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Last day: discrete valuation rings (conclusion), cultural facts to know about regular
local rings, the distinguished affine base of the topology, 2 definitions of quasicoherent
sheaf.

Today: quasicoherence is affine-local, (locally) free sheaves and vector bundles, in-
vertible sheaves and line bundles, torsion-free sheaves, quasicoherent sheaves of ideals
and closed subschemes.

Last day, we defined the distinguished affine base of the Zariski topology of a scheme.

We showed that the information contained in a sheaf was precisely the information
contained in a sheaf on the distinguished affine base.

0.1. Theorem. —

(a) A sheaf on the distinguished affine base Fb determines a unique sheaf F , which when
restricted to the affine base is Fb. (Hence if you start with a sheaf, and take the sheaf on
the distinguished affine base, and then take the induced sheaf, you get the sheaf you started
with.)

(b) A morphism of sheaves on an affine base determines a morphism of sheaves.
(c) A sheaf of OX-modules “on the distinguished affine base” yields an OX-module.

We then gave two definitions of quasicoherent sheaves.

Definition 1. An OX-module F is a quasicoherent sheaf if for every affine open Spec R

and distinguished affine open Spec Rf thereof, the restriction map φ : Γ(Spec R,F) →
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Γ(Spec Rf,F) factors as:
φ : Γ(Spec R,F) → Γ(Spec R,F)f

∼= Γ(Spec Rf,F).

Definition 2. An OX-module F is a quasicoherent sheaf if for every affine open Spec R,

F |Spec R
∼= ˜Γ(Spec R,F).

This isomorphism is as sheaves of OX-modules.

By part (c) of the above Theorem, an OX-module on the distinguished affine base yields
an OX-module, so these two notions are equivalent. Thus to give a quasicoherent sheaf,
I just need to give you a module for each affine open, and have them behave well with
respect to restriction. (That’s a priori a little weaker than definition 2, where we actually
need an OX-module.)

Last time I proved:

0.2. Proposition. — Definitions 1 and 2 are the same.

1. ONWARDS!

1.1. Proposition (quasicoherence is affine-local). — Let X be a scheme, and F a sheaf of OX-
modules. Then let P be the property of affine open sets that F |Spec R

∼= ˜Γ(Spec R,F). Then P is an
affine-local property.

Proof. By the Affine Communication Lemma , we must check two things. Clearly if Spec R

has property P, then so does the distinguished open Spec Rf: if M is an R-module, then
M̃|Spec Rf

∼= M̃f as sheaves of OSpec Rf
-modules (both sides agree on the level of distin-

guished opens and their restriction maps).

We next show the second hypothesis of the Affine Communication Lemma. Suppose
we have modules M1, . . . , Mn, where Mi is an Rfi

-module, along with isomorphisms
φij : (Mi)fj

→ (Mj)fi
of Rfifj

-modules (i 6= j; where φij = φ−1
ji ). We want to construct an M

such that M̃ gives us M̃i on D(fi) = Spec Rfi
, or equivalently, isomorphisms Γ(D(fi), M̃) ∼=

Mi, with restriction maps

Γ(D(fi), M̃)

��

Γ(D(fj), M̃)

��

Γ(D(fi), M̃)fj
oo

∼= // Γ(D(fj), M̃)fi

that agree with φij.

We already know what M should be. Consider elements of M1 × · · · ×Mn that “agree
on overlaps”; let this set be M. Then

0 → M → M1 × · · · × Mn → M12 × M13 × · · · × M(n−1)n
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is an exact sequence (where Mij = (Mi)fj
∼= (Mj)fi

, and the latter morphism is the “dif-
ference” morphism). So M is a kernel of a morphism of R-modules, hence an R-module.
We show that Mi

∼= Mfi
; for convenience we assume i = 1. Localization is exact, so

(1) 0 → Mf1
→ M1 × (M2)f1

× · · · × (Mn)f1
→ M12 × · · · × (M23)f1

× · · · × (M(n−1)n)f1

Then by interpreting this exact sequence, you can verify that the kernel is M1. I gave
one proof in class, and I’d like to give two proofs here. We know that ∪n

i=2D(f1fi) is a
distinguished cover of D(f1) = Spec R1. So we have an exact sequence

0 → M1 → (M1)f2
× · · · × (M1)fn

→ (M1)f2f3
× · · · × (M1)fn−1fn

.

