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Last day: Fibers of morphisms. Properties preserved by base change: open immer-
sions, closed immersions, Segre embedding. Other schemes defined by universal prop-
erty: reduction, normalization.

Today: normalization (in a field extension), “sheaf Spec”, “sheaf Proj”, projective
morphism.

1. NORMALIZATION, CONTINUED

Last day, I defined the normalization of a reduced scheme. I have an interesting ques-
tion for experts: there is a reasonable extension to schemes in general; does anything go
wrong? I haven’t yet given this much thought, but it seems worth exploring.

I described normalization last day in the case when X is irreducible, and hence integral.
In this case of X irreducible, the normalization satisfies the universal property, that if
Y → X is any other dominant morphism from a normal scheme to X, then this morphism
factors uniquely through ν:

Y

��
==

==
==

=

∃!
// X̃

ν
����

��
��

��

X

.

Thus if it exists, then it is unique up to unique isomorphism. We then showed that it
exists, using an argument we saw for the third time. (The first time was in the existence
of the fibered product. The second was an argument for the existence of the reduction
morphism.) The ring-theoretic case got us started: if X = Spec R, then and R̃ is the integral
closure of R in its fraction field Frac(R), then I gave as an exercise that ν : Spec R̃ → Spec R

satisfies the universal property.
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1.1. Exercise. Show that the normalization morphism is surjective. (Hint: Going-up!)

We now mention some bells and whistles. The following fact is handy.

1.2. Theorem (finiteness of integral closure). — Suppose A is a domain, K = Frac(A), L/K is a
finite field extension, and B is the integral closure of A in L (“the integral closure of A in the field
extension L/K”, i.e. those elements of L integral over A).
(a) if A is integrally closed, then B is a finitely generated A-module.
(b) if A is a finitely generated k-algebra, then B (the integral closure of A in its fraction field) is a
finitely generated A-module.

I hope to type up a proof of these facts at some point to show you that they are not that
bad. Much of part (a) was proved by Greg Brumfiel in 210B last year.

Warning: (b) does not hold for Noetherian A in general. I find this very alarming. I
don’t know an example offhand, but one is given in Eisenbud’s book.

1.3. Exercise. Show that dim X̃ = dim X (hint: see our going-up discussion).

1.4. Exercise. Show that if X is an integral finite-type k-scheme, then its normalization
ν : X̃ → X is a finite morphism.

1.5. Exercise. Explain how to generalize the notion of normalization to the case where X

is a reduced Noetherian scheme (with possibly more than one component). This basically
requires defining a universal property. I’m not sure what the “perfect” definition, but all
reasonable universal properties should lead to the same space.

1.6. Exercise. Show that if X is an integral finite type k-scheme, then its non-normal
points form a closed subset. (This is a bit trickier. Hint: consider where ν∗OX̃ has rank 1.)
I haven’t thought through all the details recently, so I hope I’ve stated this correctly.

Here is an explicit example to think through some of these ideas.

1.7. Exercise. Suppose X = Spec Z[15i]. Describe the normalization X̃ → X. (Hint: it isn’t
hard to find an integral extension of Z[15i] that is integrally closed. By the above discus-
sion, you’ve then found the normalization!) Over what points of X is the normalization
not an isomorphism?

1.8. Exercise. (This is an important generalization!) Suppose X is an integral scheme.
Define the normalization of X, ν : X̃ → X, in a given finite field extension of the function field
of X. Show that X̃ is normal. (This will be hard-wired into your definition.) Show that if
either X is itself normal, or X is finite type over a field k, then the normalization in a finite
field extension is a finite morphism.

2



Let’s try this in a few cases.

1.9. Exercise. Suppose X = Spec Z (with function field Q). Find its integral closure in the
field extension Q(i).

A finite extension K of Q is called a number field, and the integral closure of Z in K the
ring of integers of K, denoted OK. (This notation is a little awkward given our other use
of the symbol O.) By the previous exercises, SpecOK is a Noetherian normal domain of
dimension 1 (hence regular). This is called a Dedekind domain. We think of it as a smooth
curve.

1.10. Exercise. (a) Suppose X = Spec k[x] (with function field k(x)). Find its integral
closure in the field extension k(y), where y2 = x2 +x. (Again we get a Dedekind domain.)
(b) Suppose X = P1, with distinguished open Spec k[x]. Find its integral closure in the
field extension k(y), where y2 = x2 + x. (Part (a) involves computing the normalization
over one affine open set; now figure out what happens over the “other”.)

2. SHEAF SPEC

Given an A-algebra, B, we can take its Spec to get an affine scheme over Spec A: Spec B →
Spec A. I’ll now give a universal property description of a globalization of that notation.
We will take an arbitrary scheme X, and a quasicoherent sheaf of algebras A on it. We will
define how to take Spec of this sheaf of algebras, and we will get a scheme SpecA → X

that is “affine over X”, i.e. the structure morphism is an affine morphism.

