FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 16
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Last day: much more on quasicoherence. Quasicoherent sheaves form an abelian
category. Finite type (= “locally finitely generated”) and coherent sheaves. Support of
a sheaf. Rank of a finite type sheaf at a point. Closed subschemes at a point.

Today: effective Cartier divisors; quasicoherent sheaves on projective A-schemes
corresponding to graded modules, line bundles on projective A-schemes, O(n), gener-
ated by global sections, Serre’s theorem, the adjoint functors ~ and T..

1. YET MORE ON CLOSED SUBSCHEMES

Here are few more notions about closed subschemes.

In analogy with closed subsets of a topological space, we can define finite unions and
arbitrary intersections of closed subschemes. On affine open set Spec R, if for each i in an
index set, I; corresponds to a closed subscheme, the scheme-theoretic intersection of the
closed subschemes corresponds to the ideal generated by the I; (here the index set may be
infinite), and the scheme-theoretic union corresponds to the intersection of by all I; (here
the index should be finite).

Exercise: Describe the scheme-theoretic intersection of (y — x?) and y in A?. Describe
the scheme-theoretic union. Draw a picture.

Exercise: Prove some fact of your choosing showing that closed subschemes behave
similarly to closed subsets. For example, if X, Y, and Z are closed subschemes of W, show
that( XNZ)u(YNZ)=(XUY)NZ
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1.1. From closed subschemes to effective Cartier divisors. There is a special name
for a closed subscheme locally cut out by one equation that is not a zero-divisor. More
precisely, it is a closed subscheme such that there exists an affine cover such that on each
one it is cut out by a single equation, not a zero-divisor. (This does not mean that on
any affine it is cut out by a single equation — this notion doesn’t satisfy the “gluability”
hypothesis of the Affine Communication Theorem. If I C R is generated by a non-zero
divisor, then Iy C R¢is too. But “not conversely”. I might give an example later.) We
call this an effective Cartier divisor. (This admittedly unwieldy terminology! But there is a
reason for it.) By Krull, it is pure codimension 1.

Remark: if I = (u) = (v), and u is not a zero-divisor, then u and v differ by a unit in R.
Proof: u € (v) implies u = av. Similarly v = bu. Thus u = abu, from which u(1—ab) = 0.
As uis not a zero-divisor, 1 = ab, so a and b are units.

Reason we care: effective Cartier divisors give invertible sheaves. If 7 is an effective
Cartier divisor on X, then 7 is an invertible sheaf. Reason: locally, sections are multiples
of a single generator 1, and there are no “relations”.

The invertible sheaf corresponding to an effective Cartier divisor is for various reasons
defined to be the dual of the ideal sheaf. This line bundle has a canonical section: Du-
alizing 0 — 7 — O gives us O — I*. Exercise. This section vanishes along our actual
effective Cartier divisor.

1.2. Exercise. Describe the invertible sheaf in terms of transition functions. More pre-
cisely, on any affine open set where the effective Cartier divisor is cut out by a single
equation, the invertible sheaf is trivial. Determine the transition functions between two
such overlapping affine open sets. Verify that there is indeed a canonical section of this
invertible sheaf, by describing it.

To describe the tensor product of such invertible sheaves: if I = (u) (locally) and | = (v),
then the tensor product corresponds to (uv).

We get a monoid of effective Cartier divisors, with unit Z = . Notation: D is an
effective Cartier divisor. O(D) is the corresponding line bundle. O(—D) is the ideal sheaf.

0—-0(-D)—> 0O — Op — 0.

D is associated to the closed subscheme.

Hence we can get a bunch of invertible sheaves, by taking differences of these two.
Surprising fact: we almost get them all! (True for all nonsingular schemes. This is true for
all projective schemes. Itis very hard to describe an invertible sheaf that is not describable
in such a way.)



2. QUASICOHERENT SHEAVES ON PROJECTIVE A-SCHEMES

We now describe quasicoherent sheaves on a projective A-scheme. Recall that a pro-
jective A-scheme is produced from the data of Z=°-graded ring S., with So = A, and S,
finitely generated as an A-module. The resulting scheme is denoted ProjS..

Let X = ProjS.. Suppose M, is a graded S, module, graded by Z. We define the qua-

sicoherent sheaf M, as follows. (I will avoid calling it M, as this might cause confusion
with the affine case.) On the distinguished open D(f), we let

M.(D(f)) = (Mg)o.