Put two copies on top of each other, and add vertical isomorphisms, alternating between
identity and the negative of the identity:

0 // M1
//

id

��

(M1)f2
× · · · × (M1)fn

//

−id

��

(M1)f2f3
× · · · × (M1)fn−1fn

0 // M1
// (M1)f2

× · · · × (M1)fn
// (M1)f2f3

× · · · × (M1)fn−1fn

Then the total complex of this double complex is exact as well (exercise). (The total complex is
obtained as follows. The terms are obtained by taking the direct sum in each southwest-
to-northeast diagonal. This is a baby case of something essential so check it, if you’ve
never seen it before!). But this is the same sequence as (1), except Mf1

replaces M1, so we
have our desired isomorphism.

Here is a second proof that the sequence
(2) 0 → M1 → M1 × (M2)f1

× · · · × (Mn)f1
→ M12 × · · · × (M23)f1

× · · · × (M(n−1)n)f1

is exact. To check exactness of a complex of R-modules, it suffices to check exactness
“at each prime p”. In other words, if a complex is exact once tensored with Rp for all p,
then it was exact to begin with. Now note that if N is an R-module, then (Nfi

)p is 0 if
fi ∈ p, and Np otherwise. Hence after tensoring with Rp, each term in (2) is either 0 or
Np, and the reader will quickly verify that the resulting complex is exact. (If any reader
thinks I should say a few words as to why this is true, they should let me know, and I’ll
add a bit to these notes. I’m beginning to think that I should re-work some of my earlier
arguments, including for example base gluability and base identity of the structure sheaf,
in this way.) �

At this point, you probably want an example. I’ll give you a boring example, and save
a more interesting one for the end of the class.

Example: OX is a quasicoherent sheaf. Over each affine open Spec R, it is isomorphic
the module M = R. This is not yet enough to specify what the sheaf is! We need also to
describe the distinguished restriction maps, which are given by R → Rf, where these are
the “natural” ones. (This is confusing because this sheaf is too simple!) A variation on
this theme is O⊕n

X (interpreted in the obvious way). This is called a rank n free sheaf. It
corresponds to a rank n trivial vector bundle.

Joe mentioned an example of an OX-module that is not a quasicoherent sheaf last day.
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1.2. Exercise. (a) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at
the origin [(t)], with group k(t). Give this the structure of an OX-module. Show that this
is not a quasicoherent sheaf. (More generally, if X is an integral scheme, and p ∈ X that
is not the generic point, we could take the skyscraper sheaf at p with group the function
field of X. Except in a silly circumstances, this sheaf won’t be quasicoherent.)
(b) Suppose X = Spec k[t]. Let F be the skyscraper sheaf supported at the generic point
[(0)], with group k(t). Give this the structure of an OX-module. Show that this is a qua-
sicoherent sheaf. Describe the restriction maps in the distinguished topology of X. (Joe
remarked that this is a constant sheaf!)

1.3. Important Exercise for later. Suppose X is a Noetherian scheme. Suppose F is a
quasicoherent sheaf on X, and let f ∈ Γ(X,OX) be a function on X. Let R = Γ(X,OX)
for convenience. Show that the restriction map resXf⊂X : Γ(X,F) → Γ(Xf,F) (here Xf is
the open subset of X where f doesn’t vanish) is precisely localization. In other words
show that there is an isomorphism Γ(X,F)f → Γ(Xf,F) making the following diagram
commute.

Γ(X,F)
resXf⊂X

//

⊗RRf %%LLLLLLLLLL
Γ(Xf,F)

Γ(X,F)f

∼

88rrrrrrrrrr

All that you should need in your argument is that X admits a cover by a finite number
of open sets, and that their pairwise intersections are each quasicompact. We will later
rephrase this as saying that X is quasicompact and quasiseparated. (Hint: cover by affine
open sets. Use the sheaf property. A nice way to formalize this is the following. Apply
the exact functor ⊗RRf to the exact sequence

0 → Γ(X,F) → ⊕iΓ(Ui,F) → ⊕Γ(Uijk,F)

where the Ui form a finite cover of X and Uijk form an affine cover of Ui ∩ Uj.)

1.4. Less important exercise. Give a counterexample to show that the above statement need
not hold if X is not quasicompact. (Possible hint: take an infinite disjoint union of affine
schemes.)

