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1. APPLICATION OF COHOMOLOGY: HILBERT POLYNOMIALS AND HILBERT FUNCTIONS;
DEGREES

We’re in the process of seeing applications of cohomology. In this section, we will
work over a field k. We defined hi(X,F) := dimk Hi(X,F). If F is a coherent sheaf on a
projective k-scheme X, we defined the Euler characteristic

χ(X,F) =

dim X∑

i=0

(−1)ihi(X,F).

We will see repeatedly here and later that Euler characteristics behave better than indi-
vidual cohomology groups.

If F is a coherent sheaf on X, define the Hilbert function of F :

hF(m) := h0(X,F(m)).

The Hilbert function of X is the Hilbert function of the structure sheaf OX. The ancients
were aware that the Hilbert function is “eventually polynomial”, i.e. for large enough
n, it agrees with some polynomial, called the Hilbert polynomial (and denoted pF(m) or
pX(m)). In modern language, we expect that this is because the Euler characteristic should
be a polynomial, and that for m � 0, the higher cohomology vanishes. This is indeed the
case, as we now verify.
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1.1. Theorem. — If F is a coherent sheaf on a projective k-scheme X ↪→ Pn

k
, for m � 0,

h0(X,F(m)) is a polynomial of degree equal to the dimension of the support of F . In particular,
for m � 0, h0(X,OX(m)) is polynomial with degree = dim X.

(Here OX(m) is the restriction or pullback of OP
n

k
(1).)

I realize now that I will use the notion of associated primes of a module, not just of a
ring. I think I only discussed associated primes of a ring last quarter, because I had hoped
not to need this slightly more general case. Now I really don’t need it, and if you want to
ignore this issue, you can just prove the second half of the theorem, which is all we will
use anyway. But the argument carries through with no change, so please follow along if
you can.

Proof. For m � 0, hi(X,F(m)) = 0 by Serre vanishing (class 29 Theorem 4.2(ii)), so instead
we will prove that for all m, χ(X,F(m)) is a polynomial of degree equal to the dimension
of the support of F . Define pF(m) = χ(X,F(m)); we’ll show that pF(m) is a polynomial
of the desired degree.

Our approach will be a little weird. We’ll have two steps, and they will be very similar.
If you can streamline, please let me know.

Step 1. We first show that for all n, if F is scheme-theoretically supported a linear
subspace of dimension k (i.e. F is the pushforward of a coherent sheaf on some linear
subspace of dimension k), then pF(m) is a polynomial of degree at most k. (In particular,
for any coherent F , pF(m) is a polynomial of degree at most n.)

We prove this by induction on the dimension of the support. I’ll leave the base case
k = 0 (or better yet, k = −1) to you (exercise). Suppose now that X is supported in a
linear space Λ of dimension k, and we know the result for all k ′ < k. Then let x = 0 be
a hyperplane not containing Λ, so Λ ′ = dim(x = 0) ∩ Λ = k − 1. Then we have an exact
sequence

(1) 0 // K // F
×x

// F(1) // K ′ // 0

where K (resp. K ′) is the kernel (resp. cokernel) of the map ×x. Notice that K and K ′ are
both supported on Λ ′. (This corresponds to an algebraic fact: over an affine open Spec A,
the exact sequence is

0 // K // M
×x

// M // K ′ // 0

and both K = ker(×x) = (0 : x) and K ′ ∼= M/xM are (A/x)-modules.) Twist (1) by O(m)

and take Euler-characteristics to obtain pF(m + 1) − pF(m) = pK ′(m) − pK(m). By the
inductive hypothesis, the right side of this equation is a polynomial of degree at most
k − 1. Hence (by an easy induction) p(m) is a polynomial of degree at most k.

Step 2. We’ll now show that the degree of this polynomial is precisely dim SuppF . As F
is a coherent sheaf on a Noetherian scheme, it has a finite number of associated points, so
we can find a hypersurface H = (f = 0) not containing any of the associated points. (This
is that problem from last quarter that we have been repeatedly using recently: problem
24(c) on set 5, which was exercise 1.19 in the class 11 notes.) In particular, dim H∩ SuppF
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is strictly less than dim SuppF , and in fact one less by Krull’s Principal Ideal Theorem.
Let d = deg f. Then I claim that ×f : F(−d) → F is an inclusion. Indeed, on any affine
open set, the map is of the form ×f : M → M (where f is the restriction of f to this open
set), and the fact that f = 0 contains no associated points means that this is an injection of
modules. (Remember that those ring elements annihilating elements of M are precisely
the associated primes, and f is contained in none of them.) Then we have

0 → F(−d) → F → K ′ → 0.

