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Last day: proper morphisms.

Today: a little more propriety. Rational maps. Curves.

(These notes include some facts discussed in class 28, for the sake of continuity.)

1. PROPER MORPHISMS

Last day we mostly proved:

1.1. Theorem. — Projective morphisms are proper.

We had reduced it to the following fact:

1.2. Proposition. — π : Pn
A → Spec A is a closed morphism.

Proof. Suppose Z ↪→ Pn
A is a closed subset. We wish to show that π(Z) is closed.

Suppose y /∈ π(Z) is a closed point of Spec A. We’ll check that there is a distinguished
open neighborhood D(f) of y in Spec A such that D(f) doesn’t meet π(Z). (If we could
show this for all points of π(Z), we would be done. But I prefer to concentrate on closed
points for now.) Suppose y corresponds to the maximal ideal m of A. We seek f ∈ A − m
such that π∗f vanishes on Z.

A picture helps here, but I haven’t put it in the notes.
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Let U0, . . . , Un be the usual affine open cover of Pn
A. The closed subsets π−1y and Z do

not intersect. On the affine open set Ui, we have two closed subsets that do not intersect,
which means that the ideals corresponding to the two open sets generate the unit ideal,
so in the ring of functions on Ui, we can write

1 = ai +
∑

mijgij

where mij ∈ m, and ai vanishes on Z. Note that ai, gij ∈ A[x0/i, x1/i, . . . , xn/i]. So by
multiplying by a sufficiently high power xn

i of xi, we have an equality

xN
i = a ′

i +
∑

mijg
′
ij

on Ui, where both sides are expressions in A[x0, . . . , xn]. We may take N large enough so
that it works for all i. Thus for N ′ sufficiently large, we can write any monomial in x1, . . . ,
xn of degree N ′ as something vanishing on Z plus a linear combination of elements of m
times other polynomials. Hence if S∗ = A[x0, . . . , xn],

SN′ = I(Z)N′ + mSN′

where I(Z)∗ is the graded ideal of functions vanishing on Z. Hence by Nakayama’s
lemma, there exists f ∈ A − m such that

fSN′ ⊂ I(Z)N′.

Thus we have found our desired f!

We are now ready to tackle the proposition in general. Suppose y ∈ Spec A is no longer
necessarily a closed point, and say y = [p]. Then we apply the same argument in Spec Ap.
We get SN′ ⊗ Ap = I(Z)N′ ⊗ Ap + mSN′ ⊗ Ap, from which g(SN′/I(Z)N′) ⊗ Ap = 0 for
some g ∈ Ap − pAp, from which (SN′/I(Z)N′) ⊗ Ap = 0. Now SN′ is a finitely generated
A-module, so there is some f ∈ R − p with fSN ⊂ I(Z) (if the module-generators of SN′ ,
and f1, . . . , fa are annihilate the generators respectively, then take f =

∏
fi), so once again

we have found D(f) containing p, with (the pullback of) f vanishing on Z. �

2. SCHEME-THEORETIC CLOSURE, AND SCHEME-THEORETIC IMAGE

Have I defined scheme-theoretic closure of a locally closed subscheme W ↪→ Y? I think
I have neglected to. It is the smallest closed subscheme of Y containing W. Exercise. Show
that this notion is well-defined. More generally, if f : W → Y is any morphism, define
the scheme-theoretic image as the smallest closed subscheme Z → Y so that f factors
through Z ↪→ Y. Exercise. Show that this is well-defined. (One possible hint: use a
universal property argument.) If Y is affine, the ideal sheaf corresponds to the functions
on Y that are zero when pulled back to Z. Show that the closed set underlying the image
subscheme may be strictly larger than the closure of the set-theoretic image: consider∐

n≥0 Spec k[t]/tn → Spec k[t]. (I suspect that such a pathology cannot occur for finite
type morphisms of Noetherian schemes, but I haven’t investigated.)
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3. RATIONAL MAPS

This is a very old topic, near the beginning of any discussion of varieties. It has ap-
peared late for us because we have just learned about separatedness.

For this section, I will suppose that X and Y are integral and separated, although these
notions are often useful in more general circumstances. The interested reader should con-
sider the first the case where the schemes in question are reduced and separated (but
not necessarily irreducible). Many notions can make sense in more generality (without
reducedness hypotheses for example), but I’m not sure if there is a widely accepted defi-
nition.

A key example will be irreducible varieties, and the language of rational maps is most
often used in this case.

A rational map X 99K Y is a morphism on a dense open set, with the equivalence
relation: (f : U → Y) ∼ (g : V → Y) if there is a dense open set Z ⊂ U ∩ V such that
f|Z = g|Z. (We will soon see that we can add: if f|U∩V = g|U∩V.)

An obvious example of a rational map is a morphism. Another example is a rational
function, which is a rational map to A1

Z
(easy exercise).