For the experts: I don’t know a counterexample to this when the quasiseparated hy-
pothesis is removed. Using the exact sequence above, I can show that there is a map
Γ(Xf,F) → Γ(X,F)f.

2. LOCALLY FREE SHEAVES

I want to show you how that quasicoherent sheaves somehow generalize the notion of
vector bundles.

(For arithmetic people: don’t tune out! Fractional ideals of the ring of integers in a
number field will turn out to be an example of a “line bundle on a smooth curve”.)
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Since this is motivation, I won’t make this precise, so you should feel free to think of
this in the differentiable category (i.e. the category of differentiable manifolds). A rank n

vector bundle on a manifold M is a fibration π : V → M that locally looks like the product
with n-space: every point of M has a neighborhood U such that π−1(U) ∼= U × Rn, where
the projection map is the obvious one, i.e. the following diagram commutes.

π−1(U)

π|
π−1(U) ##FF

FF
FF

FF
F

oo
∼= // U × Rn

projection to first factor
{{ww

ww
ww

ww
ww

U

This is called a trivialization over U. We also want a “consistent vector space structure”.
Thus given trivializations over U1 and U2, over their intersection, the two trivializations
should be related by an element of GL(n) with entries consisting of functions on U1 ∩U2.

Examples of this include for example the tangent bundle on a sphere, and the moebius
strip over R1.

Pick your favorite vector bundle, and consider its sheaf of sections F . Then the sections
over any open set form a real vector space. Moreover, given a U and a trivialization, the
sections are naturally n-tuples of functions of U. [If I can figure out how to do curly
arrows in xymatrix, I’ll fix this.]

U × Rn

π

��
U

f1,...,fn

UU

The open sets over which V is trivial forms a nice base of the topology.

Motivated by this, we define a locally free sheaf of rank n on a scheme X as follows. It
is a quasicoherent sheaf that is locally, well, free of rank n. It corresponds to a vector
bundle. It is determined by the following data: a cover Ui of X, and for each i, j transition
functions Tij lying in GL(n, Γ(Ui ∩ Uj,OX)) satisfying

Tii = Idn, TijTjk = Tik

(which implies Tij = T−1
ji ). Given this data, we can find the sections over any open set U

as follows. Informally, they are sections of the free sheaves over each U ∩ Ui that agree

on overlaps. More formally, for each i, they are ~si =





si
1...

si
n



 ∈ Γ(U ∩ Ui,OX)n, satisfying

Tij~s
i = ~sj on U ∩ Ui ∩ Uj.

In the differentiable category, locally free sheaves correspond precisely to vector bun-
dles (for example, you can describe them with the same transition functions). So you
should really think of these “as” vector bundles, but just keep in mind that they are not
the “same”, just equivalent notions.
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A rank 1 vector bundle is called a line bundle. Similarly, a rank 1 locally free sheaf
is called an invertible sheaf. I’ll later explain why it is called invertible; but it is still a
somewhat heinous term for something so fundamental.

Caution: Not every quasicoherent sheaf is locally free.

In a few sections, we will define some operations on quasicoherent sheaves that gener-
ate natural operations on vector bundles (such as dual, Hom, tensor product, etc.). The
constructions will behave particularly well for locally free sheaves. We will see that the
invertible sheaves on X will form a group under tensor product, called the Picard group of
X.

We first make precise our discussion of transition functions. Given a rank n locally free
sheaf F on a scheme X, we get transition functions as follows. Choose an open cover
Ui of X so that F is a free rank n sheaf on each Ui. Choose a basis ei,1, . . . , ei,n of F

over Ui. Then over Ui ∩ Uj, for each k, ei,k can be written as a Γ(Ui ∩ Uj,OX)-linear
combination of the ej,l (1 ≤ l ≤ n), so we get an n × n “transition matrix” Tji with entries
in Γ(Ui ∩ Uj,OX). Similarly, we get Tij, and TijTji = TjiTij = In, so Tij and Tji are invertible.
Also, on Ui ∩Uj ∩Uk, we readily have Tik = TijTjk: both give the matrix that expresses the
basis vectors of ei,q in terms of ek,q. [Make sure this is right!]

2.1. Exercise. Conversely, given transition functions Tij ∈ GL(n, Γ(Ui∩Uj,OX)) satisfying
the cocycle condition TijTjk = Tik “on Ui ∩ Uj ∩ Uk”, describe the corresponding rank n

locally free sheaf.