Twisting by O(m) yields
0 → F(m − d) → F(m) → K ′(m) → 0.

Taking Euler characteristics gives pF(m)−pF (m−d) = pK ′(m). Now by step 1, we know
that pF(m) is a polynomial. Also, by our inductive hypothesis, and Exercise 1.2 below,
the right side is a polynomial of degree of precisely dim SuppF − 1. Hence p(m) is a
polynomial of degree dim SuppF . �

1.2. Exercise. Consider the short exact sequence of A-modules 0 // M
×f

// M // K ′ // 0 .
Show that Supp K ′ = Supp(M) ∩ Supp(A/f).

Notice that we needed the first part of the proof to ensure that pF(m) is in fact a poly-
nomial; otherwise, the second part would just show that pF(m) is just a polynomial when
m is fixed modulo d.

(For experts: here is a different way to avoid having two similar steps. If k is an infinite
field, e.g. if it were algebraically closed, then we could find a hypersurface as in step 2
of degree 1, using that problem from last quarter mentioned in the proof. So what to do
if k is not infinite? Note that if you have a complex of k-vector spaces, and you take its
cohomology, and then tensor with k, you get the same thing as if you tensor first, and
then take the cohomology. By this trick, we can assume that k is algebraically closed. In
fancy language: we have taken a faithfully flat base extension. I won’t define what this
means here; it will turn up early in the third quarter.)

Example 1. pPn(m) =
(

m+n

n

)

, where we interpret this as the polynomial (m + 1) · · · (m +

n)/n!.

Example 2. Suppose H is a degree d hypersurface in Pn. Then from
0 → OPn(−d) → OPn → OH → 0,

we have
pH(m) = pPn(m) − pPn(m − d) =

(

m + n

n

)

−

(

m + n − d

n

)

.

1.3. Exercise. Show that the twisted cubic (in P3) has Hilbert polynomial 3m + 1.

1.4. Exercise. Find the Hilbert polynomial for the dth Veronese embedding of Pn (i.e. the
closed immersion of Pn in a bigger projective space by way of the line bundle O(d)).
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From the Hilbert polynomial, we can extract many invariants, of which two are par-
ticularly important. The first is the degree. Classically, the degree of a complex projective
variety of dimension n was defined as follows. We slice the variety with n generally cho-
sen hyperplane. Then the intersection will be a finite number of points. The degree is
this number of points. Of course, this requires showing all sorts of things. Instead, we
will define the degree of a projective k-scheme of dimension n to be leading coefficient of the
Hilbert polynomial (the coefficient of mn) times n!.

For example, the degree of Pn in itself is 1. The degree of the twisted cubic is 3.

1.5. Exercise. Show that the degree of a degree d hypersurface is d (preventing a nota-
tional crisis).

1.6. Exercise. Suppose a curve C is embedded in projective space via an invertible sheaf
of degree d. (In other words, this line bundle determines a closed immersion.) Show that
the degree of C under this embedding is d (preventing another notational crisis). (Hint:
Riemann-Roch.)

1.7. Exercise. Find the degree of the dth Veronese embedding of Pn.

1.8. Exercise (Bezout’s theorem). Suppose X is a projective scheme of dimension at least 1,
and H is a degree d hypersurface not containing any associated points of X. (For example,
if X is a projective variety, then we are just requiring H not to contain any irreducible
components of X.) Show that deg H ∩ X = d deg X.

This is a very handy theorem! For example: if two projective plane curves of degree m

and degree n share no irreducible components, then they intersect in mn points, counted
with appropriate multiplicity. The notion of multiplicity of intersection is just the degree
of the intersection as a k-scheme.

We trot out a useful example for a third time: let k = Q, and consider the parabola
x = y2. We intersect it with the four usual suspects: x = 1, x = 0, x = −1, and x = 2, and
see that we get 2 each time (counted with the same convention as with the last time we
saw this example).

If we intersect it with y = 2, we only get one point — but that’s of course because this
isn’t a projective curve, and we really should be doing this intersection on P2

k
— and in

this case, the conic meets the line in two points, one of which is “at ∞”.

1.9. Exercise. Determine the degree of the d-fold Veronese embedding of Pn in a different
way as follows. Let vd : Pn → PN be the Veronese embedding. To find the degree of the
image, we intersect it with n hyperplanes in PN (scheme-theoretically), and find the num-
ber of intersection points (counted with multiplicity). But the pullback of a hyperplane
in PN to Pn is a degree d hypersurface. Perform this intersection in Pn, and use Bezout’s
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theorem. (If already you know the answer by the earlier exercise on the degree of the
Veronese embedding, this will be easier.)

