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Last day: Morphisms to (quasi)projective schemes, and invertible sheaves; fibered
products.

Today: Fibers of morphisms. Properties preserved by base change: open immer-
sions, closed immersions, Segre embedding. Other schemes defined by universal prop-
erty: reduction, normalization.

Last day, I showed you that fibered products exist, and I gave an argument that had
fairly few moving parts: fibered products exist when the schemes in question are affine
schemes; the universal property; and the fact that morphisms glue. I'll give you an exer-
cise later today to give you a chance to make a similar argument, when I give the universal
property for reducedness.

1. FIBERS OF MORPHISMS

We can informally interpret fibered product in the following geometric way. Suppose
Y — Z is a morphism. We interpret this as a “family of schemes parametrized by a base
scheme (or just plain base) Z.” Then if we have another morphism X — Z, we interpret
the induced map X xz Y — X as the “pulled back family”. I drew a picture of this on
the blackboard. I discussed the example: the family y?z = x3 + txz? of cubics in P?
parametrized by the affine line, and what happens if you pull back to the affine plane via
t = uv, to get the family y?z = x> + uvxz?.

For this reason, fibered product is often called base change or change of base or pullback.

For instance, if X is a closed point of Z, then we will get the fiber over Z. As an example,
consider the map of schemes f : Y = SpecQ[t] — Z = SpecQ[u] given by u +— t2 (or
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u = t?). (I drew a picture on the blackboard. It looked like a parabola with horizontal
axis of symmetry, projecting to the x-axis.) The fiber above u = 1 corresponds to the base
change X = Spec Q[u]/(u—1) — Spec Q[u]. Let’s do the algebra: Xx ;Y = Spec Q[t, u]/(u—
1,u—1t?) = Spec Q[t]/(t*—1) = SpecQ[t]/(t—1) x Q[t]/(t+1). We see two reduced points
@t“u=1,t=1landu=1,t=-1").

Next let’s examine the fiber above u = 0. We get Spec Q[t]/(t?) — a point with non-
reduced structure!

Finally, let’s consider u = —1. We get Spec Q[t]/(t* 4 1). We get a single reduced point.
The residue field Q(i) is a degree 2 field extension over Q.

(Notice that in each case, we get something of “size two”, informally speaking. One
way of making this precise is that the rank of the sheaf f,.Oy is rank 2 everywhere. In the
tirst case, we see it as getting two different points. In the second, we get one point, with
non-reduced behavior. In the last case, we get one point, of “size two”. We will later see
this “constant rank of f,Oy” as symptomatic of the fact that this morphism is “particularly
nice”, i.e. finite and flat.)

We needn’tlook at fibers over just closed points; we can consider fibers over any points.
More precisely, if p is a point of Z with residue field K, then we get a map SpecK — Z,
and we can base change with respect to this morphism.

In the case of the generic point of Spec Q[u] in the above example, we have K = Q(u),
and Q[u] — Q(u) is the inclusion of the generic point. Let X = Spec Q(u). Then you
can verify that X x 7z Y = Spec Q[t, u]/(u— t?) ® Q(u) = Spec Q(t). We get the morphism
Q(u) — Q(t) given by u = t* — a quadratic field extension.

Implicit here is a notion I should make explicit, about how you base change with respect
to localization. Given A — B, and a multiplicative set S of A, we have (S7'A)®2B = S7'B,
where S7'B has the obvious interpretation. In other words,

S-'™B=—B

]

STTA=—A
is “cofiber square” (or “pushout diagram”).

1.1. Remark: Geometric points. We have already given two meanings for the “points of a
scheme”. We used one to define the notion of a scheme. Secondly, if T is a scheme, people
sometimes say that Hom(T, X) are the “T-valued points of X”. That’s already confusing.
But also, people say that the geometric points correspond to Hom(T, X) where T is the Spec
of an algebraically closed field. Then for example the geometric fibers are the fibers over
geometric points. In the example above, here is a geometric point: Spec Q[ul/(u—1) —
Spec Q[u]. And here is a geometric fiber: Spec Q[t]/(t*>—1). Notice that the geometric fiber
above u = —1 also consists of two points, unlike the “usual” fiber.
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(I should check: possibly the definition should just be for T the algebraic closure of the
residue field of a not-necessarily-closed point.)