We will do this as you might by now expect: for each affine on X, we use our affine con-
struction, and show that everything glues together nicely. We do this instead by describ-
ing SpecA → X in terms of a good universal property: given any morphism π : Y → X

along with a morphism of OX-modules

α : A → π∗OY,

there is a unique map Y → SpecA factoring π, i.e. so that the following diagram com-
mutes,

Y
π

��
==

==
==

==

∃!
// SpecA

β
||xx

xx
xx

xx
x

X

and an isomorphism φ : A → β∗OSpecA inducing α.

(For experts: we need OX-modules, and to leave our category of quasicoherent sheaves
on X, because we only showed that the pushforward of quasicoherent sheaves are quasi-
coherent for certain morphisms, where the preimage of each affine was a finite union of
affines, the pairwise intersection of which were also finite unions. This notion will soon
be formalized as quasicompact and quasiseparated.)

3



At this point we’re getting to be experts on this, so let’s show that this SpecA exists. In
the case where X is affine, we are done by our affine discussion. In the case where X is
quasiaffine, we are done for the same reason as before. And finally, in the case where X is
general, we are done once again!

In particular, note that SpecA → X is an affine morphism.

2.1. Exercise. Show that if f : Z → X is an affine morphism, then we have a natural
isomorphism Z ∼= Spec f∗OZ of X-schemes.

Hence we can recover any affine morphism in this way. More precisely, a morphism is
affine if and only if it is of the form SpecA → X.

2.2. Exercise (Spec behaves well with respect to base change). Suppose f : Z → X is any
morphism, and A is a quasicoherent sheaf of algebras on X. Show that there is a natural
isomorphism Z ×X SpecA ∼= Spec f∗A.

An important example of this Spec construction is the total space of a finite rank locally
free sheaf F , which is a vector bundle. It is Spec Sym∗ F∨.

2.3. Exercise. Show that this is a vector bundle, i.e. that given any point p ∈ X, there is a
neighborhood p ∈ U ⊂ X such that Spec Sym∗ F∨|U ∼= An

U. Show that F is isomorphic to
the sheaf of sections of it.

As an easy example: if F is a free sheaf of rank n, then Spec Sym∗ F∨ is called An
X,

generalizing our earlier notions of An
A. As the notion of a free sheave behaves well with

respect to base change, so does the notion of An
X, i.e. given X → Y, An

Y ×Y X ∼= An
X.

Here is one last fact that might come in handy.

2.4. Exercise. Suppose f : SpecA → X is a morphism. Show that the category of quasi-
coherent sheaves on Spec A is “essentially the same as” (=equivalent to) the category of
quasicoherent sheaves on X with the structure of A-modules (quasicoherent A-modules
on X).

The reason you could imagine caring is when X is quite simple, and SpecA is compli-
cated. We’ll use this before long when X ∼= P1, and SpecA is a more complicated curve. (I
drew a picture of this.)

3. SHEAF PROJ

We’ll now do a global (or “sheafy”) version of Proj, which we’ll denote Proj.

Suppose now that S∗ is a quasicoherent sheaf of graded algebras of X. To be safe, let me
assume that S∗ is locally generated in degree 1 (i.e. there is a cover by small affine open
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sets, where for each affine open set, the corresponding algebra is generated in degree 1),
and S1 is finite type. We will define ProjS∗.

The essential ideal is that we do this affine by affine, and then glue the result together.
But as before, this is tricky to do, but easier if you state the right universal property.

As a preliminary, let me re-examine our earlier theorem, that “Maps to Pn correspond
to n + 1 sections of an invertible sheaf, not all vanishing at any point (= generated by
global sections), modulo sections of O∗

X.”

I will now describe this in a more “relative” setting, where relative means that we do
this with morphisms of schemes. We begin with a relative notion of base-point free. Sup-
pose f : Y → X is a morphism, and L is an invertible sheaf on Y. We say that L is relatively
base point free if for every point p ∈ X, q ∈ Y, with f(q) = p, there is a neighborhood U

for which there is a section of L over f−1(U) not vanishing at q. Similarly, we define rela-
tively generated by global sections if there is a neighborhood U for which there are sections
of L over f−1(U) generating every stalk of f−1(U). This is admittedly hideous terminology.
(One can also define relatively generated by global sections at a point p ∈ Y. See class 16 where
we defined these notions in a non-relative setting. In class 32, this will come up again.)
More generally, we can define the notion of “relatively generated by global sections by a
subsheaf of f∗L”.

Definition. (ProjS∗,OProjS∗
(1)) → X satisfies the following universal property. Given

any other X-scheme Y with an invertible sheaf L, and a map of graded OX-algebras
α : S∗ → ⊕n=0π∗L

⊗n,

such that L is relatively generated by the global sections of α(S1), there is a unique fac-
torization

Y
π

��
==

==
==

==

∃!f
// ProjS∗

β

{{xx
xx

xx
xx

x

X

and a canonical isomorphism L ∼= f∗OProjS∗
(1) and a morphism S∗ → ⊕nβ∗O(n) inducing

α.

