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Last day: finite type A-scheme, locally of finite type A-scheme, projective schemes
over A or k.

Today: Smoothness=regularity=nonsingularity, Zariski tangent space and related
notions, Nakayama’s Lemma.

Warning: I've changed problem B6 to make it more general (reposted on web). The
proof is the same as the original problem, but I'll use it in this generality.

1. PROJECTIVE k-SCHEMES AND PROJECTIVE A-SCHEMES

Last day, I defined Proj S, where: S, is a graded ring (with grading Z=°). Last day I said:
Suppose Sy is an A-algebra. I've changed my mind: I'd like to take Sy = A. S := @05
is the irrelevant ideal; suppose that it is finitely generated over S.

Set: The points of Proj S, are defined to be the homogeneous prime ideals, except for
any ideal containing the irrelevant ideal.

Topology: The closed subsets are of the form V(I), where I is a homogeneous ideal.
Particularly important open sets will the distinguished open sets D(f) = ProjS. — V(f),
where f € S is homogeneous. They form a base.

Structure sheaf: Opyojs.(D(f)) := (S¢)o, where (S¢)o means the 0-graded piece of the
graded ring (S¢). This is a sheaf. One method:

(D(f), Oprojs.Ipir) = Spec(St)o.

1.1. If S, is generated by S; (as an Sp-algebra — we say S, is generated in degree 1),
say by n + 1 elements xo,...,xn, then ProjS, “sits in PR}” as follows. (X “in” Y cur-
rently means that the topological space of X is a subspace of the topological space of
Y.) Consider A™" as a free module with generators to, ..., t, associated to xo, ..., Xn.
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k[Sym* A™1] = k[to, t1,...,tn] —=S. implies S = klto, ti,...tn]/I, where I is a homo-
geneous ideal. Example: S, = k[x,y, zl/(x* + y* — z?) sits naturally in P2

1.2. Easy exercise (silly example). P9 = Proj A[T] = Spec A. Thus “Spec A is a projective
A-scheme”.

Here are some useful facts.

A quasiprojective A-scheme is an open subscheme of a projective A-scheme. The “A”
is omitted if it is clear from the context; often A is some field.)

1.3. Exercise. Show that all projective A-schemes are quasicompact. (Translation: show
that any projective A-scheme is covered by a finite number of affine open sets.) Show
that Proj S, is finite type over A = S,. If Sy is a Noetherian ring, show that Proj S, is a
Noetherian scheme, and hence that Proj S, has a finite number of irreducible components.
Show that any quasiprojective scheme is locally of finite type over A. If A is Noetherian,
show that any quasiprojective A-scheme is quasicompact, and hence of finite type over
A. Show this need not be true if A is not Noetherian.

I'm now going to ask a somewhat rhetorical question. It’s going to sound complicated
because of all the complicated words in it. But all the complicated words just mean simple
concepts.

Question (open for now): are there any quasicompact finite type k-schemes that are
not quasiprojective? (Translation: if we’re gluing together a finite number of schemes
each sitting in some A™, can we ever get something not quasiprojective?) The difficulty
of answering this question shows that this is a good notion! We will see before long
that the affine line with the doubled origin is not projective, but we’ll call that kind of
bad behavior “non-separated”, and then the question will still stand: is every separated
quasicompact finite type k-scheme quasiprojective?

1.4. Exercise. Show that P} is normal. More generally, show that Py is normal if R is a
Unique Factorization Domain.

I said earlier that the affine cone is Spec S,. (We'll soon see that we’ll have a map from
cone minus origin to Proj.) The projective cone of Proj S, is Proj S.[T]. We have an intuitive
picture of both.

1.5. Exercise (better version of exercise from last day). Show that the projective cone of
Proj S, has an open subscheme D(T) that is the affine cone, and that its complement V(T)
can be identified with Proj S, (as a topological space). More precisely, setting T = 0 “cuts
out” a scheme isomorphic to Proj S, — see if you can make that precise.

A lot of what we did for affine schemes generalizes quite easily, as you'll see in these
exercises.



1.6. Exercise. Show that the irreducible subsets of dimension n — 1 of P}} correspond to
homogeneous irreducible polynomials modulo multiplication by non-zero scalars.

1.7. Exercise.

(@) Suppose I is any homogeneous ideal, and f is a homogeneous element. Suppose
f vanishes on V(I). Show that f™ € I for some n. (Hint: mimic the proof in the
affine case.)

