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1. Properties of morphisms of schemes 3

Last day: Associated points; more on normality; invertible sheaves and divisors take
1.

Today: Maps to affine schemes; surjective, open immersion, closed immersion, qua-
sicompact, locally of finite type, finite type, affine morphism, finite, quasifinite. Images
of morphisms: constructible sets, and Chevalley’s theorem (finite type morphism of
Noetherian schemes sends constructibles to constructibles).

Last day, I defined a morphism of schemes f : (X, Ox) — (Y, Oy) as follows.

I first defined the notion of a morphism of ringed spaces (X, Ox) — (Y, Oy), which is
a continuous map of topological spaces f : X — Y along with a map of sheaves of rings
(on Y) Oy — f.Ox, or equivalently (by adjointness of inverse image and pushfoward)
1Oy — Ox (a map of sheaves of rings on X). This should be seen as a description of
how to pull back functions on Y to get functions on X.

An example is a morphism of affine schemes Spec A — Spec B. These correspond to
morphisms of rings B — A.

Then a morphism of schemes X — Y can be defined as a morphism of these ringed
spaces, that locally looks like a morphism of affine schemes. In other words, X can be
covered by affine open sets, such that for each such SpecR, there is an affine open set
Spec S of Y containing its image, such that the map SpecR — SpecS is of the form de-
scribed in the primordial example.

We proved this by temporarily introducing a new concept, that of a locally ringed space.
Then a morphism of schemes X — Y is just the same as a morphism of locally ringed
spaces; we showed this by showing this for affine schemes.

I encouraged you to get practice with this in the following exercise, to make sense of
the map A™ — 0 — P™ “given by” (xo, . . ., Xn) F [X0; - - 3 Xnl.

We thus have described the category of schemes. The notion of an isomorphism of schemes
subsumes our earlier definition.
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I described the category of k-schemes, or more generally A-schemes where A is a ring.
More generally, if S is a scheme, we have the category of S-schemes. The objects are
diagrams of the form

X
S

and morphisms are commutative diagrams of the form
S

The category of k-schemes corresponds to the case S = Speck, and the category of A-
schemes correspond to the case S = Spec A.

X

Y

We now give some examples.

0.1. Exercise. Show that morphisms X — Spec A are in natural bijection with ring mor-
phisms A — T'(X,Ox). (Hint: Show that this is true when X is affine. Use the fact that
morphisms glue.)

In particular, there is a canonical morphism from a scheme to Spec of its space of global
sections. (Warning: Even if X is a finite-type k-scheme, the ring of global sections might
be nasty! In particular, it might not be finitely generated.)

Example: Suppose S, is a graded ring, with So = A. Then we get a natural morphism
Proj S. — Spec A. For example, we have a natural map P} — Spec A

0.2. Exercise. Show that SpecZ is the final object in the category of schemes. In other
words, if X is any scheme, there exists a unique morphism to Spec Z. (Hence the category
of schemes is isomorphic to the category of Z-schemes.)

0.3. Exercise. Show that morphisms X — Spec Z[t] correspond to global sections of the
structure sheaf.

This is one of our first explicit examples of an important idea, that of representable func-
tors! This is a very useful idea, whose utility isn’t immediately apparent. We have a con-
travariant functor from schemes to sets, taking a scheme to its set of global sections. We
have another contravariant functor from schemes to sets, taking X to Hom(X, Spec Z[t]).
This is describing an “isomorphism” of the functors. More precisely, we are describing an
isomorphism I'(X, Ox) = Hom(X, Spec Z[t]) that behaves well with respect to morphisms
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of schemes: given any morphism f : X — Y, the diagram

'Y, Oy) —— Hom(Y, Spec Z[t])

lf* lfo
I'(X, Ox) — Hom(X, Spec Z[t])

commutes. Given a contravariant functor from schemes to sets, by Yoneda's lemma, there is only
one possible scheme Y, up to isomorphism, such that there is a natural isomorphism between this
functor and Hom (-, Y). If there is such a Y, we say that the functor is representable.

Here are a couple of examples of something you’ve seen to put it in context. (i) The
contravariant functor Hom(-,Y) (i.e. X — Hom(X,Y)) is representable by Y. (ii) Suppose
we have morphisms X,Y — Z. The contravariant functor Hom(:, X) X gom(.,z) Hom(-,Y)
is representable if and only if the fibered product X x Y exists (and indeed then the
contravariant functor is represented by Hom(-, X x 7 Y)). This is purely a translation of the

definition of the fibered product — you should verify this yourself.

