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Last day: Applications of higher pushforwards; crash course in spectral sequences.

Today: The Leray spectral sequence. Beginning fun with curves: the Riemann-
Hurwitz formula.

Before I start, here is one small comment I should have made earlier. In the notation
Rjf∗F for higher pushforward sheaves, the “R” stands for “right derived functor”, and
“corresponds” to the fact that we get a long exact sequence in cohomology extending
to the right (from the 0th terms). More generally, next quarter we will see that in good
circumstances, if we have a left-exact functor, there may be a long exact sequence going
off to the right, in terms of right derived functors. Similarly, if we have a right-exact
functor (e.g. if M is an A-module, then ⊗AM is a right-exact functor from the category of
A-modules to itself), there may be a long exact sequence going off to the left, in terms of
left derived functors.

Here is another exercise that I should have asked earlier. I have also now included it in
the class 32 notes (in section 1).

Exercise. Suppose that X is a quasicompact separated k-scheme, where k is a field. Sup-
pose F is a quasicoherent sheaf on X. Let Xk = X ×Spec k Spec k, and f : Xk → X the
projection. Describe a natural isomorphism Hi(X,F) ⊗k k → Hi(Xk, f

∗F). Recall that a
k-scheme X is geometrically integral if Xk is integral. Show that if X is geometrically integral
and projective, then H0(X,OX) ∼= k. (This is a clue that P1

C
is not a geometrically integral

R-scheme.)
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1. LERAY SPECTRAL SEQUENCE
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with f and g (and hence h) quasicompact and separated. Suppose F is a quasicoherent
sheaf on X. The Leray spectral sequence lets us find out about the higher pushforwards
of h in terms of the higher pushforwards under g of the higher pushforwards under f.

1.1. Theorem (Leray spectral sequence). — There is a spectral sequence whose E
p,q
2 -term is

Rjg∗(R
if∗F), abutting to Ri+jh∗F .

An important special case is if Z = Spec k, or Z is some other base ring. Then this
gives us handle on the cohomology of F on X in terms of the cohomology of its higher
pushforwards to Y.

Proof. We assume Z is an affine ring, say Spec A. Our construction will be “natural” and
will hence glue. (At worst, we you can check that it behaves well under localization.)

Fix a finite affine cover of X, Ui. Fix a finite affine cover of Y, Vj. Create a double
complex

Ea,b
0 = ⊕|I|=a+1,|J|=b+1F(UI ∩ π−1VJ)

for a, b ≥ 0, with obvious Cech differential maps. By exercise 15 on problem set 11 (class
25, exercise 1.31), UI ∩ π−1VJ is affine (for all I, J).

Let’s choose the filtration that corresponds to first taking the arrow in the vertical (V)
direction. For each I, we’ll get a Cech covering of UI. The Cech cohomology of an affine is
trivial except for H0, so the E1 term will be 0 except when j = 0. There, we’ll get ⊕F(UI).
Then the E2 term will be E

p,q
2 = Hp(X,F) = Γ(Z, Rph∗F) if q = 0 and 0 otherwise, and it

will converge there.

Let’s next choose the filtration that corresponds to first taking the arrow in the horizon-
tal (U) direction. For each VJ, we will get a Cech covering of π−1VJ. The entries of E1 will
thus be ⊕JH

i(f−1Vj,F) = ⊕jΓ(Vj, R
iπ∗F). Thus E2 will be as advertised in the statement

of Leray. �

Here are some useful examples.

Consider hi(Pm
k ×k Pn

k ,OPm
k
×kPn

k
). We get 0 unless i = 0, in which case we get 1. (The

same argument shows that hi(Pm
A ×A Pn

A,OPm
A
×APn

A
) ∼= A if i = 0, and 0 otherwise.) You

should make this precise:
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Exercise. Suppose Y is any scheme, and π : Pn
Y → Y is the trivial projective bundle over

Y. Show that π∗OPn
Y

∼= OY . More generally, show that Rjπ∗O(m) is a finite rank free sheaf
on Y, and is 0 if j 6= 0, n. Find the rank otherwise.

More generally, let’s consider Hi(Pm
k ×k Pn

k ,O(a, b)). I claim that for each (a, b) at most
one cohomology group is non-trivial, and it will be i = 0 if a, b ≥ 0; i = m + n if
a ≤ −m − 1, b ≤ −n − 1; i = m if a ≥ 0, b ≤ −n − 1, and i = n if a ≤ −m − 1, b = 0. I
attempted to show this to you in a special case, in the hope that you would see how the
argument goes. I tried to show that hi(P2

k ×k P1
k,O(−4, 1)) is 6 if i = 2 and 0 otherwise.

The following exercise will help you see if you understood this.

Exercise. Let A be any ring. Suppose a is a negative integer and b is a positive integer.
Show that Hi(Pm

A ×A Pn
A,O(a, b)) is 0 unless i = m, in which case it is a free A-module.

Find the rank of this free A-module. (Hint: Use the previous exercise, and the projection
formula, which was Exercise 1.3 of class 32, and exercise 17 of problem set 14.)

We can now find curves of any (non-negative) genus, over any algebraically closed
field. An integral projective nonsingular curve over k is hyperelliptic if admits a finite
degree 2 morphism (or “cover”) of P1.

1.2. Exercise. (a) Find the genus of a curve in class (2, n) on P1
k ×k P1

k. (A curve in class
(2, n) is any effective Cartier divisor corresponding to invertible sheaf O(2, n). Equiva-
lently, it is a curve whose ideal sheaf is isomorphic to O(−2, −n). Equivalently, it is a
curve cut out by a non-zero form of bidegree (2, n).)
(b) Suppose for convenience that k is algebraically closed of characteristic not 2. Show
that there exists an integral nonsingular curve in class (2, n) on P

1
k × P

1
k for each n > 0.