3.1. Exercise. Show that you can compose two rational maps f : X 99K Y, g : Y 99K Z if f is
dominant.

3.2. Easy exercise. Show that dominant rational maps give morphisms of function fields
in the opposite direction. (This was problem 37 on problem set 9.)

It is not true that morphisms of function fields give dominant rational maps, or even
rational maps. For example, k[x] and Spec k(x) have the same function field (k(x)), but
there is no rational map Spec k[x] 99K k(x). Reason: that would correspond to a morphism
from an open subset U of Spec k[x], say k[x, 1/f(x)], to k(x). But there is no map of rings
k(x) → k[x, 1/f(x)] for any one f(x).

However, this is true in the case of varieties (see Proposition 3.4 below).

A rational map f : X → Y is said to be birational if it is dominant, and there is another
morphism (a “rational inverse”) that is also dominant, such that f ◦ g is (in the same
equivalence class as) the identity on Y, and g ◦ f is (in the same equivalence class as) the
identity on X.

A morphism is birational if it is birational as a rational map. We say X and Y are
birational to each other if there exists a birational map X 99K Y. This is the same as our
definition before. Birational maps induce isomorphisms of function fields.

3.3. Important Theorem. — Two S-morphisms f1, f2 : U → Z from a reduced scheme to a
separated S-scheme agreeing on a dense open subset of U are the same.
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Note that this generalizes the easy direction of the valuative criterion of separatedness
(which is the special case where U is Spec of a discrete valuation ring — which consists of
two points — and the dense open set is the generic point).

It is useful to see how this breaks down when we give up reducedness of the base or
separatedness of the target. For the first, consider the two maps Spec k[x, y]/(x2, xy) →
Spec k[t], where we take f1 given by t 7→ y and f2 given by t 7→ y + x; f1 and f2 agree on
the distinguished open set D(y). (A picture helps here!) For the second, consider the two
maps from Spec k[t] to the line with the doubled origin, one of which maps to the “upper
half”, and one of which maps to the “lower half”. these to morphisms agree on the dense
open set D(f).

Proof.

V

cl. imm.
��

// Y

∆
��

U
(f1,f2)

// Y × Y

We have a closed subscheme of U containing the generic point. It must be all of U. �

Consequence 1. Hence (as X is reduced and Y is separated) if we have two morphisms
from open subsets of X to Y, say f : U → Y and g : V → Y, and they agree on a dense open
subset Z ⊂ U ∩ V , then they necessarily agree on U ∩ V .

Consequence 2. Also: a rational map has a largest domain of definition on which f : U 99K Y

is a morphism, which is the union of all the domains of definition.

In particular, a rational function from a reduced scheme has a largest domain of definition.

We define the graph of a rational map f : X 99K Y as follows: let (U, f ′) be any represen-
tative of this rational map (so f ′ : U → Y is a morphism). Let Γf be the scheme-theoretic
closure of Γf′ ↪→ U×Y ↪→ X×Y, where the first map is a closed immersion, and the second
is an open immersion. Exercise. Show that this is independent of the choice of U.

Here is a handy diagram involving the graph of a rational map:

Γ
�

� // X × Y

||xx
xx

xx
xx

x

""EE
EE

EE
EE

E

X

OO�
�

�

Y

(that “up arrow” should be dashed).

We now prove a Proposition promised earlier.

3.4. Proposition. — Suppose X, Y are irreducible varieties, and we are given f# : FF(Y) ↪→ FF(Y).
Then there exists a dominant rational map f : X 99K Y inducing f#.
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Proof. By replacing Y with an affine open set, we may assume Y is affine, say Y =
Spec k[x1, . . . , xn]/(f1, . . . , fr). Then we have x1, . . . , xn ∈ K(X). Let U be an open sub-
set of the domains of definition of these rational functions. Then we get a morphism
U → An

k. But this morphism factors through Y ⊂ An, as x1, . . . , xn satisfy all the relations
f1, . . . , fr. �

3.5. Exercise. Let K be a finitely generated field extension of transcendence degree m over
k. Show there exists an irreducible k-variety W with function field K. (Hint: let x1, . . . ,
xn be generators for K over k. Consider the map Spec K → Spec k[t1, . . . , tn] given by the
ring map ti 7→ xi. Take the scheme-theoretic closure of the image.)

3.6. Proposition. — Suppose X and Y are integral and separated (our standard hypotheses from
last day). Then X and Y are birational if and only if there is a dense=non-empty open subscheme
U of X and a dense=non-empty open subscheme V of Y such that U ∼= Y.

This gives you a good idea of how to think of birational maps.

3.7. Exercise. Prove this. (Feel free to consult Iitaka or Hartshorne (Corollary I.4.5).)

4. EXAMPLES OF RATIONAL MAPS

We now give a bunch of examples Here are some examples of rational maps, and bira-
tional maps. A recurring theme is that domains of definition of rational maps to projective
schemes extend over nonsingular codimension one points. We’ll make this precise when
we discuss curves shortly.

