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Last day: Krull’s Principal Ideal Theorem, height, affine communication lemma,
properties of schemes: locally Noetherian, Noetherian, finite type S-scheme, locally
of finite type S-scheme, normal

Today: finite type A-scheme, locally of finite type A-scheme, projective schemes over
A or k.

Problem set 4 is out today (on the web), and problem set 3 is due today. As always,
feedback is most welcome. How are the problem sets pitched? I don’t want to make them
too grueling, but I'd like to give you enough so that you can get a grip on the concepts.
I've noticed that some of you are going after the hardest questions, and others are trying
easier questions, and that’s fine with me.

There is a notion that I have been using implicitly, and I should have made it explicit by
now. It’s the notion of what I mean by when two schemes are the isomorphic. An isomor-
phism of two schemes (X, Ox) and (Y, Oy) is the following data: (i) it is a homeomorphism
between X and Y (the identification of the sets and topologies). Then we can think of Ox
and Oy are sheaves (of rings) on the same space, via this homeomorphism. (ii) It is the
data of an isomorphism of sheaves Ox < Oy.

Last day, I introduced the affine communication lemma. this lemma will come up re-
peatedly in the future.

0.1. Affine communication theorem. — Let P be some property enjoyed by some affine open sets
of a scheme X, such that

(i) if Spec R < X has P then for any f € R, Spec Ry — X does too.
(ii) if (f1,...,fn) =R, and Spec Ry, — X has P for all i, then so does Spec R — X.

Suppose that X = Uie1 Spec R; where Spec R is an affine, and R; has property P. Then every other
open affine subscheme of X has property P too.
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By choosing P appropriately, we define some important properties of schemes. I gave
several examples. Here is one last example.

0.2. Proposition. — Suppose R is a ring, and (fq,...,f,) = R. Suppose A is a ring, and R
is an A-algebra. (i) If R is a finitely generated A-algebra, then so is Ry,. (ii) If each Ry, is a
finitely-generated A-algebra, then so is R.

This of course leads to a corresponding definition.

0.3. Important Definition. Suppose X is a scheme, and A is a ring (e.g. A is a field k),
and I'(X, Ox) is an A-algebra. Note that I'(U, Ox) is an A-algebra for all non-empty U.
Then we say that X is an A-scheme, or a scheme over A. Suppose X is an A-scheme. If X
can be covered by affine opens Spec R where R is a finitely generated A-algebra, we say that
X is locally of finite type over A, or that it is a locally of finite type A-scheme. (My apologies
for this cumbersome terminology; it will make more sense later.) If furthermore X is
quasicompact, X is finite type over A, or a finite type A-scheme.

Proof of Proposition 0.2. (i) is clear: if R is generated over Aby 1, ..., Ty, then R¢is generated
over Abyry, ..., o, 1/f.

(ii) Here is the idea; I'll leave this as an exercise for you to make this work. We have
generators of Ry, : 1i5/ fi, where 1y € R. I claim that {rj;};; U {fi}; generate R as a A-algebra.
Here’s why. Suppose you have any r € R. Then in Ry, we can write r as some polynomial
in the ry’s and f;, divided by some huge power of f;. So “in each Ry,, we have described r
in the desired way”, except for this annoying denominator. Now use a partition of unity
type argument to combine all of these into a single expression, killing the denominator.
Show that the resulting expression you build still agrees with r in each of the Ry,. Thus it
is indeed . O

1. PROJECTIVE k-SCHEMES AND A-SCHEMES: A CONCRETE EXAMPLE

I now want to tell you about an important class of schemes.

Our building blocks of schemes are affine schemes. For example, affine finite type k-
schemes correspond to finitely generated k-algebras. Once you pick generators of the
algebra, say xi, ..., X, then you can think of the scheme as sitting in n-space. More
precisely, suppose R is a finitely-generated k-algebra, say

R=k[x1,...,xu/I.

Then at least as a topological space, it is a closed subset of A™, with set V(I). (We will later
be able to say that it is a closed subscheme, but we haven’t yet defined this phrase.)

Different choices of generators give us different ways of seeing Spec R as sitting in some
affine space. These affine schemes already are very interesting. But when you glue them
together, you can get even more interesting things. I'll now tell you about projective
schemes.



As a warm-up, let me discuss P} again.

