with L (this is exact as L is locally free) to get

0 → L(−p) → L → L|p → 0.

Then h0(C,L|p) = 1, so as the long exact sequence of cohomology starts off

0 → H0(C,L(−p)) → H0(C,L) → H0(C,L|p),

we are done.

2.4. Suppose for this remark that k is algebraically closed. (In particular, all closed points
have degree 1 over k.) Then if h0(C,L) − h0(C,L(−p)) = 1 for all closed points p, then
L is base-point-free, and hence induces a morphism from C to projective space. (Note
that L has a finite-dimensional vector space of sections: all cohomology groups of all
coherent sheaves on a projective k-scheme are finite-dimensional.) Reason: given any p,
our equality shows that there exists a section of L that does not vanish at p.

2.5. Next, suppose p and q are distinct points of degree 1. Then h0(C,L) − h0(C,L(−p −

q)) = 0, 1, or 2 (by repeating the argument of 2.3 twice). If h0(C,L)−h0(C,L(−p−q)) = 2,
then necessarily

(1) h0(C,L) = h0(C,L(−p)) + 1 = h0(C,L(−q)) + 1 = h0(C,L(−p − q)) + 2.
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I claim that the linear system L separates points p and q, by which I mean that the corre-
sponding map f to projective space satisfies f(p) 6= f(q). Reason: there is a hyperplane of
projective space passing through p but not passing through q, or equivalently, there is a
section of L vanishing at p but not vanishing at q. This is because of the last equality in
(1).

2.6. By the same argument as above, if p is a point of degree 1, then h0(C,L)−h0(C,L(−2p)) =

0, 1, or 2. I claim that if this is 2, then map corresponds to L (which is already seen to be
base-point-free from the above) separates the tangent vectors at p. To show this, I need
to show that the cotangent map is surjective. To show surjectivity onto a one-dimensional
vector space, I just need to show that the map is non-zero. So I need to give a function on
the target vanishing at the image of p that pulls back to a function that vanishes at p to
order 1 but not 2. In other words, I want a section of L vanishing at p to order 1 but not 2.
But that is the content of the statement h0(C,L(−p)) − h0(C,L(−2p)) = 1.

2.7. Combining some of our previous comments: suppose C is a curve over an algebraically
closed field k, and L is an invertible sheaf such that for all closed points p and q, not
necessarily distinct, h0(C,L) − h0(C,L(−p − q)) = 2, then L gives a closed immersion into
projective space, as it separates points and tangent vectors, by Theorem 1.3.

2.8. We now bring in Serre duality. I claim that degL > 2g − 2 implies

h0(C,L) = degL − g − 1.

This is important — remember this! Reason: h1(C,L) = h0(C,K ⊗ L∨); but K ⊗ L∨ has
negative degree (as K has degree 2g − 2), and thus this invertible sheaf has no sections.
Thus Riemann-Roch gives us the desired result.

Exercise. Suppose L is a degree 2g−2 invertible sheaf. Show that it has g−1 or g sections,
and it has g sections if and only if L ∼= K.

2.9. We now come to our most important conclusion. Thus if k is algebraically closed,
then degL ≥ 2g implies that L is basepoint free (and hence determines a morphism to
projective space). Also, degL ≥ 2g + 1 implies that this is in fact a closed immersion.
Remember this! [k need not be algebraically closed.]

2.10. I now claim (for the people who like fields that are not algebraically closed) that the
previous remark holds true even if k is not algebraically closed. Here is why: suppose C is our
curve, and Ck := C⊗kk is the base change to the algebraic closure (which we are assuming
is connected and nonsingular), with π : Ck → C (which is an affine morphism, as it is
obtained by base change from the affine morphism Spec k → Spec k). Then H0(C,L)⊗kk ∼=
H0(Ck, π

∗L) for reasons I explained last day (see the first exercise on the class 33 notes,
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and also on problem set 15).
Ck

��

π
// C

��

Spec k // Spec k

Let s0, . . . , sn be a basis for the k-vector space H0(C,L); they give a basis for the k-vector
space H0(Ck, π

∗L). If L has degree at least 2g, then these sections have no common zeros
on Ck; but this means that they have no common zeros on C. If L has degree at least
2g+1, then these sections give a closed immersion Ck ↪→ P

n
k

. Then I claim that f : C → P
n
k

(given by the same sections) is also a closed immersion. Reason: we can check this on
each affine open subset U = Spec A ⊂ P

n
k . Now f has finite fibers, and is projective,

hence is a finite morphism (and in particular affine). Let Spec B = f−1(U). We wonder if
A → B is a surjection of rings. But we know that this is true upon base changing by k:
A ⊗k k → B ⊗k k is surjective. So we are done.

We’re now ready to take these facts and go to the races.

3. GENUS 0

3.1. Claim. — Suppose C is genus 0, and C has a k-valued point. Then C ∼= P
1
k.

Of course C automatically has a k-point if k is algebraically closed. Thus we see that all
genus 0 (integral, nonsingular) curves over an algebraically closed field are isomorphic to
P1.

If k is not algebraically closed, then C needn’t have a k-valued point: witness x2 + y2 +

z2 = 0 in P2
R

. We have already observed that this curve is not isomorphic to P1
R

, because it
doesn’t have an R-valued point.

