FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 12
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1. “Smoothness” = regularity = nonsingularity, continued 1
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2. Dimension 1 Noetherian regular local rings = discrete valuation rings

Last day: smoothness=regularity=nonsingularity, Zariski tangent space and related
notions, Nakayama’s Lemma.

Today: Jacobian criterion, Euler test, characterizations of discrete valuation rings =
dimension 1 Noetherian regular local rings

1. “SMOOTHNESS” = REGULARITY = NONSINGULARITY, CONTINUED

Last day, I defined the Zariski tangent space. Suppose A is a ring, and m is a maximal
ideal, with residue field k = A/m. Then m/m?, a vector space over k, is the Zariski
cotangent space. The dual is the Zariski tangent space. Elements of the Zariski cotangent
space are called cotangent vectors or differentials; elements of the tangent space are
called tangent vectors.

I tried to convince you that this was a reasonable definition. I also asked you what your
private definition of tangent space or cotangent space was, so I could convince you that
this is the right algebraic notion. A couple of you think of tangent vectors as derivations,
and in this case, the connection is very fast. I've put it in the Class 11 notes, so please
check it out if you know what derivations are.

Last day, I stated the following proposition.

1.1. Proposition. — Suppose (A, m) is a Noetherian local ring. Then dim A < dimj m/m?.
We’ll prove this in a moment.

If equality holds, we say that A is regular at m. If A is a local ring, then we say that A is
a regular local ring. If A is regular at all of its primes, we say that A is a regular ring.

A scheme X is regular or nonsingular or smooth at a point p if the local ring Ox, is
regular. It is singular at the point otherwise. A scheme is regular or nonsingular or
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smooth if it is regular at all points. It is singular otherwise (i.e. if it is singular at at least
one point).

1.2. Exercise. Show that if A is a Noetherian local ring, then A has finite dimension.
(Warning: Noetherian rings in general could have infinite dimension.)

In order to prove Proposition 1.1, we're going to use Nakayama’s Lemma, which hope-
fully you've looked at.

The version we’ll use is:

1.3. Important exercise (Nakayama’s lemma version 4). Suppose (R, m) is a local ring.
Suppose M is a finitely-generated R-module, and fy,...,f,, € M, with (the images of)
f1,..., fn generating M/mM. Then fy,...,f,, generate M. (In particular, taking M = m,
if we have generators of m/m?, they also generate m.) Translation: if we have a set of
generators of a finitely generated module modulo a finite ideal, then they generate the
entire module.

Proof of Proposition 1.1: Note that m is finitely generated (as R is Noetherian), so m/m?
is a finitely generated R/m = k-module, hence finite-dimensional. Say dimym/m? = n.
Choose n elements of m/m?, and lift them to elements fy, ..., f,, of m. Then by Nakayama’s
lemma, (fq,...,f,) =m.

Problem B6 on problem set 4 (newest version!) includes the following: Suppose X =
Spec R where R is a Noetherian domain, and Z is an irreducible component of V(f4, ..., f
where f,. .., f, € R. Show that the height of Z (as a prime ideal) is at most n.

mnJrs

In this case, V((f1,...,fn)) = V(m) is just the point [m], so the height of m is at most n.
Thus the longest chain of prime ideals containing m is at most n + 1. But this is also the
longest chain of prime ideals in X (as m is the unique maximal ideal), son > dimX. [

Computing the Zariski-tangent space is actually quite hands-on, because you can com-
pute it in a multivariable calculus way.

For example, last day I gave some motivation, by saying that x + y + 3z +y* = 0 and
2x + z° + y% = 0 cut out a curve in A3, which is nonsingular at the origin, and that the
tangent space at the origin is cut out by x +y + 3z = 2x = 0. This can be made precise
through the following exercise.

1.4. Important exercise. Suppose A is a ring, and m a maximal ideal. If f € m, show that
the dimension of the Zariski tangent space of Spec A at [m] is the dimension of the Zariski
tangent space of Spec A/(f) at [m], or one less. (Hint: show that the Zariski tangent space
of Spec A/(f) is “cut out” in the Zariski tangent space of Spec A by the linear equation f
(mod m?).)



1.5. Exercise. ~Find the dimension of the Zariski tangent space at the point [(2,x)] of
Z[2i] = Z[x]/(x* +4). Find the dimension of the Zariski tangent space at the point [(2, x)]
of ZIV2i] = Z[x]/(x* + 2).