—_——

(More correctly: we define a sheaf M, (f) on D(f) for each f. We give identifications of the

e~

restriction of M. (f) and M, (g) to D(fg). Then by an earlier problem set problem telling
how to glue sheaves, these sheaves glue together to a single sheaf on M, on X. We then

discard the temporary notation M, (f).)

This is clearly quasicoherent, because it is quasicoherent on each D(f). If M, is finitely
generated over S,, then so M, is a finite type sheaf.

I will now give some straightforward facts.

If M, and M agree in high enough degrees, then M, = M!. Thus the map from graded
S.-modules to quasicoherent sheaves on Proj S, is not a bijection.

Given a map of graded modules ¢ : M, — N,, we we get an induced map of sheaves
M. — N.,. Explicitly, over D(f), the map M, — N, induces M. [1/f] — N.,[1/f] which
induces ¢ : (M.[1/f])o — (N.[1/f])o; and this behaves well with respect to restriction to
smaller distinguished open sets, i.e. the following diagram commutes.

(MLIT/41)o — 2= (NL[1/f1)0

L

(ML[T/(fg)])o —= (N.[1/(fg)])o.

In fact ~ is a functor from the category of graded S.-modules to the category of quasico-
herent sheaves on Proj S.. This isn’t quite an isomorphism, but it is close. The relationship
is akin to that between presheaves and sheaves, and the sheafification functor, as we will
see before long.

2.1. Exercise. Show that M, ® N, = M;é?g—*/ N,. (Hint: describe the isomorphism of
sections over each D(f), and show that this isomorphism behaves well with respect to
smaller distinguished opens.)

If I, C S, is a graded ideal, we get a closed subscheme. Example: Suppose S, =
k[w, x,v, zl, so Proj S, = P3. Suppose L. = (Wx —yz,x* — wy,y? — xz). Then we get the
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exact sequence of graded S,-modules
0—I1,—S,—S,. /I, —0.

Which closed subscheme of P> do we get? The twisted cubic!

2.2. Exercise. Show thatif I, is a graded ideal of S,, show that we get a closed immersion
ProjS. /I, < ProjS..

3. INVERTIBLE SHEAVES (LINE BUNDLES) ON PROJECTIVE A-SCHEMES

We now come to one of the most fundamental concepts in projective geometry.

First, I want to mention something that I should have mentioned some time ago.

3.1. Exercise. Suppose S, is generated over Soby fy, ..., f,,. Suppose d = lem(deg fy, ..., degf,).
Show that Sg4, is generated in “new” degree 1 (= “old” degree d). (Hint: I like to show

this by induction on the size of the set {deg fi, ..., degf}.) This is handy, because we can

stick every Proj in some projective space via the construction of Exercise 2.2.

Suppose that S, is generated in degree 1. By the previous exercise, this is not a huge
assumption. Suppose M, is a graded S,-module. Define the graded module M(n), so

that M(n), := M,4m. Thus the quasicoherent sheaf M (n), is given by

e~

where here the subscript means we take the nth graded piece. (These subscripts are ad-
mittedly confusing!)

As an incredibly important special case, define Op,;s, (n) := S(n),. When the space is
implicit, it can be omitted from the notation: O(n) (pronounced “oh of n”).

3.2. Important exercise. If S, is generated in degree 1, show that Op,,;s, (1) is an invert-
ible sheaf.

3.3. Essential exercise. Calculate dimy I'(P{", Opm (11)).

I'll get you started on this. As always, consider the “usual” affine cover. Consider the
n = 1 case. Say S. = K[xo, ..., Xm]. Suppose we have a global section of O(1). On D(x,),

the sections are of the form f(xo,...,Xn) /xgeg =1 On D(x;), the sections are of the form
9(xo, ..., Xn) /x| 97", They are supposed to agree on the overlap, so
xgeg g%y - vy Xn) = xclleg 9 (xg, ... %)

deg g—1

How is this possible? Well, we must have that g = x; x some linear factor, and
deg f—1

f=x, x the same linear factor. Thus on D(x,), this section must be some linear form.
On D(x;), this section must be the same linear form. By the same argument, on each
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D(x), the section must be the same linear form. Hence (with some argumentation), the
global sections of O(1) correspond to the linear forms in xy, ..., Xy, of which there are
m+ 1.

Thus x + y + 2z is a section of O(1) on P2 It isn’t a function, but I can say when this
section vanishes — precisely where x +y + 2z = 0.