(A picture is helpful here.) The first example is how you find a formula for Pythagorean
triples. Suppose you are looking for rational points on the circle C given by x2 + y2 = 1.
One rational point is p = (1, 0). If q is another rational point, then pq is a line of rational
(non-infinite) slope. This gives a rational map from the conic to A1. Conversely, given a
line of slope m through p, where m is rational, we can recover q as follows: y = m(x−1),
x2 + y2 = 1. We substitute the first equation into the second, to get a quadratic equation
in x. We know that we will have a solution x = 1 (because the line meets the circle at
(x, y) = (1, 0)), so we expect to be able to factor this out, and find the other factor. This
indeed works:

x2 + (m(x − 1))2 = 1

(m2 + 1)x2 + (−2)x + (m2 − 1) = 0

(x − 1)((m2 + 1)x − (m2 − 1)) = 0

The other solution is x = (m2 − 1)/(m2 + 1), which gives y = 2m/(m2 + 1). Thus we
get a birational map between the conic C and A1 with coordinate m, given by f : (x, y) 7→
y/(x − 1) (which is defined for x 6= 1), and with inverse rational map given by m 7→
((m2 − 1)/(m2 + 1), 2m/(m2 + 1)) (which is defined away from m2 + 1 = 0).
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We can extend this to a rational map C 99K P1 via the inclusion A1 → P1. Then f is
given by (x, y) 7→ [y; x − 1]. (Remember that we give maps to projective space by giving
sections of line bundles — in this case, we are using the structure sheaf.) We then have
an interesting question: what is the domain of definition of f? It appears to be defined
everywhere except for where y = x − 1 = 0, i.e. everywhere but p. But in fact it can be
extended over p! Note that (x, y) 7→ [x + 1; −y] (where (x, y) 6= (−1, y)) agrees with f on
their common domains of definition, as [x + 1; −y] = [y; x − 1]. Hence this rational map
can be extended farther than we at first thought. This will be a special case of a result
we’ll see later today.

(For the curious: we are working with schemes over Q. But this works for any scheme
over a field of characteristic not 2. What goes wrong in characteristic 2?)

4.1. Exercise. Use the above to find a “formula” for all Pythagorean triples.

4.2. Exercise. Show that the conic x2 + y2 = z2 in P2
k is isomorphic to P1

k for any field k of
characteristic not 2. (Presumably this is true for any ring in which 2 is invertible too...)

In fact, any conic in P2
k with a k-valued point (i.e. a point with residue field k) is iso-

morphic to P1
k. (This hypothesis is certainly necessary, as P1

k certainly has k-valued points.
x2 + y2 + z2 = 0 over k = R gives an example of a conic that is not isomorphic to P1

k.)

4.3. Exercise. Find all rational solutions to y2 = x3 + x2, by finding a birational map to A1,
mimicking what worked with the conic.

You will obtain a rational map to P1 that is not defined over the node x = y = 0, and
can’t be extended over this codimension 1 set. This is an example of the limits of our
future result showing how to extend rational maps to projective space over codimension
1 sets: the codimension 1 sets have to be nonsingular. More on this soon!

4.4. Exercise. Use something similar to find a birational map from the quadric Q =

{x2 + y2 = w2 + z2} to P2. Use this to find all rational points on Q. (This illustrates a
good way of solving Diophantine equations. You will find a dense open subset of Q that
is isomorphic to a dense open subset of P2, where you can easily find all the rational
points. There will be a closed subset of Q where the rational map is not defined, or not an
isomorphism, but you can deal with this subset in an ad hoc fashion.)

4.5. Exercise (a first view of a blow-up). Let k be an algebraically closed field. (We make this
hypothesis in order to not need any fancy facts on nonsingularity.) Consider the rational
map A2

k 99K P1
k given by (x, y) 7→ [x; y]. I think you have shown earlier that this rational

map cannot be extended over the origin. Consider the graph of the birational map, which
we denote Bl(0,0) A2

k. It is a subscheme of A2
k × P1

k. Show that if the coordinates on A2

are x, y, and the coordinates on P1 are u, v, this subscheme is cut out in A2 × P1 by the
single equation xv = yu. Show that Bl(0,0) A2

k is nonsingular. Describe the fiber of the
morphism Bl(0,0) A2

k → P1
k over each closed point of P1

k. Describe the fiber of the morphism
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Bl(0,0) A2
k → A2

k. Show that the fiber over (0, 0) is an effective Cartier divisor. It is called
the exceptional divisor.

4.6. Exercise (the Cremona transformation, a useful classical construction). Consider the
rational map P2

99K P2, given by [x; y; z] → [1/x; 1/y; 1/z]. What is the the domain of
definition? (It is bigger than the locus where xyz 6= 0!) You will observe that you can
extend it over codimension 1 sets. This will again foreshadow a result we will soon prove.
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