There is another nice bit of information residing in the Hilbert polynomial. Notice that
pX(0) = χ(X,OX), which is an intrinsic invariant of the scheme X, which does not depend
on the projective embedding.

Imagine how amazing this must have seemed to the ancients: they defined the Hilbert
function by counting how many “functions of various degrees” there are; then they no-
ticed that when the degree gets large, it agrees with a polynomial; and then when they
plugged 0 into the polynomial — extrapolating backwards, to where the Hilbert function
and Hilbert polynomials didn’t agree — they found a magic invariant!

And now I can give you a nonsingular curve over an algebraically closed field that is
not P1! Note that the Hilbert polynomial of P1 is (m + 1)/1 = m + 1, so χ(OP1) = 1.
Suppose C is a degree d curve in P2. Then the Hilbert polynomial of C is

pP2(m) − pP2(m − d) = (m + 1)(m + 2)/2 − (m − d + 1)(m − d + 2)/2.

Plugging in m = 0 gives us −(d2 − 3d)/2. Thus when d > 2, we have a curve that cannot
be isomorphic to P1! (I think I gave you an earlier exercise that there is a nonsingular
degree d curve. Note however that the calculation above didn’t use nonsingularity.)

Now from 0 → OP2(−d) → OP2 → OC → 0, using h1(OP2(d)) = 0, we have that
h0(C,OC) = 1. As h0 − h1 = χ, we have

h1(C,OC) = (d − 1)(d − 2)/2.

Motivated by geometry, we define the arithmetic genus of a scheme X as 1−χ(X,OX). This
is sometimes denoted pa(X). In the case of nonsingular complex curves, this corresponds
to the topological genus. For irreducible reduced curves (or more generally, curves with
h0(X,OX) ∼= k), pa(X) = h1(X,OX). (In higher dimension, this is a less natural notion.)

We thus now have examples of curves of genus 0, 1, 3, 6, 10, . . . (corresponding to degree
1 or 2, 3, 4, 5, . . . ).

This begs some questions, such as: are there curves of other genera? (Yes.) Are there
other genus 1 curves? (Not if k is algebraically closed, but yes otherwise.) Do we have all
the curves of genus 3? (Almost all, but not quite all.) Do we have all the curves of genus
6? (We’re missing most of them.)

Caution: The Euler characteristic of the structure sheaf doesn’t distinguish between
isomorphism classes of nonsingular projective schemes over algebraically closed fields
— for example, P1×P1 and P2 both have Euler characteristic 1, but are not isomorphic (as
for example Pic P2 ∼= Z while Pic P1 × P1 ∼= Z ⊕ Z).

Important Remark. We can restate the Riemann-Roch formula as:

h0(C,L) − h1(C,L) = degL − pa + 1.

This is the most common formulation of the Riemann-Roch formula.
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1.10. Complete intersections. We define a complete intersection in Pn as follows. Pn is a
complete intersection in itself. A closed subscheme Xr ↪→ Pn of dimension r (with r < n)
is a complete intersection if there is a complete intersection Xr+1, and Xr is a Cartier divisor
in class OXr+1

(d).

Exercise. Show that if X is a complete intersection of dimension r in Pn, then Hi(X,OX(m)) =

0 for all 0 < i < r and all m. Show that if r > 0, then H0(Pn,O(m)) → H0(X,O(m)) is
surjective.

Now in my definition, Xr is the zero-divisor of a section of OXr+1
(m) for some m. But

this section is the restriction of a section of O(m) on Pn. Hence Xr is the scheme-theoretic
intersection of Xr+1 with a hypersurface. Thus inductively we can show that Xr is the
scheme-theoretic intersection of n − r hypersurfaces. (By Bezout’s theorem, deg Xr is the
product of the degree of the defining hypersurfaces.)

Exercise. Show that complete intersections of positive dimension are connected. (Hint:
show h0(X,OX) = 1.)

Exercise. Find the genus of the intersection of 2 quadrics in P3. (We get curves of more
genera by generalizing this!)

Exercise. Show that the rational normal curve of degree d in Pd is not a complete inter-
section if d > 2.

Exercise. Show that the union of 2 distinct planes in P4 is not a complete intersection.
(This is the first appearance of another universal counterexample!) Hint: it is connected,
but you can slice with another plane and get something not connected.