1.2. Exercise for the arithmetically-minded. Show that for the morphism Spec C — SpecR,
all geometric fibers consist of two reduced points. This exercise should be removed if I
have the wrong definition of geometric point!

We will discuss more about geometric points and properties of geometric fibers shortly.

2. PROPERTIES PRESERVED BY BASE CHANGE

We now discuss a number of properties that behave well under base change.

We’ve already shown that the notion of “open immersion” is preserved by base change
(problem 6 on problem set 9, see class 19). We did this by explicitly describing what the
fibered product of an open immersion is: if Y < Z is an open immersion, and f : X —
Z is any morphism, then we checked that the open subscheme f~'(Y) of X satisfies the
universal property of fibered products.

2.1. Important exercise (problem 8+ on the last problem set). Show that the notion of “closed
immersion” is preserved by base change. (This was stated in class 19.) Somewhat more
precisely, given a fiber diagram

W—X

|

Y—Z

where Y — Z is a closed immersion, then W — X is as well. (Hint: in the case of affine
schemes, you have done this before in a different guise — see problem B3 on problem set
1!) In the course of the proof, you will show that W is cut out by the same equations in
X as Y is in Z, or more precisely by pullback of those equations. Hence fibered products
(over k) of schemes of finite type over k may be computed easily:

SpeCk[X1>---)XT‘FL]/(f1(X1)--->Xm))---»fr(xh---)Xm))XSpeck
SpeCk[y1)--->ym]/(g1(y1>---)ym)v---vgs(yh---)ym))
= SpeCk[X]w")vay])"'>ym]/(f1(x1)"'>xm)>'*'>f1”(x1)"'>xm))

g](y])"‘)ym))'")gs(y1)"')ym))'

We sometimes say that W is the scheme-theoretic pullback of Y, scheme-theoretic inverse
image, or inverse image scheme of Y. The ideal sheaf of W is sometimes called the inverse
image (quasicoherent) ideal sheaf.



Note for experts: It is not necessarily the quasicoherent pullback (f*) of the ideal sheaf,
as the following example shows. (Thanks Joe!)

Speck[x]/(x) — Speck{x]/(x)

| l

Speck[x]/(x) —— Spec k[x]

Instead, the correct thing to pullback (the thing that “pulls back well”) is the surjection
Oz — Oy — 0, which pulls back to Ox — Ow — 0. The key issue is that pullback of
quasicoherent sheaves is right-exact, so we shouldn’t expect the pullback of 0 — Zy,; —
Oz — Oy — 0 to be exact, only right-exact. (Thus for example we get a natural map
f*Iy/Z — IW/X-)

Similarly, other important properties are preserved by base change.

2.2. Exercise. Show that the notion of “morphism locally of finite type” is preserved by
base change. Show that the notion of “affine morphism” is preserved by base change.
Show that the notion of “finite morphism” is preserved by base change.

2.3. Exercise. Show that the notion of “quasicompact morphism” is preserved by base
change.

2.4. Exercise. Show that the notion of “morphism of finite type” is preserved by base
change.

2.5. Exercise. Show that the notion of “quasifinite morphism” (= finite type + finite fibers)
is preserved by base change. (Note: the notion of “finite fibers” is not preserved by base
change. SpecQ — Spec Q has finite fibers, but Spec Q ®g Q — Spec Q has one point for
each element of Gal(Q/Q).)

2.6. Exercise. Show that surjectivity is preserved by base change (or fibered product).
In other words, if X — Y is a surjective morphism, then forany Z - Y, X xyZ — Z s
surjective. (You may end up using the fact that for any fields k; and k, containing ks,
k1 ®x, k2 is non-zero, and also the axiom of choice.)

2.7. Exercise. Show that the notion of “irreducible” is not necessarily preserved by base
change. Show that the notion of “connected” is not necessarily preserved by base change.
(Hint: C ®r C, Q[i] ®q QIil.)

If X is a scheme over a field k, it is said to be geometrically irreducible if its base change
to k (i.e. X X gpec k OPeEC k) is irreducible. Similarly, it is geometrically connected if its base
change to k (i.e. X Xgpeck Spec k) is connected. Similarly also for geometrically reduced and
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geometrically integral. We say that f : X — Y has geometrically irreducible (resp. connected, re-
duced, integral) fibers if the geometric fibers are geometrically irreducible (resp. connected,
reduced, integral).