We end this section with a few stray comments.

Caution: there are new morphisms between locally free sheaves, compared with what
people usually say for vector bundles. Give example on A1:

0 → tk[t] → k[t] → k[t]/(t) → 0.

For vector bundle people: the thing on the left isn’t a morphism of vector bundles (at
least according to some definitions). (If you think it is a morphism of vector bundles,
then you should still be disturbed, because its cokernel is not a vector bundle!)

2.2. Remark. Based on your intuition for line bundles on manifolds, you might hope that
every point has a “small” open neighborhood on which all invertible sheaves (or locally
free sheaves) are trivial. Sadly, this is not the case. We will eventually see that for the
curve y2 − x3 − x = 0 in A2

C
, every nonempty open set has nontrivial invertible sheaves.

(This will use the fact that it is an open subset of an elliptic curve.)

2.3. Exercise (for arithmetically-minded people only — I won’t define my terms). Prove
that a fractional ideal on a ring of integers in a number field yields an invertible sheaf.
Show that any two that differ by a principal ideal yield the same invertible sheaf.
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Thus we have described a map from the class group of the number field to the Picard
group of its ring of integers. It turns out that this is an isomorphism. So strangely the
number theorists in this class are the first to have an example of a nontrivial line bundle.

2.4. Exercise (for those familiar with Hartogs’ Theorem for Noetherian normal schemes).
Show that locally free sheaves on Noetherian normal schemes satisfy “Hartogs’ theorem”:
sections defined away from a set of codimension at least 2 extend over that set.

3. QUASICOHERENT SHEAVES FORM AN ABELIAN CATEGORY

The category of R-modules is an abelian category. (Indeed, this is our motivating exam-
ple of our notion of abelian category.) Similarly, quasicoherent sheaves form an abelian
category. I’ll explain how.

When you show that something is an abelian category, you have to check many things,
because the definition has many parts. However, if the objects you are considering lie in
some ambient abelian category, then it is much easier. As a metaphor, there are several
things you have to do to check that something is a group. But if you have a subset of
group elements, it is much easier to check that it is a subgroup.

You can look at back at the definition of an abelian category, and you’ll see that in
order to check that a subcategory is an abelian subcategory, you need to check only the
following things:

(i) 0 is in your subcategory
(ii) your subcategory is closed under finite sums

(iii) your subcategory is closed under kernels and cokernels

In our case of {quasicoherent sheaves} ⊂ {OX-modules}, the first two are cheap: 0 is
certainly quasicoherent, and the subcategory is closed under finite sums: if F and G are
sheaves on X, and over Spec R, F ∼= M̃ and G ∼= Ñ, then F ⊕ G = M̃ ⊕ N, so F ⊕ G is a
quasicoherent sheaf.

We now check (iii). Suppose α : F → G is a morphism of quasicoherent sheaves.
Then on any affine open set U, where the morphism is given by β : M → N, define
(ker α)(U) = ker β and (coker α)(U) = coker β. Then these behave well under inversion of
a single element: if

0 → K → M → N → P → 0

is exact, then so is
0 → Kf → Mf → Nf → Pf → 0,

from which (ker β)f
∼= ker(βf) and (coker β)f

∼= coker(βf). Thus both of these define
quasicoherent sheaves. Moreover, by checking stalks, they are indeed the kernel and
cokernel of α. Thus the quasicoherent sheaves indeed form an abelian category.

As a side benefit, we see that we may check injectivity, surjectivity, or exactness of a
morphism of quasicoherent sheaves by checking on an affine cover.
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Warning: If 0 → F → G → H → 0 is an exact sequence of quasicoherent sheaves, then
for any open set

0 → F(U) → G(U) → H(U)

is exact, and we have exactness on the right is guaranteed to hold only if U is affine. (To
set you up for cohomology: whenever you see left-exactness, you expect to eventually
interpret this as a start of a long exact sequence. So we are expecting H1’s on the right,
and now we expect that H1(Spec R,F) = 0. This will indeed be the case.)

3.1. Exercise. Show that you can check exactness of a sequence of quasicoherent sheaves
on an affine cover. (In particular, taking sections over an affine open Spec R is an exact
functor from the category of quasicoherent sheaves on X to the category of R-modules.
Recall that taking sections is only left-exact in general.) Similarly, you can check surjec-
tivity on an affine cover (unlike sheaves in general).