1.6. Exercise (the Jacobian criterion for checking nonsingularity). Suppose k is an alge-
braically closed field, and X is a finite type k-scheme. Then locally it is of the form
Specklxi,...,xnl/(f1,..., fy). Show that the Zariski tangent space at the closed point p
(with residue field k, by the Nullstellensatz) is given by the cokernel of the Jacobian map
k™ — k™ given by the Jacobian matrix

Sp) - (p)
(1) ] = : .. :
H(p) - 2L(p)

(This is just making precise our example of a curve in A cut out by a couple of equations,
where we picked off the linear terms.) Possible hint: “translate p to the origin,” and
consider linear terms. See also the exercise two previous to this one.

You might be alarmed: what does 2* mean?! Do you need deltas and epsilons? No!

aX]
Just define derivatives formally, e.g.

0
a(x% +x1X2 + X%) = 2%7 + x.
1

1.7. Exercise: Dimension theory implies the Nullstellensatz. In the previous exercise,
1 is necessarily only a finite extension of k, as this exercise shows. (a) Prove a microscop-

ically stronger version of the weak Nullstellensatz: Suppose R = k[x;, ..., x,]/I, where k
is an algebraically closed field and I is some ideal. Then the maximal ideals are precisely
those of the form (x; — ay,...,x, — an), where a; € k.

(b) Suppose R = klx1,...,xn]/I where k is not necessarily algebraically closed. Show
every maximal ideal of R has residue field that are finite extensions of k. (Hint for both:
the maximal ideals correspond to dimension 0 points, which correspond to transcendence
degree 0 extensions of k, i.e. finite extensions of k. If k = k, the maximal ideals correspond
to surjections f : k[xy, ..., %, — k. Fix one such surjection. Let a; = f(x;), and show that
the corresponding maximal ideal is (x;—ay, ..., xn—ay).) This exercise is a bit of an aside
— it belongs in class 8, and I've also put it in those notes.

1.8. Exercise. Show that the singular closed points of the hypersurface f(xi,...,x,) =0

in A} are given by the equations f = % == % =0

1.9. Exercise. Show that A' and A? are nonsingular. (Make sure to check nonsingularity
at the non-closed points! Fortunately you know what all the points of A? are; this is
trickier for A3.)

In the previous exercise, you'll use the fact that the local ring at the generic point of A?
is dimension 0, and the local ring at generic point at a curve in A% is 1.
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Let’s apply this technology to an arithmetic situation.

1.10. Exercise. Show that Spec Z is a nonsingular curve.

Here are some fun comments: What is the derivative of 35 at the prime 5? Answer: 35
(mod 25), so 35 has the same “slope” as 10. What is the derivative of 9, which doesn’t
vanish at 5? Answer: the notion of derivative doesn’t apply there. You'd think that you’'d
want to subtract its value at 5, but you can’t subtract “4 (mod 5)” from the integer 9. Also,
35 (mod 2)5 you might think you want to restate as 7 (mod 5), by dividing by 5, but that’s
morally wrong — you're dividing by a particular choice of generator 5 of the maximal
ideal of the 5-adics Zs; in this case, one appears to be staring you in the face, but in
general that won't be true. Follow-up fun: you can talk about the derivative of a function
only for functions vanishing at a point. And you can talk about the second derivative of a
function only for functions that vanish, and whose first derivative vanishes. For example,
75 has second derivative 75 (mod 1)25 at 5. It’s pretty flat.

1.11. Exercise. Note that Z[i] is dimension 1, as Z[x] has dimension 2 (problem set
exercise), and is a domain, and x? + 1 is not 0, so Z[x]/(x* + 1) has dimension 1 by Krull.
Show that Spec Z[i] is a nonsingular curve. (This is intended for people who know about
the primes of the Gaussian integers Zl[i].)

1.12. Exercise. Show that there is one singular point of Spec Z[21], and describe it.

1.13. Handy Exercise (the Euler test for projective hypersurfaces). There is an analo-
gous Jacobian criterion for hypersurfaces f = 0 in P}. Show that the singular closed points
correspond to the locus f = % =...= a_ =0. If the degree of the hypersurface is not
divisible by the characteristic of any of the residue fields (e.g. if we are working over a

field of characteristic 0), show that it suffices to check af = ... == = 0. (Hint: show

ax
that f lies in the ideal (2 Bt ax ). (Fact: this will glve the singular points in general. I

don’t want to prove this, and I won’t use it.)

1.14. Exercise. Suppose k is algebraically closed. Show that y?z = x> — xz? in P is an

irreducible nonsingular curve. (This is for practice.) Warning: I didn’t say char k = 0.