3.4. Exercise. Show that F(n) = F ® O(n).
3.5. Exercise. Show that O(m+n) = O(m) ® O(n).

3.6. Exercise. Show that if m # n, then Opt (m) is not isomorphic to Opi (n)if 1 > 0.
(Hence we have described a countable number of invertible sheaves (line bundles) that

are non-isomorphic. We will see later that these are all the line bundles on projective space
Py

4. GENERATION BY GLOBAL SECTIONS, AND SERRE’S THEOREM

(I discussed this in class 15, but should have discussed them here. Hence they are in
the class 16 notes.)

Suppose F is a sheaf on X. We say that F is generated by global sections at a point p if we
can find ¢ : O%1 — F that is surjective at the stalk of p: ¢, : OF" — F, is surjective. (Some
what more precisely, the stalk of F at p is generated by global sections of F. The global
sections in question are the images of the [I| factors of OJ'.) We say that F is generated
by global sections if it is generated by global sections at all p, or equivalently, if we can we
can find O%1 — F that is surjective. (By our earlier result that we can check surjectivity
at stalks, this is the same as saying that it is surjective at all stalks.) If I can be taken to be
finite, we say that F is generated by a finite number of global sections. We'll see soon
why we care.

4.1. Exercise. If quasicoherent sheaves £ and M are generated by global sections at a
point p, then so is £ ® M. (This exercise is less important, but is good practice for the
concept.)

4.2. Easy exercise. An invertible sheaf £ on X is generated by global sections if and only if
for any point x € X, there is a section of £ not vanishing at x. (Hint: Nakayama.)

4.3. Lemma. — Suppose F is a finite type sheaf on X. Then the set of points where F is generated
by global sections is an open set.

Proof. Suppose F is generated by global sections at a point p. Then it is generated by
a finite number of global sections, say m. This gives a morphism ¢ : O™ — F, hence
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im¢ — F. The support of the (finite type) cokernel sheaf is a closed subset not containing
p. [

(Back to class 16!)

4.4. Important Exercise (an important theorem of Serre). Suppose S, is a Noetherian
ring, and S, is generated in degree 1. Let F be any finite type sheaf on ProjS,. Then
for some integer ny, for all n > ny, F(n) can be generated by a finite number of global
sections.

I'm going to sketch how you should tackle this exercise, after first telling you the reason
we will care.

4.5. Corollary. — Thus any coherent sheaf F on Proj S, can be presented as:

6aﬁni’re(/)(_n) — F = 0.

We’re going to use this a lot!

Proof. Suppose we have m global sections sy, ..., s;,, of F(n) that generate 7 (n). This
gives a map

POmO — F(n)

given by (f;,...,fn) — fis1 +--- + fis;, On any open set. Because these global sections
generate F, this is a surjection. Tensoring with O(—n) (which is exact, as tensoring with
any locally free is exact) gives the desired result. O

Here is now a hint/sketch for the Serre exercise 4.4.

We can assume that S, is generated in degree 1; we can do this thanks to Exercise 3.1.
Suppose deg f = 1. Say Flp) = M, where M is a (S.[1/f])o-module, generated by my, ...,
m,. These elements generate all the stalks over all the points of D(f). They are sections
over this big distinguished open set. It would be wonderful if we knew that they had to
be restrictions of global sections, i.e. that there was a global section m] that restricted to
m; on D(f). If that were always true, then we would cover X with a finite number of each
of these D(f)’s, and for each of them, we would take the finite number of generators of
the corresponding module. Sadly this is not true.

However, we will see that fNm “extends”, where m is any of the my’s, and N is suf-
ficiently large. We will see this by (easily) checking first that fNm extends over another
distinguished open D(g) (i.e. that there is a section of 7 (N) over D(g) that restricts to f"m
on D(g)ND(f) = D(fg)). But we're still not done, because we don’t know that the exten-
sion over D(g) and over some other D(g’) agree on the overlap D(g) N D(g’) = D(gg’)
— in fact, they need not agree! But after multiplying both extensions by N for large
enough N’, we will see that they agree on the overlap. By quasicompactness, we need to

6



to extend over only a finite number of D(g)’s, and to make sure extensions agree over the
tinite number of pairs of such D(g)’s, so we will be done.

Great, let’s make this work. Let’s investigate this on D(g) = Spec A, where the degree
of g is also 1. Say F|D(g) = N. Let f' = f/g be “the function corresponding to f on
D(g)”. We have a section over D(f’) on the affine scheme D(g), i.e. an element of Ny, i.e.
something of the form n/(f’)" for some n € N. So then if we multiply it by f', we can
certainly extend it! So if we multiply by a big enough power of f, m certainly extends
over any D(g).