Remark for experts: The global sections form something better than a set — they form
a scheme. You can define the notion of ring scheme, and show that if a contravariant
functor from schemes to rings is representable (as a contravariant functor from schemes
to sets) by a scheme Y, then Y is guaranteed to be a ring scheme. The same is true for
group schemes.

0.4. Related Exercise. Show that global sections of O% correspond naturally to maps to
SpecZ[t,t']. (SpecZ[t,t"] is a group scheme. We will discuss group schemes more in
class 36.)

Morphisms and tangent spaces. Suppose f : X — Y, and f(p) = q. Then if we were in
the category of manifolds, we would expect a tangent map, from the tangent space of p
to the tangent space at q. Indeed that is the case; we have a map of stalks Oy 4 — Ox,
which sends the maximal ideal of the former n to the maximal ideal of the latter m (we
have checked that this is a “local morphism” when we briefly discussed locally ringed
spaces). Thus n* — m?, from which n/n? — m/m?, from which we have a natural map
(m/m?)Y — (n/n?)V. This is the map from the tangent space of p to the tangent space at q
that we sought.

0.5. Exercise. Suppose X is a finite type k-scheme. Describe a natural bijection Hom(Spec k[e] /€2, X)
to the data of a k-valued point (a point whose residue field is k, necessarily closed) and a
tangent vector at that point.

1. PROPERTIES OF MORPHISMS OF SCHEMES

I'm going to define a lot of useful notions.

The notion of surjective will have the same meaning as always: X — Y is surjective if
the map of sets is surjective.



1.1. Unimportant Exercise. Show that integral ring extensions induces a surjective map
of spectra. (Hint: Recall the Cohen-Seidenberg Going-up Theorem: Suppose B C A is
an inclusion of rings, with A integrally dependent on B. For any prime q C B, there is a
prime p C AsuchthatpNB =q.)

Definition. If U is an open subscheme of Y, then there is a natural morphism U — Y.
We say that f : X — Y is an open immersion if f gives an isomorphism from X to an open
subscheme of Y. (Really, we want to say that X “is” an open subscheme of Y.) Observe
that if f is an open immersion, then 10y = Ox.

1.2. Exercise. Suppose i: U — Zis an open immersion, and f : Y — Z is any morphism.
Show that U x 7 Y exists. (Hint: I'll even tell you what itis: (f~' (W), Oyl¢-1)).)

1.3. Easy exercise. Show that open immersions are monomorphisms.

Suppose X is a closed subscheme of Y. Then there is a natural morphism i: X — Y: on
the affine open set Spec R of Y, where X is “cut out” by the ideal I C R, this corresponds to
the ring map R — R/I. A morphism f: W — Y is a closed immersion if it can be factored

as
f/Y
X

where i : X — Y is a closed subscheme. (Really, we want to say that W “is” a closed
subscheme of Y.)

\%%

(Example: If X is a scheme and X™¢ is its reduction, then there is a natural closed im-
mersion X™¢ — X.)

1.4. Proposition (the property of being a closed immersion is affine-local on the target). — Suppose
f : X — Y is a morphism of schemes. It suffices to check that f is a closed immersion on an affine
open cover of Y.

Reason: The way in which closed subschemes are defined is local on the target.

(In particular, a morphism of affine schemes is a closed immersion if and only if it
corresponds to a surjection of rings.)

1.5. Exercise. Suppose Y — Z is a closed immersion, and X — Z is any morphism. Show
that the fibered product X x 7 X exists, by explicitly describing it. Show that the projection
X xzY — Yis a closed immersion. We say that “closed immersions are preserved by
base change” or “closed immersions are preserved by fibered product”. (Base change is
another word for fibered products.)

1.6. Less important exercise. Show that closed immersions are monomorphisms.
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Definition. A morphism X — Yis a locally closed immersion if it factors into X ez %y

where f is a closed immersion and g is an open immersion. Example: Specklt, 7 -
Speck[x,y] where x — t, y — 0. (Unimportant fact: as the composition of monomor-
phisms are monomorphisms, so locally closed immersions are monomorphisms. Clearly
open immersions and closed immersions are locally closed immersions.)