(b) If Z C ProjS., define I(-). Show that it is a homogeneous ideal. For any two
subsets, show that I(Z; U Z,) = 1(Z;) N I(Z3).

(c) For any homogeneous ideal I with V(I) # 0, show that I(V(I)) = VI [They may
need the next exercise for this.]

(d) For any subset Z C ProjS., show that V(I(Z)) = Z.

1.8. Exercise. Show that the following are equivalent. (a) V(I) = 0 (b) for any f; (i in
some index set) generating I, UD(f;) = Proj S, (c) VIDS,.

Now let’s go back to some interesting geometry. Here is a useful construction. Define
Sts = ®iSni. (We could rescale our degree, so “old degree” n is “new degree” 1.)

1.9. Exercise. Show that Proj S, is isomorphic to Proj S..

1.10. Exercise. Suppose S, is generated over Soby fy, ..., f,. Suppose d = lem(degf;, ..., deg fy).
Show that S, is generated in “new” degree 1 (= “old” degree d). (Hint: I like to show

this by induction on the size of the set {deg f;, ..., degf,}.) This is handy, because we can

stick every Proj in some projective space via the construction of 1.1.

1.11. Exercise. If S, is a Noetherian domain over k, and Proj S, is non-empty show
that dim Spec S, = dim Proj S, 4+ 1. (Hint: throw out the origin. Look at a distinguished
D(f) where deg f = 1. Use the fact mentioned in Exercise 2.3 of Class 9. By the previous
exercise, you can assume that S, is generated in degree 1 over Sp = A.)

Example: Suppose S.. = k[x, y], so Proj S, = P}. Then S,. = k[x?, xy,y? C klx,y]. What
is this subring? Answer: letu = x%, v = xy, w = y2. I claim that S,. = k[u, v, w]/(uw—v?).

1.12. Exercise. Prove this.

We have a graded ring with three generators; thus we think of it as sitting “in” P2. This
is P! as a conic in P2

1.13. Side remark: diagonalizing quadrics. Suppose k is an algebraically closed field of
characteristic not 2. Then any quadratic form in n variables can be “diagonalized” by
changing coordinates to be a sum of squares (e.g. uw —v? = ((u+v)/2)?+ (i(u—v)/2)*+
(iv)?), and the number of such squares is invariant of the change of coordinates. (Reason:
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write the quadratic form on x4, ..., x, as

(x1 -+ xn )M
Xn

where M is a symmetric matrix — here you are using characteristic # 2. Then diagonalize
M — here you are using algebraic closure.) Thus the conics in P2, up to change of co-
ordinates, come in only a few flavors: sums of 3 squares (e.g. our conic of the previous
exercise), sums of 2 squares (e.g. y*> — x* = 0, the union of 2 lines), a single square (e.g.
x? = 0, which looks set-theoretically like a line), and 0 (not really a conic at all). Thus we
have proved: any plane conic (over an algebraically closed field of characteristic not 2)
that can be written as the sum of three squares is isomorphic to P'.

We now soup up this example.
1.14. Exercise. Show that Proj Ss, is the twisted cubic “in” P3.

1.15. Exercise. Show that Proj S 4. is given by the equations that
Yo Y1 -+ Ya
Yr Y2 -+ Ya

is rank 1 (i.e. that all the 2 x 2 minors vanish).

This is called the degree d rational normal curve “in” P4.

More generally, if S, = klxo,...,xn], then ProjSs. C PN (where N is the number
of degree d polynomials in Xy, ..., xy) is called the d-uple embedding or d-uple Veronese

embedding. Exercise. Show that N = ("}9).

1.16. Exercise. Find the equations cutting out the Veronese surface ProjS,. where S, =
k[xo, x1, 2], which sits naturally in P°.

1.17. Example. If we put a non-standard weighting on the variables of k[x1, ..., %]
— say we give x; degree d; — then Projkl[x;,...,x,] is called weighted projective space
]P)(d]) dZ) ) dn)

1.18. Exercise. Show that P(m,n)isisomorphic to P'. Show thatP(1,1,2) = Proj kfu, v, w, z]/(uw—
v?). Hint: do this by looking at the even-graded parts of k[xo, x1, x2], cf. Exercise 1.9. (Pic-
ture: this is a projective cone over a conic curve.)

1.19. Important exercise for later. (a) (Hypersurfaces meet everything of dimension at least 1 in
projective space — unlike in affine space.) Suppose X is a closed subset of P} of dimension at
least 1, and H a nonempty hypersurface in P}}. Show that H meets X. (Hint: consider the
affine cone, and note that the cone over H contains the origin. Use Krull’s Principal Ideal
Theorem.)



