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1. Proper morphisms 1

Last day: separatedness, definition of variety.
Today: proper morphisms.

I said a little more about separatedness of moduli spaces, for those familiar such objects.
Suppose we are interested in a moduli space of a certain kind of object. That means that
there is a scheme M with a “universal family” of such objects over M, such that there is
a bijection between families of such objects over an arbitrary scheme S, and morphisms
S — B. (One direction of this map is as follows: given a morphism S — B, we get a
family of objects over S by pulling back the universal family over B.) The separatedness
of the moduli space (over the base field, for example, if there is one) can be interpreted as
follows. Fix a valuation ring A (or even discrete valuation ring, if our moduli space of of
finite type) with fraction field K. We interpret Spec intuitively as a germ of a curve, and we
interpret Spec K as the germ minus the “origin” (an analogue of a small punctured disk).
Then we have a family of objects over Spec K (or over the punctured disk), or equivalently
a map Spec K — M, and the moduli space is separated if there is at most one way to fill in
the family over the origin, i.e. a family over Spec A.

1. PROPER MORPHISMS

I'll now tell you about a new property of morphisms, the notion of properness. You can
think about this in several ways.

Recall that a map of topological spaces (also known as a continuous map!) is said to
be proper if the preimage of compact sets is compact. Properness of morphisms is an
analogous property. For example, proper varieties over C will be the same as compact in
the “usual” topology.

Alternatively, we will see that projective morphisms are proper — this is the hardest
thing we will prove — so you can see this as nice property satisfied by projective mor-
phisms, and hence as a generalization of projective morphisms. Indeed, in some sense,
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essentially all interesting properties of projective morphisms that don’t explicitly involve
O(1) turn out to be properties of proper morphisms. The key tool in showing such re-
sults is Chow’s Lemma, which I will state but not prove. Like separatedness, there is a
valuative criterion for properness.

Definition. We say a map of topological spaces (i.e. a continuous map) f : X — Y'is
closed if for each closed subset S C X, f(S) is also closed. (This is the definition used
elsewhere in mathematics.) We say a morphism of schemes is closed if the underlying
continuous map is closed. We say that a morphism of schemes f : X — Y is universally
closed if for every morphism g : Z — Y, the induced Z xy X — Zis closed. In other words,
a morphism is universally closed if it remains closed under any base change. (A note on
terminology: if P is some property of schemes, then a morphism of schemes is said to be
“universally P” if it remains P under any base change.)

A morphism f : X — Y is proper if it is separated, finite type, and universally closed.

As an example: we expect that Al — Spec C is not proper, because the complex mani-
fold corresponding to Al is not compact. However, note that this map is separated (it is a
map of affine schemes), finite type, and closed. So the “universally” is what matters here.
What's the base change that turns this into a non-closed map? Consider Al x P — PL.

1.1. Exercise. Show that Al — Spec C is not proper.

Here are some examples of proper maps.

1.2. Closed immersions are proper: they are clearly separated (as affine morphisms are
separated). They are finite type. After base change, they remain closed immersions, and
closed immersions are always closed.

More generally, finite morphisms are proper: they are separated (as affine), and finite
type. The notion of “finite morphism” behaves well under base change, and we have
checked that finite morphisms are always closed (I believe in class 21, using the Going-up
theorem).

I mentioned that we are going to show that projective morphisms are proper. In fact, fi-
nite morphisms are projective (and closed immersions are finite), so the previous two facts
will follow from our fancier fact. I should have explained earlier why finite morphisms
are projective, but I'll do so now. Suppose X — Y is a finite morphism, i.e. X = Spec A
where A is a finite type sheaf of algebras. Iwill now show that X = Proj S, where S, isa
sheaf of graded algebras, satisfying all of our various conditions: Sp = Oy, S, is “locally
generated” by Sy as a Sp-algebra (i.e. this is true over every open affine subset of Y). Given
the statement, you might be able to guess what S, should be. I must tell you what S, is,
and how to multiply. Take S,, = A for n > 0, with the “obvious” map.

1.3. Exercise. Verify that X = Proj S.. What is Opyo;s.(1)?



1.4. Properties of proper morphisms.

1.5. Proposition. —

(@) The notion of “proper morphism” is stable under base change.

(b) The notion of “proper morphism” is local on the target (i.e. f : X — Y is proper if and only
if for any affine open cover U; — Y, f~1(U;) — Uj is proper). Note that the “only if”
direction follows from (a) — consider base change by U; — Y.

(c) The notion of “proper morphism” is closed under composition.

(d) The product of two proper morphisms is proper (i.e. if f : X — Yand g : X' — Y’ are
proper, where all morphisms are morphisms of Z-schemes) then f x g : X xz X' = Y xzY’
is proper.

(e) Suppose

1) X ! Y
NS

is a commutative diagram, and g is proper, and h is separated. Then f is proper.

(f) (I don’t know if this is useful, but I may as well say it anyway.) Suppose (1) is a commu-
tative diagram, and f is surjective, g is proper, and h is separated and finite type. Then h
is propet.