If you care about such notions, see Hartshorne Exercise 11.3.15 for some facts (stated in
a special case). In particular, to check geometric irreducibility, it suffices to check over sep-
arably closed (not necessarily algebraically closed) fields. To check geometric reducedness,
it suffices to check over perfect fields.

2.8. Exercise. Show that Spec C is not a geometrically irreducible R-scheme. If chark = p,
show that Spec k(u) is not a geometrically reduced Spec k(uP)-scheme.

2.9. Exercise. Show that the notion of geometrically irreducible (resp. connected, reduced,
integral) fibers behaves well with respect to base change.

On a related note:

2.10. Exercise (less important). Suppose that l/k is a finite field extension. Show that a
k-scheme X is normal if and only if X xgpeck Speclis normal. Hence deduce that if k is
any field, then Spec k[w, x,y, z]/(wz — xy) is normal. (I think this was promised earlier.)
Hint: we showed earlier (Problem B4 on set 4) that Speckla, b, c,d]/(a?+ b% + c? + d?) is
normal.

3. PRODUCTS OF PROJECTIVE SCHEMES: THE SEGRE EMBEDDING

I will next describe products of projective A-schemes over A. The case of greatest initial
interest is if A = k. (A reminder of why we like projective schemes. (i) it is an easy way
of getting interesting non-affine schemes. (ii) we get lots of schemes of classical interest.
(iii) we have a hard time thinking of anything that isn’t projective or an open subset of a
projective. (iv) a k-scheme is a first approximation of what we mean by compact.)

In order to do this, I need only describe P x o P, because any projective scheme has a
closed immersion in some P}, and closed immersions behave well under base change: so
if X — PXand Y — P} are closed immersions, then X x5 Y < PR x o P} is also a closed
immersion, cut out by the equations of X and Y.

We'll describe P} x 5 P, and see that it too is a projective A-scheme. Consider the map
P X o PR — PR™T™ M given by

([x0; - - -3 Xml, W03 - - -3 Unl) — [Zo0s 2015+ - 5245, -+ + 3 Zmnd = [XoUo; XoU 13- -+ 5 XiU55 -+ - XmYnl-

First, you should verify that this is a well-defined morphism! On the open chart U; x V;,
this gives a map (Xoi, - - -, Xm/i, Yo/j - - - » Unyj) — [XoiYoss; - - -3 Xi/i¥js5 - - -3 Xm/iUnyjl. Note
that this gives an honest map to projective space — not all the entries on the right are
zero, as one of the entries (x;/y; ) is 1.



(Aside: we now well know that a map to projective space corresponds to an invertible
sheaf with a bunch of sections. The invertible sheaf on this case is 77O0pn (1) @ ;08 (1),
where 7t; are the projections of the product onto the two factors. The notion X is often
used for this notion, when you pull back sheaves from each factor of a product, and
tensor. For example, this invertible sheaf could be written O(1) X O(1). People often
write O(a) X O(b) for O(a,b).)

I claim this morphism is a closed immersion. (We are essentially using Exercise 3.2 in
the class 21 notes, problem 40 in problem set 9. But don’t waste your time by looking back
at it.) Let’s check this on the open set where z, # 0. Without loss of generality, I'll take
a = b = 0, to make notation simpler. Then the preimage of this open set in P}* x P} is the
locus where xo # 0 and yo # 0, i.e. U x V,, Uy and V, are the usual distinguished open sets
of P} and IP; respectively. The coordinates here are x; o, . . ., Xm/0,Y1/0, - - -, Unso. Thus the
map corresponds to Zqu/00 — Xa/0Yb 0, Which clearly induces a surjection of rings

A[ZOO/OO> e aZmn/OO] - A[Xvo, <oy Xm/0y Y1/0y - - ,Un/o]-
(Recall that Za0/00 V7 Xa/0 and Zob/00 yb/o.)

Hence we are done! This map is called the Segre morphism or Segre embedding. 1f A is a
field, the image is called the Segre variety — although we don’t yet know what a variety
is!

Here are some useful comments.

