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Last day: Maps to affine schemes; surjective, open immersion, closed immersion,
quasicompact, locally of finite type, finite type, affine morphism, finite, quasifinite. Im-
ages of morphisms: constructible sets, and Chevalley’s theorem (finite type morphism
of Noetherian schemes sends constructibles to constructibles).

Today: Pushforwards and pullbacks of quasicoherent sheaves.

This is the last class of the first quarter of this three-quarter sequence. Last day, I de-
tined a large number of classes of morphisms. Today, I will talk about how quasicoherent
sheaves push forward or pullback. I'll then sum up what’s happened in this class, and
give you some idea of what will be coming in the next quarter.

1. PUSHFORWARDS AND PULLBACKS OF QUASICOHERENT SHEAVES

There are two things you can do with modules and a ring homomorphism B — A. If
M is an A-module, you can create an B-module Mg by simply treating it as an B-module.
If N is an B-module, you can create an A-module N ®p A.

These notions behave well with respect to localization (in a way that we will soon make
precise), and hence work (often) in the category of quasicoherent sheaves. The two
functors are adjoint:

Homa (N ®g A, M) = Homg(N, M3)

(where this isomorphism of groups is functorial in both arguments), and we will see that
this remains true on the scheme level.

One of these constructions will turn into our old friend pushforward. The other will be
a relative of pullback, whom I'm reluctant to call an “old friend”.
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2. PUSHFORWARDS OF QUASICOHERENT SHEAVES

The main message of this section is that in “reasonable” situations, the pushforward of
a quasicoherent sheaf is quasicoherent, and that this can be understood in terms of one of
the module constructions defined above. We begin with a motivating example:

2.1. Exercise. Let f : Spec A — Spec B be a morphism of affine schemes, and suppose M

is an A-module, so M is a quasicoherent sheaf on Spec A. Show that f.M = Msg. (Hint:
There is only one reasonable way to proceed: look at distinguished opens!)

In particular, f,M is quasicoherent. Perhaps more important, this implies that the push-
forward of a quasicoherent sheaf under an affine morphism is also quasicoherent. The
following result doesn’t quite generalize this statement, but the argument does.

2.2. Theorem. — Suppose f : X — Y is a morphism, and X is a Noetherian scheme. Suppose F is
a quasicoherent sheaf on X. Then f.F is a quasicoherent sheaf on'Y.

The fact about f that we will use is that the preimage of any affine open subset of
Y is a finite union of affine sets (f is quasicompact), and the intersection of any two of
these affine sets is also a finite union of affine sets (this is a definition of the notion of a
quasiseparated morphism). Thus the “correct” hypothesis here is that f is quasicompact and
quasiseparated.

Proof. By the first definition of quasicoherent sheaves, it suffices to show the following:
if F is a quasicoherent sheaf on X, and f : X — SpecR, then the following diagram com-
mutes:

IeSp(g)CSpecR

r'(X,F) I'Xg, F)

F(X, Fg
This was a homework problem (# 18 on problem set 6)! O

2.3. Exercise. Give an example of a morphism of schemes 71: X — Y and a quasicoherent
sheaf F on X such that 7, F is not quasicoherent. (Answer: Y = A', X = countably many
copies of A'. Then let f = t. X, has a global section (1/t,1/t%,1/t3,...). The key point
here is that infinite direct sums do not commute with localization.)

Coherent sheaves don’t always push forward to coherent sheaves. For example, con-
sider the structure morphism f : AL — Speck, given by k — k[t]. Then f, OAL is the k[t],
which is not a finitely generated k-module. Under especially good situations, coherent
sheaves do push forward. For example:



2.4. Exercise. Suppose f : X — Y is a finite morphism of Noetherian schemes. If F is a
coherent sheaf on X, show that f,F is a coherent sheaf. (Hint: Show first that f,Ox is finite
type = locally finitely generated.)

Once we define cohomology of quasicoherent sheaves, we will quickly prove that if 7
is a coherent sheaf on P, then I'(IP}) is a finite-dimensional k-module, and more generally
if F is a coherent sheaf on Proj S,, then I'(Proj S.) is a coherent A-module (where Sy = A).
This is a special case of the fact the “pushforwards of coherent sheaves by projective mor-
phisms are also coherent sheaves”. We will first need to define “projective morphism”!
This notion is a generalization of Proj S, — SpecA.

3. PULLBACK OF QUASICOHERENT SHEAVES

(Note added in February: I will try to reserve the phrase “pullback of a sheaf” for
pullbacks of quasicoherent sheaves f*, and “inverse image sheaf” for f~!, which applies
in a more general situation, in the category of sheaves on topological spaces.)