(b) (Definition: Subsets in P™ cut out by linear equations are called linear subspaces. Di-
mension 1, 2 linear subspaces are called lines and planes respectively.) Suppose X — P} is
a closed subset of dimension r. Show that any codimension r linear space meets X. (Hint:
Refine your argument in (a).)

(c) Show that there is a codimension 1 + 1 complete intersection (codimension r + 1 set
that is the intersection of r + 1 hypersurfaces) missing X. (The key step: show that there is
a hypersurface of sufficiently high degree that doesn’t contain every generic point of X.)
If k is infinite, show that there is a codimension r + 1 linear subspace missing X. (The key
step: show that there is a hyperplane not containing any generic point of a component of
X.)

1.20. Exercise. Describe all the lines on the quadric surface wx —yz = 0in P{. (Hint: they
come in two “families”, called the rulings of the quadric surface.)

Hence by Remark 1.13, if we are working over an algebraically closed field of charac-
teristic not 2, we have shown that all rank 4 quadric surfaces have two rulings of lines.

2. “SMOOTHNESS” = REGULARITY = NONSINGULARITY

The last property of schemes I want to discuss is something very important: when
they are “smooth”. For unfortunate historic reasons, smooth is a name given to certain
morphisms of schemes, but I'll feel free to use this to use it also for schemes them-
selves. The more correct terms are reqular and nonsingular. A point of a scheme that is
not smooth=regular=nonsingular is, not surprisingly, singular.

The best way to describe this is by first defining the tangent space to a scheme at a
point, what we’ll call the Zariski tangent space. This will behave like the tangent space you
know and love at smooth points, but will also make sense at other points. In other words,
geometric intuition at the smooth points guides the definition, and then the definition
guides the algebra at all points, which in turn lets us refine our geometric intuition.

This definition is short but surprising. I'll have to convince you that it deserves to be
called the tangent space. I've always found this tricky to explain, and that is because we
want to show that it agrees with our intuition; but unfortunately, our intuition is crappier
than we realize. So I'm just going to define it for you, and later try to convince you that it
is reasonable.

Suppose A is a ring, and m is a point. Translation: we have a point [m] on a scheme
Spec A. Let k = A/m be the residue field. Then m/m? is a vector space over the residue
tield A/m: itis an A-module, and m acts like 0. This is defined to be the Zariski cotangent
space. The dual is the Zariski tangent space. Elements of the Zariski cotangent space are
called cotangent vectors or differentials; elements of the tangent space are called tangent
vectors.

Note: This is intrinsic; it doesn’t depend on any specific description of the ring itself
(e.g. the choice of generators over a field k = choice of embedding in affine space). An
interesting feature: in some sense, the cotangent space is more algebraically natural than
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the tangent space. There is a moral reason for this: the cotangent space is more natu-
rally determined in terms of functions on a space, and we are very much thinking about
schemes in terms of “functions on them”. This will come up later.

I'm now going to give you a bunch of plausibility arguments that this is a reasonable
definition.

First, I'll make a moral argument that this definition is plausible for the cotangent space
of the origin of A™. Functions on A™ should restrict to a linear function on the tangent
space. What function does x* + xy + x +y restrict to “near the origin”? You will naturally
answer: x +y. Thus we “pick off the linear terms”. Hence m/m? are the linear functionals
on the tangent space, so m/m? is the cotangent space.

Here is a second argument, for those of you who think of the tangent space as the
space of derivations. (I didn’t say this in class, because I didn’t realize that many of
you thought in this way until later.) More precisely, in differential geometry, the tangent
space at a point is sometimes defined as the vector space of derivations at that point. A
derivation is a function that takes in functions near the point that vanish at the point, and
gives elements of the field k, and satisfies the Leibniz rule (fg)’ = f'g + g'f. Translation:
a derivation is a map m — k. But m? — 0, as if f(p) = g(p) = 0, then (fg)'(p) =
f'(p)g(p) + g’(p)f(p) = 0. Thus we have a map m/m? — k, i.e. an element of (m/m?)*.
Exercise (for those who think in this way). Check that this is reversible, i.e. that any map
m/m? — k gives a derivation — i.e., check the Leibniz rule.