In particular, ProjS∗ comes with an invertible sheaf OProjS∗
(1), and this O(1) should be

seen as part of the data.

This definition takes some getting used to.

But we prove this as usual!

We first deal with the case where X is affine, say X = Spec A, S∗ = S̃∗. You won’t be
surprised to hear that in this case, (Proj S∗,O(1)) satisfies the universal property.

We outline why. Clearly, given a map Y → Proj S∗, we get a pullback map α. Con-
versely, given such a pullback map, we want to show that this induces a (unique) map
Y → Proj S∗. Now because S∗ is generated in degree 1, we have a closed immersion
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Proj S∗ ↪→ Proj Sym∗ S1. The map in degree 1, S1 → π∗L, gives a map Y → Proj Sym∗ S1

by our magic theorem “Maps to Pn correspond to n+1 sections of an invertible sheaf, not
all vanishing at any point (= generated by global sections), modulo sections of O∗

X.”

3.1. Exercise. Complete this argument that if X = Spec A, then (ProjS∗,O(1)) satisfies
the universal property.

3.2. Exercise. Show that (ProjS∗,O(1)) exists in general, by following the analogous
universal property argument: show that it exists for X quasiaffine, then in general.

3.3. Exercise (Proj behaves well with respect to base change). Suppose S∗ is a quasicoherent
sheaf of graded algebras on X satisfying the required hypotheses above for ProjS∗ to
exist. Let f : Y → X be any morphism. Give a natural isomorphism

(Proj f∗S∗,OProj f∗S∗
(1)) ∼= (Y ×X ProjS∗, g

∗OProjS∗
(1)) ∼=

where g is the natural morphism in the base change diagram

Y ×X ProjS∗

g
//

��

ProjS∗

��

Y // X.

3.4. Definition. If F is a finite rank locally free sheaf on X. Then Proj Sym∗ F is called
its projectivization. If F is a free sheaf of rank n + 1, then we define Pn

X := Proj Sym∗ F .
(Then Pn

Spec A agrees with our earlier definition of Pn
A.) Clearly this notion behaves well

with respect to base change.

This “relative O(1)” we have constructed is a little subtle. Here are couple of exercises
to give you practice with the concept.

3.5. Exercise. Proj(S∗[t]) ∼= SpecS∗

∐
ProjS∗, where Spec S∗ is an open subscheme, and

ProjS∗ is a closed subscheme. Show that ProjS∗ is an effective Cartier divisor, corre-
sponding to the invertible sheaf OProjN(1). (This is the generalization of the projective
and affine cone. At some point I should give an explicit reference to our earlier exercise
on this.)

3.6. Exercise. Suppose L is an invertible sheaf on X, and S∗ is a quasicoherent sheaf of
graded algebras on X satisfying the required hypotheses above for ProjS∗ to exist. Define
S ′
∗ = ⊕n=0Sn ⊗ Ln. Give a natural isomorphism of X-schemes

(ProjS ′
∗,OProjS ′

∗
(1)) ∼= (ProjS∗,OProjS∗

(1) ⊗ π∗L),

where π : ProjS∗ → X is the structure morphism. In other words, informally speaking,
the Proj is the same, but the O(1) is twisted by L.
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3.7. Projective morphisms.

If you are tuning out because of these technicalities, please tune back in! I now want to
define an essential notion.

Recall that we have recast affine morphisms in the following way: X → Y is an affine
morphism if X ∼= SpecA for some quasicoherent sheaf of algebras A on Y.

I will now define the notion of a projective morphism similarly.

3.8. Definition. A morphism X → Y is projective if there is an isomorphism

X
∼

//

��
==

==
==

==
ProjS∗

||xx
xx

xx
xx

x

Y

for a quasicoherent sheaf of algebras S∗ on Y satisfying the required hypothesis for Proj

to exist.

Two warnings! 1. Notice that I didn’t say anything about the O(1), which is an impor-
tant definition. The notion of affine morphism is affine-local on the target, but this notion
is not affine-local on the target! (In nice circumstances it is, as we’ll see later. We’ll also see
an example where this is not.) 2. Hartshorne gives a different definition; I’m following
the more general definition of Grothendieck. But again, these definitions turn out to be
the same in nice circumstances.

This is the “relative version” of Proj S∗ → Spec A.

3.9. Exercise. Show that closed immersions are projective morphisms. (Hint: Suppose the
closed immersion X → Y corresponds to OY → OX. Consider S0 = OX, Si = OY for i > 1.)

3.10. Exercise (suggested by Kirsten). Suppose f : X ↪→ Pn
S where S is some scheme.

Show that the structure morphism π : X → S is a projective morphism as follows: let
L = f∗OP

n
S
(1), and show that X = Proj π∗L

⊗n.
E-mail address: vakil@math.stanford.edu

7