1.15. Exercises. Find all the singular closed points of the following plane curves. Here
we work over a field of characteristic 0 for convenience.

(@) y? = x? +x3. This is called a node.
(b) y* = x3. This is called a cusp.
(c) y? = x*. This is called a tacnode.

(I haven’t given precise definitions for node, cusp, or tacnode. You may want to think
about what they might be.)



1.16. Exercise. Show that the twisted cubic Proj k[w, x, y, zl/(wz —xy, wy —x?, xz—y?) is
nonsingular. (You can do this by using the fact that it is isomorphic to P'. I'd prefer you
to do this with the explicit equations, for the sake of practice.)

1.17. Exercise. Show that the only dimension 0 Noetherian regular local rings are fields.
(Hint: Nakayama.)

2. DIMENSION 1 NOETHERIAN REGULAR LOCAL RINGS = DISCRETE VALUATION RINGS

The case of dimension 1 is also very important, because if you understand how primes
behave that are separated by dimension 1, then you can use induction to prove facts in
arbitrary dimension. This is one reason why Krull is so useful.

A dimension 1 Noetherian regular local ring can be thought of as a “germ of a curve”.
Two examples to keep in mind are k[x] ) = {f(x)/g(x) : x fg(x)}and Z) ={a/b:5 fo}.

The purpose of this section is to give a long series of equivalent definitions of these
rings.

Theorem. Suppose (R, m) is a Noetherian dimension 1 local ring. The following are equivalent.
(a) R is reqular.

Informal translation: R is a germ of a smooth curve.

(b) m is principal. If R is regular, then m/m? is one-dimensional. Choose any element t €
m — m?2. Then t generates m/m?, so generates m by Nakayama’s lemma. Such an element
is called a uniformizer. (Warning: we needed to know that m was finitely generated to
invoke Nakayama — but fortunately we do, thanks to the Noetherian hypothesis!)

Conversely, if m is generated by one element t over R, then m/m? is generated by one
element t over R/m = k.

(c) All ideals are of the form m™ or 0. Suppose (R, m, k) is a Noetherian regular local ring
of dimension 1. Then I claim that m™ # m™"' for any n. Proof: Otherwise, m™ = m™™' =
m™2 = .... Then Nym' = m™ But Nym! = (0). (I’d given a faulty reason for this. I owe
you this algebraic fact.) Then as t™ € m™, we must have t™ = 0. But R is a domain, so
t=0—buttem—m

[ next claim that m™/m™*! is dimension 1. Reason: m™ = (t™). So m™ is generated as
as a R-module by one element, and m™/(mm™) is generated as a (R/m = k)-module by 1
element, so it is a one-dimensional vector space.

So we have a chain of ideals R D m D m? D m? O --- with Nm* = (0). We want to
say that there is no room for any ideal besides these, because “each pair is “separated by
dimension 1”7, and there is “no room at the end”. Proof: suppose I C R is an ideal. If
I # (0), then there is some n such that I ¢ m™but I ¢ m™*'. Choose some u € I —m™*".
Then (u) C I. But u generates m™/m™"', hence by Nakayama it generates m™, so we have
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m™ C I C m™, so we are done. Conclusion: in a Noetherian local ring of dimension 1,
regularity implies all ideals are of the form m™ or (0).

Conversely, suppose we have a dimension 1 Noetherian local domain that is not regu-
lar, so m/m? has dimension at least 2. Choose any u € m — m?. Then (u, m?) is an ideal,
but m C (u, m?) C m2 We've thus shown that (c) is equivalent to the previous cases.

(d) R is a principal ideal domain. 1 didn’t do this in class. Exercise. Show that (d) is
equivalent to (a)—(c).

(e) R is a discrete valuation ring. 1 will now define something for you that will be a
very nice way of describing such rings, that will make precise some of our earlier vague
ramblings. We’ll have to show that this definition accords with (a)—(d) of course.

Suppose K is a field. A discrete valuation on K is a surjective homomorphism v : K* — Z
(homomorphism: v(xy) = v(x) + v(y)) satistfying

v(x +y) = min(v(x), v(y)).

Suggestive examples: (i) (the 5-adic valuation) K = Q, v(r) is the “power of 5 appearing
inr”, e.g.v(35/2) =1,v(27/125) = 3.

(ii) K = k(x), v(f) is the “power of x appearing in f”.

Then 0 U {x € K*: v(x) > 0} is a ring. It is called the valuation ring of v.

2.1. Exercise. Describe the valuation rings in those two examples. Hmm — they are
familiar-looking dimension 1 Noetherian local rings. What a coincidence!