3.1. Exercise. Show that the Segre scheme (the image of the Segre morphism) is cut out
by the equations corresponding to

Qoo -+ CGon
rank | ¢ ., : =1,

Amo - Omn

i.e. that all 2 x 2 minors vanish. (Hint: suppose you have a polynomial in the ay; that
becomes zero upon the substitution ai; = x;y;. Give a recipe for subtracting polynomials
of the form monomial times 2 x 2 minor so that the end result is 0.)

3.2. Example. Let’s consider the first non-trivial example, when m = n = 1. We get
P! x P! — P3. We get a single equation

i.e. agoaii—agiajp = 0. We get our old friend, the quadric surface! Hence: the nonsingular
quadric surface wz — xy = 0 is isomorphic to P! x P'. Note that we can reinterpret the
rulings; I pointed this out on the model. Since (by diagonalizability of quadratics) all
nonsingular quadratics over an algebraically closed field are isomorphic, we have that all
nonsingular quadric surfaces over an algebraically closed field are isomorphic to P! x P'.

6



Note that this is not true even over a field that is not algebraically closed. For example,
over R, w? 4+ x? + y? 4+ z* = 0 is not isomorphic to P} xr P}. Reason: the former has no
real points, while the latter has lots of real points.

3.3. Let’s return to the general Segre situation. We can describe the closed subscheme
alternatively the Proj of the subring R of

A[XO)--me)yOw--)yn]

generated by monomials of equal degree in the x’s and the y’s. Using this, you can give a
co-ordinate free description of this product (i.e. without using the co-ordinates x; and yj;):
PR xa PR = Proj R where

R = 32, Sym'H(PY, O(1)) ® Sym"HO(PR, O(1)).

Kirsten asks an interesting question: show that O(a,b) gives a closed immersion to
projective space if a,b > 0.

You may want to ponder how to think of products of three projective spaces.

4. OTHER SCHEMES DEFINED BY UNIVERSAL PROPERTY: REDUCTION, NORMALIZATION

I now want to define other schemes using universal properties, in ways that are vaguely
analogous to fibered product.

As a warm-up, I'd like to revisit an earlier topic: reduction of a scheme. Recall that if X
is a scheme, we defined a closed immersion X™ < X. (See the comment just before §1.4
in class 19.) I'd like to revisit this.

4.1. Potentially enlightening exercise. Show that X™¢ — X satisfies the following universal
property: any morphism from a reduced scheme Y to X factors uniquely through X,

................... i Xred

\/

You can use this as a definition for X™¢ — X. Let me walk you through part of this.
First, prove this for X affine. (Here you use the fact that we know that maps to an affine
scheme correspond to a maps of global sections in the other direction.) Then use the
universal property to show the result for quasiaffine X. Then use the universal property to
show it in general. Oops! I don’t think I've defined quasiaffine before. It is any scheme
that can be expressed as an open subset of an affine scheme. I should eventually put
this definition earlier in the course notes, but may not get a chance to. It may appear
in the class 22 notes, which are yet to be written up. The concept is reintroduced yet
again in Exercise 4.4 below.



4.2. Normalization.

I now want to tell you how to normalize a reduced Noetherian scheme. A normaliza-
tion of a scheme X is a morphism v : X — X from a normal scheme, where v induces

a bijection of components of X and X, and v gives a birational morphism on each of the
components; it will be nicer still, as it will satisfy a universal property. (I drew a picture
of a normalization of a curve.) Oops! I didn’t define birational until class 27. Please just
plow ahead! I may later patch this anachronism, but most likely I won’t get the chance.

I'll begin by dealing with the case where X is irreducible, and hence integral. (I'll then
deal with the more general case, and also discuss normalization in a function field exten-
sion.)

In this case of X irreducible, the normalization satisfies dominant morphism from an
irreducible normal scheme to X, then this morphism factors uniquely through v:

Thus if it exists, then it is unique up to unique isomorphism. We now have to show that
it exists, and we do this in the usual way. We deal first with the case where X is affine, say

X = SpecR, where R is an integral domain. Then let R be the integral closure of R in its
fraction field Frac(R).

4.3. Exercise. Show that~ : Spec R — Spec R satisfies the universal property.

4.4. Exercise. Show that normalizations exist for any quasiaffine X (i.e. any X that can be
expressed as an open subset of an affine scheme).

4.5. Exercise. Show that normalizations exist in general.
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