(Interesting question: is this the same as defining locally closed immersions as open
immersions of closed immersions? In other words, can the roles of open and closed im-
mersions in the definition be reversed?)

A morphism f : X — Y is quasicompact if for every open affine subset U of Y, f~1(U) is
quasicompact.

1.7. Exercise (quasicompactness is affine-local on the target). ~ Show that a morphism f :
X — Y is quasicompact if there is cover of Y by open affine sets U; such that f~'(Ll;) is
quasicompact. (Hint: easy application of the affine communication lemma)

1.8. Exercise. Show that the composition of two quasicompact morphisms is quasicom-
pact.

A morphism f : X — Y is locally of finite type if for every affine open set Spec B of Y,
f~1(Spec B) can be covered with open sets Spec A; so that the induced morphism B — A;
expresses A; as a finitely generated B-algebra.

A morphism is of finite type if it is locally of finite type and quasicompact. Translation:
for every affine open set Spec B of Y, f~1(Spec B) can be covered with 4 finite number of open
sets Spec A; so that the induced morphism B — A; expresses A; as a finitely generated
B-algebra.

1.9. Exercise (the notions “locally of finite type” and “finite type” are affine-local on the target).
Show that a morphism f : X — Y is locally of finite type if there is a cover of Y by open
affine sets Spec R; such that ' (Spec R;) is locally of finite type over R;.

1.10. Exercise. Show that a morphism f : X — Y is locally of finite type if for every affine
open subsets Spec A C X, SpecB C Y, with f(Spec A) C SpecB, A is a finitely generated
B-algebra. (Hint: use the affine communication lemma on f~'(Spec B).)

Example: the “structure morphism” P} — Spec A is of finite type, as P} is covered by
n + 1 open sets of the form Spec A[xy,...,xn]. More generally, ProjS, — Spec A (where
So = A) is of finite type.

More generally still: our earlier definition of schemes of “finite type over k” (or “finite
type k-schemes”) is now a special case of this more general notion: a scheme X is of finite
type over k means that we are given a morphism X — Spec k (the “structure morphism”)
that is of finite type.



Here are some properties enjoyed by morphisms of finite type.

1.11. Exercises. These exercises are important and not hard.

e Show that a closed immersion is a morphism of finite type.

e Show that an open immersion is locally of finite type. Show that an open im-
mersion into a Noetherian scheme is of finite type. More generally, show that a
quasicompact open immersion is of finite type.

e Show that a composition of two morphisms of finite type is of finite type.

e Suppose we have a composition of morphisms X oy 2. 7, where fis qua-
sicompact, and g o f is finite type. Show that f is finite type.

e Suppose f : X — Y is finite type, and Y is Noetherian. Show that X is also Noether-
ian.

A morphism f : X — Y is affine if for every affine U of Y, f~'(U) is an affine scheme.
Clearly affine morphisms are quasicompact. Also, clearly closed immersions are affine:
if X — Y is a closed immersion, then the preimage of an affine open set SpecR of Y is
(isomorphic to) some Spec R/I, by the definition of closed subscheme.

1.12. Proposition (the property of “affineness” is affine-local on the target). A morphism
f: X — Y is affine if there is a cover of Y by open affine sets U such that f~'(U) is affine.

Proof. As usual, we use the Affine Communication Theorem. We check our two criteria.
First, suppose f : X — Y is affine over Spec S, i.e. f ' (Spec S) = Spec R. Then f~'(Spec S;) =
Spec Rex,.

Second, suppose we are given f : X — SpecS and (fy,...,f,) = S with Xy, affine
(Spec Ry, say). We wish to show that X is affine too. Define R as the kernel of S-modules

R]X"'XRH—>R12X"'R(n_])n

where Xy, = Spec Ry;. Then R is clearly an S-module, and has a ring structure. We define
a morphism SpecR — SpecS. Note that Ry, = R;. Then we define SpecR — SpecS via
Spec Ry — Spec Ry, — Spec S. The morphisms glue. 0

This has some non-obvious consequences, as shown in the next exercise.

1.13. Exercise. Suppose X is an affine scheme, and Y is a closed subscheme locally cut out
by one equation (e.g. if Y is an effective Cartier divisor). Show that X — Y is affine. (This
is clear if Y is globally cut out by one equation f; then if X = SpecR then Y = SpecRy.
However, Y is not always of this form.)