As described earlier, the only problem is, we can’t guarantee that the extensions over
D(g) and D(g’) agree on the overlap (and hence glue to a single extensions). Let’s check
on the intersection D(g) N D(g’) = D(gg’). Say m = n/(f")N = n’/(f)N where we can
take N = N’ (by increasing N or N’ if necessary). We certainly may not have n = n’,
but by the (concrete) definition of localization, after multiplying with enough f”’s, they
become the same.

In conclusion after multiplying with enough f’s, our sections over D(f) extend over
each D(g). After multiplying by even more, they will all agree on the overlaps of any two
such distinguished affine. Exercise 4.4 is to make this precise.

5. EVERY QUASICOHERENT SHEAF ON A PROJECTIVE A-SCHEME ARISES FROM A
GRADED MODULE

We have gotten lots of quasicoherent sheaves on Proj S, from graded S,-modules. We'll
now see that we can get them all in this way.

We want to figure out how to “undo” the M construction. When you do the essential
exercise 3.3, you'll suspect that in good situations,

M,, = I'(Proj S., M(n)).
Motivated by this, we define
Mn(F) :=T(Proj S, Fn).

Then I',(F) is a graded S,.-module, and we can dream that I',(F)~ = F. We will see that
this is indeed the case!

5.1. Exercise. Show that I'. gives a functor from the category of quasicoherent sheaves
on Proj S, to the category of graded S,.-modules. (In other words, show thatif ¥ — Gisa
morphism of quasicoherent sheaves on Proj S,, describe the natural map I'.(F) — T.(G),
and show that such natural maps respect the identity and composition.)

Note that ~ and I', cannot be inverses, as ~ can turn two different graded modules into
the same quasicoherent sheaf.



—_——

Our initial goal is to show that there is a natural isomorphism I',(¥) — F, and that

there is a natural map M, — IL(I\IJ. We will show something better: that ~ and T, are
adjoint.

We start by describing the natural map M, — I.M... We describe it in degree n. Given
an element m,,, we seek an element of I'(Proj S, 1\7*(71)) = ['(Proj S, M (n4.)). By shifting
the grading of M, by n, we can assume n = 0. For each D(f), we certainly have an
element of (M[1/f])o (namely m), and they agree on overlaps, so the map is clear.

5.2. Exercise. Show that this canonical map need not be injective, nor need it be sur-
jective. (Hint: S, = k[x], M, = k[x]/x?* or M, = { polynomials with no constant terms

1)

The natural map I'.F — F is more subtle (although it will have the advantage of being
an isomorphism).

5.3. Exercise. Describe the natural map I — F as follows. First describe it over
D(f). Note that sections of the left side are of the form m/f™ where m € I 4e ¢F, and
m/f* = m’/f" if there is some N with fN(f*m — f*m’) = 0. Show that your map
behaves well on overlaps D(f) N D(g) = D(fg).

5.4. Longer Exercise. = Show that the natural map I — F is an isomorphism, by
showing that it is an isomorphism over D(f) for any f. Do this by first showing that it is
surjective. This will require following some of the steps of the proof of Serre’s theorem
(Exercise 4.4). Then show that it is injective.

5.5. Corollary. — Every quasicoherent sheaf arises from this tilde construction. Each closed
subscheme of Proj S, arises from a graded ideal 1, C S..

In particular, let xo, ..., x, be generators of S; as an A-module. Then we have a surjec-
tion of graded rings

A[to,...,tn] — S*

where t; — x;. Then this describes Proj S, as a closed subscheme of P;.

5.6. Exercise (I, and ~ are adjoint functors). Prove part of the statement that I', and ~

are adjoint functors, by describing a natural bijection Hom(M,, I'.(F)) = Hom( I\A/l;, F). For
the map from left to right, start with a morphism M, — T.(F). Apply ~, and postcompose

with the isomorphism I\ — F, to obtain
M, = 0LF = F.

Do something similar to get from right to left. Show that “both compositions are the
identity in the appropriate category”. (Is there a clever way to do that?)
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5.7. Saturated S.-modules. We end with a remark: different graded S.-modules give the
same quasicoherent sheaf on ProjS,, but the results of this section show that there is a
“best” graded module for each quasicoherent sheaf, and there is a map form each graded

module to its “best” version, M, — TI.(M,). A module for which this is an isomorphism

(a “best” module) is called saturated. I don’t think we’ll use this notation, but other people
do.

This “saturation” map M. — TI.(M,) should be seen as analogous to the sheafification
map, taking presheaves to sheaves.
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