2.1. Here is an old-fashioned example to help tie this down to earth. This is not currently
intended to be precise. In A%, we have a curve cut out by x + y + z* + xyz = 0 and
x — 2y + z + x*y?z®> = 0. What is the tangent line near the origin? (Is it even smooth
there?) Answer: the first surface looks like x +y = 0 and the second surface looks like
x — 2y + z = 0. The curve has tangent line cut outby x +y = 0and x —2y +z = 0. It
is smooth (in the analytic sense). I give questions like this in multivariable calculus. The
students do a page of calculus to get the answer, because I can’t tell them to just pick out
the linear terms.

Another example: x +y +z* = 0O and x +y + x* + y* + z> = 0 cuts out a curve,
which obviously passes through the origin. If I asked my multivariable calculus students
to calculate the tangent line to the curve at the origin, they would do a page of calculus
which would boil down to picking off the linear terms. They would end up with the
equations x +y = 0 and x +y = 0, which cuts out a plane, not a line. They would be
disturbed, and I would explain that this is because the curve isn’t smooth at a point, and
their techniques don’t work. We on the other hand bravely declare that the cotangent
space is cut out by x +y = 0, and define this as a singular point. (Intuitively, the curve
near the origin is very close to lying in the plane x +y = 0.) Notice: the cotangent space
jumped up in dimension from what it was “supposed to be”, not down.

2.2. Proposition. — Suppose (A, m) is a Noetherian local ring. Then dim A < dimy m/m?.

We’ll prove this on Friday.



If equality holds, we say that A is regular at p. If A is a local ring, then we say that A is
a regular local ring. If A is regular at all of its primes, we say that A is a regular ring.

A scheme X is regular or nonsingular or smooth at a point p if the local ring Ox, is
regular. It is singular at the point otherwise. A scheme is regular or nonsingular or
smooth if it is regular at all points. It is singular otherwise (i.e. if it is singular at at least
one point.

In order to prove Proposition 2.2, we're going to pull out another algebraic weapon:
Nakayama’s lemma. This was done in Math 210, so I didn’t discuss it in class. You
should read this short exposition. If you have never seen Nakayama before, you'll see
a complete proof. If you want a refresher, here it is. And even if you are a Nakayama
expert, please take a look, because there are several related facts that go by the name
of Nakayama’s Lemma, and we should make sure we're talking about the same one(s).
Also, this will remind you that the proof wasn’t frightening and didn’t require months of
previous results.

2.3. Nakayama'’s Lemma version 1. — Suppose R is a ring, I an ideal of R, and M is a finitely-
generated R-module. Suppose M = IM. Then there exists an a € R with a = 1 (mod I) with
aM = 0.

Proof. Say M is generated by my, ..., m,,. Then as M = IM, we have m; = Zj aym; for
some ay € 1. Thus

my
1) (Id,—A) | =0
my

where Id,, is the n x n identity matrix in R, and A = (ay;). We can’t quite invert this
matrix, but we almost can. Recall that any n xn matrix M has an adjoint adj(M) such that
adj(M)M = det(M)Id,,. The coefficients of adj(M) are polynomials in the coefficients of
M. (You've likely seen this in the form a formula for M~ when there is an inverse.)
Multiplying both sides of (1) on the left by adj(Id, — A), we obtain

my
det(Id, —A) : =0.
Mn
But when you expand out det(Id, — A), you get something thatis 1 (mod I). O

Here is why you care: Suppose [ is contained in all maximal ideals of R. (The inter-
section of all the maximal ideals is called the Jacobson radical, but I won’t use this phrase.
Recall that the nilradical was the intersection of the prime ideals of R.) Then I claim that
any a = 1 (mod I) is invertible. For otherwise (a) # R, so the ideal (a) is contained in
some maximal ideal m — but a = 1 (mod m), contradiction. Then as a is invertible, we
have the following.



2.4. Nakayama’s Lemma version 2. — Suppose R is a ring,  an ideal of R contained in all maximal
ideals, and M is a finitely-generated R-module. (Most interesting case: R is a local ring, and 1 is
the maximal ideal.) Suppose M = IM.. Then M = 0.

2.5. Important exercise (Nakayama’s lemma version 3). Suppose R is a ring, and I is
an ideal of R contained in all maximal ideals. Suppose M is a finitely generated R-module,
and N C M is a submodule. If N/IN — M/IM an isomorphism, then M = N.

2.6. Important exercise (Nakayama’s lemma version 4). Suppose (R, m) is a local ring.
Suppose M is a finitely-generated R-module, and fy,...,f, € M, with (the images of)
f1,...,fn generating M/mM. Then f;, ..., f,, generate M. (In particular, taking M = m, if
we have generators of m/m?, they also generate m.)
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