4. MODULE-LIKE CONSTRUCTIONS ON QUASICOHERENT SHEAVES

In a similar way, basically any nice construction involving modules extends to quasico-
herent sheaves.

As an important example, we consider tensor products. Exercise. If F and G are quasi-
coherent sheaves, show that F ⊗ G is given by the following information: If Spec R is an
affine open, and Γ(Spec R,F) = M and Γ(Spec R,G) = N, then Γ(SpecR,F ⊗ G) = M ⊗ N,
and the restriction map Γ(Spec R,F ⊗ G) → Γ(Spec Rf,F ⊗ G) is precisely the localiza-
tion map M ⊗R N → (M ⊗R N)f

∼= Mf ⊗Rf
Nf. (We are using the algebraic fact that that

(M⊗R N)f
∼= Mf⊗Rf

Nf. You can prove this by universal property if you want, or by using
the explicit construction.)

Note that thanks to the machinery behind the distinguished affine base, sheafification
is taken care of.

For category-lovers: this makes the category of quasicoherent sheaves into a monoid.

4.1. Exercise. If F and G are locally free sheaves, show that F⊗G is locally free. (Possible
hint for this, and later exercises: check on sufficiently small affine open sets.)

4.2. Exercise. (a) Tensoring by a quasicoherent sheaf is right-exact. More precisely, if F
is a quasicoherent sheaf, and G ′

→ G → G ′′
→ 0 is an exact sequence of quasicoherent

sheaves, then so is G ′ ⊗ F → G ⊗ F → G ′′ ⊗ F → 0 is exact.
(b) Tensoring by a locally free sheaf is exact. More precisely, if F is a locally free sheaf,
and G ′

→ G → G ′′ is an exact sequence of quasicoherent sheaves, then then so is G ′⊗F →

G ⊗ F → G ′′ ⊗ F .
(c) The stalk of the tensor product of quasicoherent sheaves at a point is the tensor prod-
uct of the stalks.
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Note: if you have a section s of F and a section t of G, you get a section s ⊗ t of F ⊗ G.
If either F or G is an invertible sheaf, this section is denoted st.

We now describe other constructions.

4.3. Exercise. Sheaf Hom, Hom, is quasicoherent, and is what you think it might be. (De-
scribe it on affine opens, and show that it behaves well with respect to localization with
respect to f. To show that HomA(M, N)f

∼= HomAf
(Mf, Nf), take a “partial resolution”

Aq
→ Ap

→ M → 0, and apply Hom(·, N) and localize.) (Hom was defined earlier, and
was the subject of a homework problem.) Show that Hom is a left-exact functor in both
variables.

Definition. Hom(F ,OX) is called the dual of F , and is denoted F∨.

4.4. Exercise. The direct sum of quasicoherent sheaves is what you think it is.

5. SOME NOTIONS ESPECIALLY RELEVANT FOR LOCALLY FREE SHEAVES

Exercise. Show that if F is locally free then F∨ is locally free, and that there is a canon-
ical isomorphism (F∨)∨ ∼= F . (Caution: your argument showing that if there is a canon-
ical isomorphism (F∨)∨ ∼= F better not also show that there is a canonical isomorphism
F∨ ∼= F ! We’ll see an example soon of a locally free F that is not isomorphic to its dual.
The example will be the line bundle O(1) on P1.)

Remark. This is not true for quasicoherent sheaves in general, although your argument
will imply that there is always a natural morphism F → (F∨)∨. Quasicoherent sheaves
for which this is true are called reflexive sheaves. We will not be using this notion. Your
argument may also lead to a canonical map F ⊗ F∨

→ OX. This could be called the trace
map — can you see why?

5.1. Exercise. Given transition functions for the locally free sheaf F , describe the transition
functions for the locally free sheaf F∨. Note that if F is rank 1 (i.e. locally free), the
transition functions of the dual are the inverse of the transition functions of the original;
in this case, F ⊗ F∨ ∼= OX.