2.2. Exercise. Show that 0 U{x € K* : v(x) > 1} is the unique maximal ideal of the
valuation ring. (Hint: show that everything in the complement is invertible.) Thus the
valuation ring is a local ring.

An integral domain A is called a discrete valuation ring if there exists a discrete valuation
v on its fraction field K = Frac(A).

Now if R is a Noetherian regular local ring of dimension 1, and t is a uniformizer
(generator of m as an ideal = dimension of m/m? as a k-vector space) then any non-zero
element 1 of R lies in some m™ — m™"', so r = t™u where u is a unit (as t"™ generates m™
by Nakayama, and so does 1), so FracR = Ry = R[1/t]. So any element of FracR can be
written uniquely as ut™ where u is a unit and n € Z. Thus we can define a valuation
v(ut™) = n, and we’ll quickly see that it is a discrete valuation (exercise). Thus (a)-(c)
implies (d).

Conversely, suppose (R, m) is a discrete valuation ring. Then I claim it is a Noetherian
regular local ring of dimension 1. Exercise. Check this. (Hint: Show that the ideals are all
of the form (0) or I, = {r € R: v(r) > n}, and I; is the only prime of the second sort. Then
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we get Noetherianness, and dimension 1. Show that I;/I, is generated by any element of
I — 1)

Exercise/Corollary. There is only one discrete valuation on a discrete valuation ring.

Thus whenever you see a regular local ring of dimension 1, we have a valuation on the
fraction field. If the valuation of an element is n > 0, we say that the element has a zero of
order n. If the valuation is —n < 0, we say that the element has a pole of order n.

So we can finally make precise the fact that 75/34 has a double zero at 5, and a single
pole at 2! Also, you can easily figure out the zeros and poles of x*(x+y)/(x*+xy)> on A%
Note that we can only make sense of zeros and poles at nonsingular points of codimension
1.

Definition. More generally: suppose X is a locally Noetherian scheme. Then for any
regular height(=codimension) 1 points (i.e. any point p where Ox, is a regular local ring
of dimension 1), we have a valuation v. If f is any non-zero element of the fraction field
of Ox,, (e.g. if X is integral, and f is a non-zero element of the function field of X), then if
v(f) > 0, we say that the element has a zero of order v(f), and if v(f) < 0, we say that the
element has a pole of order —v(f).

Exercise. Suppose X is a regular integral Noetherian scheme, and f € Frac(I'(X, Ox))*
is a non-zero element of its function field. Show that f has a finite number of zeros and
poles.

Finally:
(f) (R, m) is a unique factorization domain,
(g) Ris integrally closed in its fraction field K = Frac(R).

(a)-(e) clearly imply (f), because we have the following stupid unique factorization:
each non-zero element of r can be written uniquely as ut™ where n € Z=° and u is a unit.

(f) implies (g), because checked earlier that unique factorization domains are always
integrally closed in its fraction field.

So it remains to check that (g) implies (a)-(e). This is straightforward, but for the sake
of time, I'm not going to give the proof in class. But in the interests of scrupulousness,
I'm going to give you a full proof in the notes. It will take us less than half a page. This is
the only tricky part of this entire theorem.

2.3. Fact. Suppose (S,n) is a Noetherian local domain of dimension 0. Then n™ = 0 for
some n. (I had earlier given this as an exercise, with an erroneous hint. I may later add a
proof to the notes.)

2.4. Exercise. Suppose A is a subring of a ring B, and x € B. Suppose there is a faithful
Al[x]-module M that is finitely generated as an A-module. Show that x is integral over A.

7



(Hint: look carefully at the proof of Nakayama’s Lemma version 1 in the Class 11 notes,
and change a few words.)

Proof that (f) implies (b). Suppose (R, m) is a Noetherian local domain of dimension 1, that
is integrally closed in its fraction field K = Frac(R). Choose any r € R # 0. Then S = R/(r)
is dimension 0, and is Noetherian and local, so if n is its maximal ideal, then there is some
n such that n™ = 0 but ™' # 0 by Exercise 2.3. Thus m™ C (r) but m™' ¢ (r). Choose
s € m™ " — (r). Consider x = r/s. Then x~! ¢ R, so as R is integrally closed, x' is not
integral over R.

Now x'm ¢ m (or else x 'm C m would imply that m is a faithful R[x~']-module,
contradicting Exercise 2.4). But x 'm C R. Thus x 'm = R, from which m = xR, so m is
principal. O
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