1.14. Example. Here is an explicit consequence. We showed earlier that on the cone over
the smooth quadric surface Spec k[w, x,y, z]/(wz — xy), the cone over a rulingw =x =0
is not cut out scheme-theoretically by a single equation, by considering Zariski-tangent
spaces. We now show that it isn’t even cut out set-theoretically by a single equation.
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For if it were, its complement would be affine. But then the closed subscheme of the
complement cut out by y = z = 0 would be affine. But this is the schemey =z =0
(also known as the wx-plane) minus the point w = x = 0, which we’ve seen is non-affine.
(For comparison, on the cone Spec k[x,y, zl/(xy — z?), the ruling x = z = 0 is not cut
out scheme-theoretically by a single equation, but it is cut out set-theoretically by x = 0.)
Verify all this!

We remark here that we have shown that if f : X — Y is an affine morphism, then
f.Ox is a quasicoherent sheaf of algebras (a quasicoherent sheaf with the structure of an
algebra “over Ox”). We’ll soon reverse this process to obtain Spec of a quasicoherent sheaf
of algebras.

A morphism f : X — Y is finite if for every affine Spec R of Y, f~'(Spec R) is the spectrum
of an R-algebra that is a finitely-generated R-module. Clearly finite morphisms are affine.
Note that f,Ox is a finite type quasicoherent sheaf of algebras (= coherent if X is locally
Noetherian).

1.15. Exercise (the property of finiteness is affine-local on the target). Show that a morphism
f: X — Y is finite if there is a cover of Y by open affine sets Spec R such that f~'(Spec R) is
the spectrum of a finite R-algebra.

(Hint: Use Exercise 1.12, and that f,Ox is finite type.)

1.16. Easy exercise. Show that closed immersions are finite morphisms.

Degree of a finite morphism at a point. Suppose f : X — Y is a finite morphism. f,Ox
is a finite type (quasicoherent) sheaf on Y, and the rank of this sheaf at a point p is called
the degree of the finite morphism at p. This is a upper semicontinuous function (we’ve
shown that the rank of a finite type sheaf is uppersemicontinuous in an exercise when we
discussed rank).

1.17. Exercise. Show that the rank at p is non-zero if and only if f~'(p) is non-empty.

1.18. Exercise. Show that finite morphisms are closed, i.e. the image of any closed subset
is closed.

A morphism is quasifinite if it is of finite type, and for ally € Y, the scheme X, = f~'(y)
is finite over y.

1.19. Exercise. (a) Show that if a morphism is finite then it is quasifinite. (b) Show that
the converse is not true. (Hint: A" — {0} — A'))

1.20. Images of morphisms. I want to go back to the point that the image of a finite
morphism is closed. Something more general is true. We answer the question: what can
the image of a morphism look like? We know it can be open (open immersion), and closed
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(closed immersions), locally closed (locally closed immersions). But it can be weirder still:
Consider A? — A? given by (x,y) — (x,xy). then the image is the plane, minus the y-axis,
plus the origin. It can be stranger still, and indeed if S is any subset of a scheme Y, it can
be the image of a morphism: let X be the disjoint union of spectra of the residue fields of
all the points of S, and let f : X — Y be the natural map. This is quite pathological (e.g.
likely horribly noncompact), and we will show that if we are in any reasonable situation,
the image is essentially no worse than arose in the previous example.

We define a constructible subset of a scheme to be a subset which belongs to the smallest
family of subsets such that (i) every open set is in the family, (ii) a finite intersection of
family members is in the family, and (iii) the complement of a family member is also in
the family. So for example the image of (x,y) — (x, xy) is constructible.

Note that if X — Y is a morphism of schemes, then the preimage of a constructible set
is a constructible set.

1.21. Exercise. Suppose Xis a Noetherian scheme. Show that a subset of X is constructible
if and only if it is the finite disjoint union of locally closed subsets.

Chevalley’s Theorem. Suppose f : X — Y is a morphism of finite type of Noetherian
schemes. Then the image of any constructible set is constructible.

I might give a proof in the notes eventually. See Atiyah-Macdonald, Exercise 7.25 for
the key algebraic argument. Next quarter, we will see that in good situations (e.g. if the
source is projective over k and the target is quasiprojective) then the image is closed.

We end with a useful fact about images of schemes that didn’t naturally fit in anywhere
in the previous exposition.

1.22. Fast important exercise. Show that the image of an irreducible scheme is irreducible.
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