This is another important scheme in algebraic geometry that is an example of many
sorts of behavior. We will see more of it later!

2. HIGHER DIRECT IMAGE SHEAVES

I’ll now introduce a notion generalizing these Cech cohomology groups. Cohomology
groups were defined for X → Spec A where the structure morphism is quasicompact and
separated; for any quasicoherent F on X, we defined Hi(X,F).

We’ll now do something similar for quasicompact and separated morphisms π : X → Y:
for any quasicoherent F on X, we’ll define Riπ∗F , a quasicoherent sheaf on Y.

We have many motivations for doing this. In no particular order:

(1) It “globalizes” what we were doing anywhere.
(2) If 0 → F → G → H → 0 is a short exact sequence of quasicoherent sheaves on X,

then we know that 0 → π∗F → π∗G → π∗H is exact, and higher pushforwards will
extend this to a long exact sequence.
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(3) We’ll later see that this will show how cohomology groups vary in families, espe-
cially in “nice” situations. Intuitively, if we have a nice family of varieties, and a
family of sheaves on them, we could hope that the cohomology varies nicely in
families, and in fact in “nice” situations, this is true. (As always, “nice” usually
means “flat”, whatever that means.)

There will be no extra work involved for us.

Suppose π : X → Y, and F is a quasicoherent sheaf on X. For each Spec A ⊂ Y, we
have A-modules Hi(π−1(Spec A),F). We will show that these patch together to form a
quasicoherent sheaf. We need check only one fact: that this behaves well with respect to
taking distinguished opens. In other words, we must check that for each f ∈ A, the natu-
ral map Hi(π−1(Spec A),F) → Hi(π−1(Spec A),F)f (induced by the map of spaces in the
opposite direction — Hi is contravariant in the space) is precisely the localization ⊗AAf.
But this can be verified easily: let {Ui} be an affine cover of π−1(Spec A). We can compute
Hi(π−1(Spec A),F) using the Cech complex. But this induces a cover Spec Af in a natural
way: If Ui = Spec Ai is an affine open for Spec A, we define U ′

i
= Spec(Ai)f. The resulting

Cech complex for Spec Af is the localization of the Cech complex for Spec A. As taking
cohomology of a complex commutes with localization, we have defined a quasicoherent
sheaf on Y by one of our definitions of quasicoherent sheaves.

2.1. (Something important happened in that last sentence — localization commuting with
taking cohomology. If you want practice with this notion, here is an exercise: suppose
C0 → C1 → C2 is a complex in an abelian category, and F is an exact functor to another
abelian category. Show that F applied to the cohomology of this complex is naturally iso-
morphic to the cohomology of F of this complex. Translation: taking cohomology com-
mutes with exact functors. In the particular case of this construction, the exact functor in
equation is the localization functor ⊗AAf from A-modules to Af-modules. I’ll discuss this
a bit more at the start of the class 32 notes.)

Define the ith higher direct image sheaf or the ith (higher) pushforward sheaf to be
this quasicoherent sheaf.

2.2. Theorem. —

(a) R0π∗F is canonically isomorphic to π∗F .
(b) Riπ∗ is a covariant functor from the category of quasicoherent sheaves on X to the category

of quasicoherent sheaves on Y, and a contravariant functor in Y-schemes X.
(c) A short exact sequence 0 → F → G → H → 0 of sheaves on X induces a long exact

sequence
0 // R0π∗F

// R0π∗G
// R0π∗H

//

R1π∗F
// R1π∗G

// R1π∗H
// · · ·

of sheaves on Y. (This is often called the corresponding long exact sequence of higher
pushforward sheaves.)
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(d) (projective pushforwards of coherent are coherent) If π is a projective morphism and OY is
coherent on Y (this hypothesis is automatic for Y locally Noetherian), and F is a coherent
sheaf on X, then for all i, Riπ∗F is a coherent sheaf on Y.

Proof. Because it suffices to check each of these results on affine opens, they all follow
from the analogous statements in Cech cohomology. �

The following result is handy (and essentially immediate from our definition).

2.3. Exercise. Show that if π is affine, then for i > 0, Riπ∗F = 0. Moreover, show that if Y

is quasicompact and quasiseparated then the natural morphism Hi(X,F) → Hi(Y, f∗F) is
an isomorphism. (A special case of the first sentence is a special case we showed earlier,
when π is a closed immersion. Hint: use any affine cover on Y, which will induce an
affine cover of X.)

E-mail address: vakil@math.stanford.edu
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