I will give four definitions of the pullback of a quasicoherent sheaf. The first one is the
most useful in practice, and is in keeping with our emphasis of quasicoherent sheaves as
just “modules glued together”. The second is the “correct” definition, as an adjoint of
pushforward. The third, which we mention only briefly, is more correct, as adjoint in the
category of Ox-modules. And we end with a fourth definition.

We note here that pullback to a closed subscheme or an open subscheme is often called
restriction.

3.1. Construction/description of the pullback. Let us now define the pullback functor
precisely. Suppose X — Y is a morphism of schemes, and G is a quasicoherent sheaf on
Y. We will describe the pullback quasicoherent sheaf f*G on X by describing it as a sheaf
on the distinguished affine base. In our base, we will permit only those affine open sets
U C X such that f(U) is contained in an affine open set of Y. The distinguished restriction
map will force this sheaf to be quasicoherent.

Suppose U C X, V C Y are affine open sets, with f(U) C V, U = SpecA, V = Spec B.
Suppose F|yv = N. Then define I'(f{,.F, U) := N ®g A. Our main goal will be to show that
this is independent of our choice of V.

We begin as follows: we fix an affine open subset V C Y, and use it to define sections
over any affine open subset U C f~'(V). We show that this gives us a quasicoherent sheaf
G on f~1(V), by showing that these sections behave well with respect to distinguished
restrictions. First, note that if D(f) C U is a distinguished open set, then

My F,D(f)) =N®@pAr = (N®pA) @a A =T(f},.F,U) @a As.
Define the restriction map I'(f{,F, U) — I'(f}F, D(f)) by
(1) ML F, W) — TLF, U) @a Ag
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(with & — o ® 1 of course). Thus on the distinguished affine topology of Spec A we have
defined a quasicoherent sheaf.

Finally, we show that if f(Ul) is contained in two affine open sets V; and V,, then the
alleged sections of the pullback we have described do not depend on whether we use V;
or V,. More precisely, we wish to show that

r(fy, F,U) and T(f,F,U)

have a canonical isomorphism, which commutes with the restriction map (1).

Let {Wi}ic1 be an affine cover of V; NV, by sets that are distinguished in both V; and V,
(possible by the Proposition we used in the proof of the Affine Communication Lemma).
Then by the previous paragraph, as f}, 7 is a sheaf on the distinguished base of V3,

C(f}, F, U) = ker (@i (fy, F, 7 (Wh)) = @ (5, F, £ (WinWj))).
If Vi = Spec By and W; = D(g;), then
F(fy, F 7 (WA)) = N @, Aprg, = N ®(py),, Arrg, = Ny, F, T (Wh),
SO
2) C(f3, F,U) = ker (@i (fyy, F, f1(W;)) = @;T(Fo, F, F1(Win W) .
The same argument for V, yields
(3) C(f3, 7, U) = ker (@i (fyy, F, f71(W;)) = @37 (Fy, F, 1 (Win W) .

But the right sides of (2) and (3) are the same, so the left sides are too. Moreover, (2) and
(3) behave well with respect to restricting to a distinguished open D(g) of Spec A (just
apply ®aA, to the the right side) so we are done.

Hence we have described a quasicoherent sheaf f*G on X whose behavior on affines
mapping to affines was as promised.

3.2. Theorem. —

(1) The pullback of the structure sheaf is the structure sheaf.

(2) The pullback of a finite type (=locally finitely generated) sheaf is finite type.

(3) The pullback of a finitely presented sheaf is finitely presented. Hence if f : X — Y isa
morphism of locally Noetherian schemes, then the pullback of a coherent sheaf is coherent.
(It is not always true that the pullback of a coherent sheaf is coherent, and the interested
reader can think of a counterexample.)

(4) The pullback of a locally free sheaf of rank v is another such. (In particular, the pullback of
an invertible sheaf is invertible.)

(5) (functoriality in the morphism) 5 F = (113 0 711)*F

(6) (functoriality in the quasicoherent sheaf) F1 — F, induces w*F; — m*F,

(7) If s is a section of F then there is a natural section 7*s that is a section of " F.

(8) (stalks) If t : X — Y, t(x) = vy, then (7" F)x = F, @0y, Oxx The previous map,
restricted to the stalks, is f — f®1. (In particular, the locus where the section on the target
vanishes pulls back to the locus on the source where the pulled back section vanishes.)
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(9) (fibers) Pullbacks of fibers are given as follows: if m : X — Y, where 1t(x) = vy, then
TCF /mx 0 F = (F/myyF) @oy, /my., Oxx/Mxx
(10) (tensor product) m*(F ® G) = m*'F @ m*G
(11) pullback is a right-exact functor

All of the above are interconnected in obvious ways. For example, given 7y — F, and
a section s of F;, then we can pull back the section and then send it to 7t*F,, or vice versa,
and we get the same thing.