5.2. Exercise. If F and G are locally free sheaves, show that F ⊗G and Hom(F ,G) are both
locally free.

5.3. Exercise. Show that the invertible sheaves on X, up to isomorphism, form an abelian
group under tensor product. This is called the Picard group of X, and is denoted Pic X.
(For arithmetic people: this group, for the Spec of the ring of integers R in a number field,
is the class group of R.)
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For the next exercises, recall the following. If M is an A-module, then the tensor algebra
T ∗(M) is a non-commutative algebra, graded by Z≥0, defined as follows. T 0(M) = A,
Tn(M) = M ⊗A · · · ⊗A M (where n terms appear in the product), and multiplication is
what you expect. The symmetric algebra Sym∗ M is a symmetric algebra, graded by Z≥0,
defined as the quotient of T ∗(M) by the (two-sided) ideal generated by all elements of
the form x ⊗ y − y ⊗ x for all x, y ∈ M. Thus Symn M is the quotient of M ⊗ · · · ⊗ M

by the relations of the form m1 ⊗ · · · ⊗ mn − m ′
1 ⊗ · · · ⊗ m ′

n where (m ′
1, . . . , m

′
n) is a

rearrangement of (m1, . . . , mn). The exterior algebra ∧∗M is defined to be the quotient of
T ∗M by the (two-sided) ideal generated by all elements of the form x ⊗ y + y ⊗ x for all
x, y ∈ M. Thus ∧nM is the quotient of M⊗· · ·⊗M by the relations of the form m1 ⊗· · ·⊗
mn − (−1)sgnm ′

1 ⊗ · · · ⊗ m ′
n where (m ′

1, . . . , m
′
n) is a rearrangement of (m1, . . . , mn), and

the sgn is even if the rearrangement is an even permutation, and odd if the rearrangement
is an odd permutation. (It is a “skew-commutative” A-algebra.) It is most correct to write
T ∗

A(M), Sym∗
A(M), and ∧∗

A(M), but the “base ring” is usually omitted for convenience.

5.4. Exercise. If F is a quasicoherent sheaf, then define the quasicoherent sheaves T nF ,
Symn F , and ∧nF . If F is locally free of rank m, show that TnF , Symn F , and ∧nF are
locally free, and find their ranks.

You can also define the sheaf of non-commutative algebras T ∗F , the sheaf of algebras
Sym∗ F , and the sheaf of skew-commutative algebras ∧∗F .

5.5. Important exercise. If 0 → F ′
→ F → F ′′

→ 0 is an exact sequence of locally free
sheaves, then for any r, there is a filtration of Symr F :

Symr F = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊃ Fr+1 = 0

with quotients
Fp/Fp+1 ∼= (Symp F ′) ⊗ (Symr−p F ′′)

for each p.

5.6. Exercise. Suppose F is locally free of rank n. Then ∧nF is called the determinant
(line) bundle. Show that ∧rF × ∧n−rF → ∧nF is a perfect pairing for all r.

5.7. Exercise. If 0 → F ′
→ F → F ′′

→ 0 is an exact sequence of locally free sheaves, then
for any r, there is a filtration of ∧rF :

∧rF = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊃ Fr+1 = 0

with quotients
Fp/Fp+1 ∼= (∧pF ′) ⊗ (∧r−pF ′′)

for each p. In particular, detF = (detF ′) ⊗ (detF ′′).

5.8. Exercise (torsion-free sheaves). An R-module M is torsion-free if rm = 0 implies r =
0 or m = 0. Show that this satisfies the hypotheses of the affine communication lemma.
Hence we make a definition: a quasicoherent sheaf is torsion-free if for one (or by the
affine communication lemma, for any) affine cover, the sections over each affine open are
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torsion-free. By definition, “torsion-freeness is affine-local”. Show that a quasicoherent
sheaf is torsion-free if all its stalks are torsion-free. Hence “torsion-freeness” is “stalk-
local.” [This exercise is wrong! “Torsion-freeness” is should be defined as “torsion-free
stalks” — it is (defined as) a “stalk-local” condition. Here is a better exercise. Show that
if M is torsion-free, then so is any localization of M. In particular, Mf is torsion-free, so
this notion satisfies half the hypotheses of the affine communication lemma. Also, Mp is
torsion-free, so this implies that M̃ is torsion-free. Find an example on a two-point space
showing that R might not be torsion-free even though OSpec R = R̃ is torsion-free.]

6. QUASICOHERENT SHEAVES OF IDEALS, AND CLOSED SUBSCHEMES

I then defined quasicoherent sheaves of ideals, and closed subschemes. But I’m happier
with the definition I gave in class 15, so I’ll leave the discussion until then.

E-mail address: vakil@math.stanford.edu
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