1.3. Exercise. Suppose X and Y are projective k-schemes, and F and G are coherent
sheaves on X and Y respectively. Recall that if π1 : X × Y → X and π2 : X × Y → Y are
the two projections, then F � G := π∗

1F ⊗ π∗

2G. Prove the following, adding additional
hypotheses if you find them necessary.
(a) Show that H0(X × Y,F � G) = H0(X,F) ⊗ H0(Y,G).
(b) Show that HdimX+dimY(X × Y,F � G) = Hdim X(X,F)⊗k HdimY(Y,G).
(c) Show that χ(X × Y,F � G) = χ(X,F)χ(Y,G).

I suspect that this Leray spectral sequence converges in this case at E2, so that hn(X ×

Y,F � G) =
∑

i+j=n hi(X,F)hj(Y,G). Or if this is false, I’d like to see a counterexample. It
might even be true that

Hn(X × Y,F � G) = ⊕i+j=nHi(X,F) ⊗ Hj(Y,G).

2. FUN WITH CURVES

We already know enough to study curves in a great deal of detail, so this seems like a
good way to end this quarter. We get much more mileage if we have a few facts involving
differentials, so I’ll introduce these facts, and take them as a black box. The actual black
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boxes we’ll need are quite small, but I want to tell you some of the background behind
them.

For this topic, we will assume that all curves are projective geometrically integral non-
singular curves over a field k. We will sometimes add the hypothesis that k is alge-
braically closed.

Most people are happy with working over algebraically closed fields, and all of you
should ignore the adverb “geometrically” in the previous paragraph. For those inter-
ested in non-algebraically closed fields, an example of a curve that is integral but not
geometrically integral is P1

C
over R. Upon base change to the algebraic closure C of R, this

curve has two components.

2.1. Differentials on curves. There is a sheaf of differentials on a curve C, denoted ΩC,
which is an invertible sheaf. (In general, nonsingular k-varieties of dimension d will
have a sheaf of differentials over k that will be locally free of rank k. And differentials
will be defined in vastly more generality.) We will soon see that this invertible sheaf has
degree equal to twice the genus minus 2: deg ΩC = 2gc − 2 . For example, if C = P1, then
ΩC

∼= O(−2).

Differentials pull back: any surjective morphism of curves f : C → C ′ induces a natural
map f∗ΩC ′ → ΩC.

2.2. The Riemann-Hurwitz formula. Whenever we invoke this formula (in this section),
we will assume that k is algebraically closed and characteristic 0. These conditions aren’t
necessary, but save us some extra hypotheses. Suppose f : C → C ′ is a dominant mor-
phism. Then it turns out f∗ΩC ′ ↪→ ΩC is an inclusion of invertible sheaves. (This is a
case when inclusions of invertible sheaves does not mean what people normally mean by
inclusion of line bundles, which are always isomorphisms.) Its cokernel is supported in
dimension 0:

0 → f∗ΩC ′ → ΩC → [dimension 0] → 0.

The divisor R corresponding to those points (with multiplicity), is called the ramification
divisor.

We can study this in local coordinates. We don’t have the technology to describe this
precisely yet, but you might still find this believable. If the map at q ∈ C ′ looks like
u 7→ un = t, then dt 7→ d(un) = nun−1du, so dt when pulled back vanishes to order
n − 1. Thus branching of this sort u 7→ un contributes n − 1 to the ramification divisor.
(More correctly, we should look at the map of Spec’s of discrete valuation rings, and then
u is a uniformizer for the stalk at q, and t is a uniformizer for the stalk at f(q), and t is
actually a unit times un. But the same argument works.)

Now in a recent exercise on pullbacks of invertible sheaves under maps of curves, we
know that a degree of the pullback of an invertible sheaf is the degree of the map times
the degree of the original invertible sheaf. Thus if d is the degree of the cover, deg ΩC =

4



d deg ΩC ′ + deg R. Conclusion: if C → C ′ is a degree d cover of curves, then

2gc − 2 = d(2gC ′ − 2) + deg R

Here are some applications.

Example. When I drew a sample branched cover of one complex curve by another, I
showed a genus 2 curve covering a genus 3 curve. Show that this is impossible. (Hint:
deg R ≥ 0.)

Example: Hyperelliptic curves. Hyperelliptic curves are curves that are double covers of
P1

k. If they are genus g, then they are branched over 2g + 2 points, as each ramification
can happen to order only 1. (Caution: we are in characteristic 0!) You may already have
heard about genus 1 complex curves double covering P1, branched over 4 points.

Application 1. First of all, the degree of R is even: any cover of a curve must be branched
over an even number of points (counted with multiplicity).

Application 2. The only connected unbranched cover of P1
k is the isomorphism. Reason:

if deg R = 0, then we have 2 − 2gC = 2d with d ≥ 1 and gc ≥ 0, from which d = 1 and
gC = 0.

Application 3: Luroth’s theorem. Suppose g(C) = 0. Then from the Riemann-Hurwitz
formula, g(C ′) = 0. (Otherwise, if gC ′ were at least 1, then the right side of the Riemann-
Hurwitz formula would be non-negative, and thus couldn’t be −2, which is the left side.
This has a non-obvious algebraic consequence, by our identification of covers of curves
with field extensions (class 28 Theorem 1.5). Hence all subfields of k(x) containing k are
of the form k(y) where y = f(x). (Here we have the hypothesis where k is algebraically
closed. We’ll patch that later.) Kirsten said that an algebraic proof was given in Math 210.

E-mail address: vakil@math.stanford.edu

5