I used some of these results to help give an intuitive picture of the pullback.

Proof. Most of these are left to the reader. It is convenient to do right-exactness early (e.g.
before showing that finitely presented sheaves pull back to finitely presented sheaves).
For the tensor product fact, show that (M ®s R) ® (N ®s R) = (M ® N) ®s R, and that
this behaves well with respect to localization. The proof of the fiber fact is as follows.
(S,n) — (R,m).

S—R

L

S/n—R/m
(N®sR)®@r(R/m) = (N®s(S/n))®s/m(R/m) as both sides are isomorphic to N®g(R/m). [

3.3. Unimportant Exercise. Verify that the following is an example showing that pullback
is not left-exact: consider the exact sequence of sheaves on A', where p is the origin:

0= O (—p) = Op1 — O — 0.

(This is a closed subscheme exact sequence; also an effective Cartier exact sequence. Al-
gebraically, we have k[t]-modules 0 — tk[t] — k[t] — k — 0.) Restrict to p.

3.4. Pulling back closed subschemes. Suppose Z — Y is a closed immersion, and X — Y
is any morphism. Then we define the pullback of the closed subscheme Z to X as follows.
We pullback the quasicoherent sheaf of ideals on Y defining Z to get a quasicoherent sheaf
of ideals on X (which we take to define W). Equivalently, on any affine open Y, Z is cut
out by some functions; we pull back those functions to X, and denote the scheme cut out
by them by W.

Exercise. Let W be the pullback of the closed subscheme Z to X. Show that W = Z xy X.
In other words, the fibered product with a closed immersion always exists, and closed
immersions are preserved by fibered product (or by pullback), i.e. if

W ——>X

Z——=Y
is a fiber diagram, and g is a closed immersion, then so is g’. (This is actually a repeat of
an exercise in class 19 — sorry!)



3.5. Three more “definitions”. Pullback is left-adjoint of the pushforward. This is a
theorem (which we’ll soon prove), but it is actually a pretty good definition. If it exists,
then it is unique up to unique isomorphism by Yoneda nonsense.

The problem is this: pushforwards don’t always exist (in the category of quasicoher-
ent sheaves); we need the quasicompact and quasiseparated hypotheses. However, pull-
backs always exist. So we need to motivate our definition of pullback even without the
quasicompact and quasiseparated hypothesis. (One possible motivation will be given in
Remark 3.7.)

3.6. Theorem. — Suppose 7t : X — Y is a quasicompact, quasiseparated morphism. Then pullback
is left-adjoint to pushforward. More precisely, Hom(f*G, F) = Hom(G, f.F).

(The quasicompact and quasiseparated hypothesis is required to ensure that the push-
forward exists, not because it is needed in the proof.)

More precisely still, we describe natural homomorphisms that are functorial in both ar-
guments. We show that it is a bijection of sets, but it is fairly straightforward to verify that
it is an isomorphism of groups. Not surprisingly, we will use adjointness for modules.

Proof. Let’s unpack the right side. What’s an element of Hom(G, f,.F)? For every affine
Vin Y, we get an element of Hom(G(V), F(f~'(V))), and this behaves well with respect
to distinguished opens. Equivalently, for every affine Vin Y and U in (V) C X, we
have an element Hom(G(V), F(U)), that behaves well with respect to localization to dis-
tinguished opens on both affines. By the adjoint property, this corresponds to elements
of Hom(G(V) ®o, (v) Ox(U), F(U)), which behave well with respect to localization. And
that’s the left side. U

3.7. Pullback for ringed spaces. (This is actually conceptually important but distracting for
our exposition; we encourage the reader to skip this, at least on the first reading.) Pull-
backs and pushforwards may be defined in the category of modules over ringed spaces.
We define pushforward in the usual way, and then define the pullback of an Oy-module
using the adjoint property. Then one must show that (i) it exists, and (ii) the pullback of
a quasicoherent sheaf is quasicoherent. The fourth definition is as follows: suppose we
have a morphism of ringed spaces m : X — Y, and an Oy-module G. Then we define
*G = 171G ®¢10, Ox. We will not show that this definition is equivalent to ours, but
the interested reader is welcome to try this as an exercise. There is probably a proof in
Hartshorne. The statements of Theorem 3.6 apply in this more general setting. (Really
the third definition “requires” the fourth.)

Here is a hint as to why this definition is equivalent to ours (a hint for the exercise if
you will). We need to show that f~'F ®; 1o, Ox (“definition 4”) and f*F (“definition
1”) are isomorphic. You should (1) find a natural morphism from one to the other, and
(2) show that it is an isomorphism at the level of stalks. The difficulty of (1) shows the
disadvantages of our definition of quasicoherent sheaves.
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