Proof. (a) We have already shown that the notions of separatedness and finite type are
local on the target. The notion of closedness is local on the target, and hence so is the
notion of universal closedness.

(b) The notions of separatedness, finite type, and universal closedness are all preserved
by fiber product. (Notice that this is why universal closedness is better than closedness
— it is automatically preserved by base change!)

(c) The notions of separatedness, finite type, and universal closedness are all preserved
by composition.

(d)Both X xzY — X' xzYand X’ xz Y — X’ xz Y’ are proper, because the notion is
preserved by base change (part (b)). Then their composition is also proper (part (c)).

(e) Closed immersions are proper, so we invoke our magic and weird “property P fact”
from last day.

(f) Exercise. O
We come to the hardest thing I will prove today.

1.6. Theorem. — Projective morphisms are proper.
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It is not easy to come up with an example of a morphism that is proper but not projec-
tive! I'll give an simple example before long of a proper but not projective surface (over a
field), once we have the notion of the fact that line bundles on nice families of curves have
constant degree. Once we discuss blow-ups, I'll give Hironaka’s example of a proper but
not projective nonsingular threefold over C.

I'll give part of the proof today, and the rest next day (because I thought I had a simpli-
tication that I realized this morning didn’t work out).

Proof. Suppose f : X — Y is projective. Because the notion of properness is local on
the base, we may assume that Y is affine, say Spec A. Then X — P} for some n. As
closed immersions are proper (§1.2), and the composition of two proper morphisms is
proper, it suffices to prove that Px — Spec A is proper. However, we have shown that
projective morphisms are separated (last day), and finite type, so it suffices to show that
P’ — Spec A is universally closed.

We will next show that it suffices to show that Py — SpecR is closed for all rings R.
Indeed, we need to show that given any base change X — SpecA, the resulting base
changed morphisms P} — X is closed. But the notion of being “closed” is local on the
base, so we can replace X by an affine cover.

Next day I will complete the proof by showing that Py — Spec A is closed. This is some-
times called the fundamental theorem of elimination theory. Here are some examples to
show you that this is a bit subtle.

First, let A = k[a,b,c,...,1], and consider the closed subscheme of P3 (taken with
coordinates x, y, z) corresponding to ax+by +cz=0,dx+ey+fz =0, gx +hy +iz =0.
Then we are looking for the locus in Spec A where these equations have a non-trivial
solution. This indeed corresponds to a Zariski-closed set — where

a b c
det [d e f| =0.
g h i
As a second example, let A = k[ap, ai, ..., am, bo, by, ..., by]. Now consider the closed

subscheme of P}, (taken with coordinates x and y) corresponding to apx™+a;x™ 'y+- - -+
amy™ = 0and box"+b;x™ 'y+---+b,y™ = 0. Then we are looking at the locus in Spec A
where these two polynomials have a common root — this is known as the resultant.  [J

Il end my discussion of properness with some results that I'll not prove and not use.

1.7. Miscellaneous facts.
Here are some enlightening facts.
(a) Proper and affine = finite. (b) Proper and quasifinite = finite.

(We'll show all three of this in the case of projective morphisms.)
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As an application: quasifinite morphisms from proper schemes to separated schemes
are finite. Here is why: suppose X — Y is a quasifinite morphism over Z, where X is
proper over Z. Then by one of our weird “property P” facts (Proposition 1.24(b) in class
25), X — Y is proper. Hence by (b) above, it is finite.

Here is an explicit example: consider a morphism P! — P! given by two distinct sec-
tions of Op1(2). The fibers are finite, hence this is a finite morphism. (This could also be
checked directly.)

Here is a third fact: If 7 : X — Y is proper, and F is a coherent sheaf on X, then 7, F is
coherent.

In particular, if X is proper over k, HO(X, F) is finite-dimensional. (This is just the special
case of the morphism X — k.)

1.8. Valuative criterion.

There is a valuative criterion for properness too. I've never used it personally, but it
is useful, both directly, and also philosophically. I'll make statements, and then discuss
some philosophy.

1.9. Theorem (Valuative criterion for properness for morphisms of finite type of Noetherian schemes).
— Suppose f : X — Y is a morphism of finite type of locally Noetherian schemes. Then f is proper
if and only if the following condition holds. For any discrete valuation ring R with function field
K, and or any diagram of the form

2) Spec K —— X
|
SpecR ——=Y

(where the vertical morphism on the left corresponds to the inclusion R — K), there is exactly one
morphism Spec R — X such that the diagram

3) Spec K — X
Speck —Y
commutes.

Recall that the valuative criterion for properness was the same, except that exact was
replaced by at most.

In the case where Y is a field, you can think of this as saying that limits of one-parameters
always exist, and are unique.

1.10. Theorem (Valuative criterion of properness). — Suppose f : X — Y is a quasiseparated,
finite type (hence quasicompact) morphism. Then f is proper if and only if the following condition
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holds. For any valuation ring R with function field K, and or any diagram of the form (2), there is
exactly one morphism Spec R — X such that the diagram (3) commutes.

Uses: (1) intuition. (2) moduli idea: exactly one way to fill it in (stable curves). (3)
motivates the definition of properness for stacks.
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