Proof. Let p be the point, and consider L = O(p). Then degL = 1, so we can apply
what we know above: first of all, h0(C,L) = 2, and second of all, these two sections
give a closed immersion in to P

1
k. But the only closed immersion of a curve into P

1
k is the

isomorphism! �

As a fun bonus, we see that the weird real curve x2 +y2 + z2 = 0 in P2
R

has no divisors of
degree 1 over R; otherwise, we could just apply the above argument to the corresponding
line bundle.

Our weird curve shows us that over a non-algebraically closed field, there can be genus
0 curves that are not isomorphic to P1

k. The next result lets us get our hands on them as
well.

3.2. Claim. — All genus 0 curves can be described as conics in P2
k.
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Proof. Any genus 0 curve has a degree −2 line bundle — the canonical bundle K. Thus
any genus 0 curve has a degree 2 line bundle: L = K∨. We apply our machinery to this
bundle: h0(C,L) = 3 ≥ 2g + 1, so this line bundle gives a closed immersion into P2.
[This proof is not complete if k = k, as the criterion we are using requires this hypothesis.
Exercise: Use §2.10 to give a complete proof.] �

3.3. Exercise. Suppose C is a genus 0 curve (projective, geometrically integral and non-
singular). Show that C has a point of degree at most 2.

We will use the following result later.

3.4. Claim. — Suppose C is not isomorphic to P1
k (with no restrictions on the genus of C), and L

is an invertible sheaf of degree 1. Then h0(C,L) < 2.

Proof. Otherwise, let s1 and s2 be two (independent) sections. As the divisor of zeros of
si is the degree of L, each vanishes at a single point pi (to order 1). But p1 6= p2 (or else
s1/s2 has no poles or zeros, i.e. is a constant function, i.e. s1 and s2 are dependent). Thus
we get a map C → P1 which is basepoint free. This is a finite degree 1 map of nonsingular
curves, which induces a degree 1 extension of function fields, i.e. an isomorphism of
function fields, which means that the curves are isomorphic. But we assumed that C is
not isomorphic to P1

k. �

4. GENUS ≥ 2

It might make most sense to jump to genus 1 at this point, but the theory of elliptic
curves is especially rich and beautiful, so I’ll leave it for the end.

In general, the curves have quite different behaviors (topologically, arithmetically, ge-
ometrically) depending on whether g = 0, g = 1, or g > 2. This trichotomy extends
to varieties of higher dimension. I gave a very brief discussion of this trichotomy for
curves. For example, arithmetically, genus 0 curves can have lots and lots of points, genus
1 curves can have lots of points, and by Faltings’ Theorem (Mordell’s Conjecture) any
curve of genus at least 2 has at most finitely many points. (Thus we knew before Wiles
that xn + yn = zn in P2 has at most finitely many solutions for n ≥ 4, as such curves have
genus

(

n−1

2

)

> 1.) Geometrically, Riemann surfaces of genus 0 are positively curved, Rie-
mann surfaces of genus 1 are flat, and Riemann surfaces of genus 1 are negatively curved.
We will soon see that curves of genus at least 2 have finite automorphism groups, while
curves of genus 1 have some automorphisms (a one-dimensional family), and (we’ve seen
earlier) curves of genus 1 (over an algebraically closed field) have a three-dimensional au-
tomorphism group.

4.1. Genus 2. Fix a curve C of genus 2. Then K is degree 2, and has 2 sections. I claim that
K is base-point-free. Otherwise, if p is a base point, then K(−p) is a degree 1 invertible
sheaf with 2 sections, and we just showed (Claim 3.4) that this is impossible. Thus we

8



have a double cover of P1. Conversely, any double cover C → P1 arises from a degree
2 invertible sheaf with at least 2 sections, so by one of our useful facts, if g(C) = 2, this
invertible sheaf must be the canonical bundle (as the only degree 2 invertible sheaf on a
genus 2 curve with at least 2 sections is KC). Hence we have a natural bijection between
genus 2 curves and genus 2 double covers of P1.

We now specialize to the case where k = k, and the characteristic of k is 0. (All we will
need, once we actually prove the Riemann-Hurwitz formula, is that the characteristic
be distinct from 2.) Then the Riemann-Hurwitz formula shows that the cover is branched
over 6 points. We will see next day that a double cover is determined by its branch points.
Hence genus 2 curves are in bijection with unordered sextuples of points on P1. There is
thus a 3-dimensional family of genus 2 curves — we have found them all!

(This is still a little imprecise; we would like to say that the moduli space of genus 2

curves is of dimension 3, but we haven’t defined what we mean by moduli space!)

More generally, we may see next week (admittedly informally) that if g > 1, the curves
of genus g “form a family” of dimension 3g − 3. (If we knew the meaning of “moduli
space”, we would say that the dimension of the moduli space of genus g curves Mg is
3g − 3.) What goes wrong in genus 0 and 1? The following table (as yet unproved by us!)
might help.

genus dimension of family of curves dimension of automorphism group of curve
0 0 3

1 1 1

2 3 0

3 6 0

4 9 0

5 12 0
... ... ...

You can probably see the pattern. This is a little like the behavior of the Hilbert function:
the dimension of the moduli space is “eventually polynomial”, so there is something that
is better-behaved that is an alternating sum, and once the genus is sufficiently high, the
“error term” becomes zero. The interesting question then becomes: why is the “right”
notion the second column of the table minus the third? (In fact the second column is
h1(C, TC), where TC is the tangent bundle — not yet defined — and the third column is
h0(C, TC). All other cohomology groups of the tangent bundle vanish by dimensional
vanishing.)
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