Intuitive idea: We think of closed points of P™ as [xo;X1;- - - ;Xnl, Not all zero, with an
equivalence relation [xg; - ;%n] = [Axq;- -+ ;Axnl. X5 + x5 isn’t a function on P™. But
x5 + x5 = 0 makes sense. And (x3 + x3)/(x3 + x2x3) is a function on P? — {x3 + x,x3 = 0}
We have n + 1 patches, corresponding to x; = 0 (0 < i < n). Where xo # 0, we have a
patch [xo;x1; 2] = [1;ug;u2], and similarly for x; # 0 and x, # 0.

More precisely: We defined P™ by gluing together n + 1 copies of A™. Let me show you
this in the case of P{ = “{[xo;x1;%2]}”. Let’s pick co-ordinates wisely. The first patch is
Uy = {xo # 0}. We imagine [x¢; x1;X2] = [1;X1,0;X2/0]. The patch will have coordinates x4 o
and x; o, i.e. it is Spec k[x1 0, X2/0]-

Similarly, the second patchis U; = {x; # 0} = Speck[xo,1, X2,1]. We imagine [xo; X1;x2] =
[xo,1; T;%21].

Finally, the third patchis U, = {x2 # 0} = Spec k[xo,2, X1 2], with “[xo; x1;%2] = [X0/2;%1,2; 11”.
We glue U, along x;,0 # 0 to U; along x¢,1 # 0. Our identification (from [1;x10;X2/0] =

[xo/1; 15%x2,1]) is given by x40 = 1/%0,1 and x2/0 = x2/1%1 /0. Uor := UoNU; = Spec klx1 /0, X2/0, 1/%1 0]
Specklxo,1,%2/1, 1/%0,1], where the isomorphism was as just described.

~

We similarly glue together Uy and U,, and U; and U,. You could show that all this is
compatible, and you could imagine that this is annoying to show. I'm not going to show
you the details, because I'll give you a slick way around this naive approach fairly soon.

Suppose you had a homogeneous polynomial, such as x§ + x§ = x3. (Intuition: I
want a homogeneous polynomial, because in my intuitive notion of projective space as
[Xo; - - ;Xnl, I can make sense of where a homogeneous polynomial vanishes, but I can’t
make as good sense of where an inhomogeneous polynomial vanishes.)

Then I claim that this defines a scheme “in” projective space (in the same way that
Speck[xq, ..., xnl/I was a scheme “in” A™). Here’s how. In the patch Uy, I interpret this as
1+x7,y = %3, In patch Uy, Linterpret it as x§ ;, + 1 = x3,;. On the overlap Uy, these two
equations are the same: the first equation in Spec k[x1 /0, X2,0, 1/X1 0 is the second equation
in Spec k[xo,1,%X2/1, 1/x0,1] [do algebra], unsurprisingly. So piggybacking on that annoying
calculation that P? consists of 3 pieces glued together nicely is the fact that this scheme
consists of three schemes glued together nicely. Similarly, any homogeneous polynomials
Xo, - - ., Xn describes some nice scheme “in” P™.

1.1. Exercise. Show that an irreducible homogeneous polynomial in n+ 1 variables (over
a field k) describes an integral scheme of dimension n—1. We think of this as a “hypersur-
face in P}”. Definition: The degree of the hypersurface is the degree of the polynomial.
(Other definitions: degree 1 = hyperplane, degree 2, 3, ... = quadric hypersurface, cubic,
quartic, quintic, sextic, septic, octic, ...; a quadric curve is usually called a conic curve, or
a conic for short.) Remark: x§ = 0 is degree 2.

I could similarly do this with a bunch of homogeneous polynomials. For example:
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1.2. Exercise. Show that wx = yz,x* = wy,y? = xz describes an irreducible curve in P}
(the twisted cubic!).

1.3. Tentative definitions. Any scheme described in this way (“in P}”) is called a projec-
tive k-scheme. We're not using anything about k being a ring, so similarly if A is a ring, we
can define a projective A-scheme. (I did the case A = k first because that’s the more clas-
sical case.) If T is the ideal in A[x,, ..., xn] generated by these homogeneous polynomials,
we say that the scheme we have constructed is Proj A[xo, ..., xnl/L.

1.4. Examples of projective k-schemes “in” PZ: x = 0 (“line”), x* + y* = z? (“conic”).
wx = yz (“smooth quadric surface”). y%z = x> — xz (“smooth cubic curve”). (PZ)

You imagine that we will have a map Proj Alxy, ..., xnl/I to Spec A. And indeed we
will once we have a definition of morphisms of schemes.

The affine cone of ProjR is SpecR. The picture to have in mind is an actual cone. (I
described it in the cases above, §1.4.) Intuitively, you could imagine that if you discarded
the origin, you would get something that would project onto Proj R. That will be right,
but right now we don’t know what maps of schemes are.

The projective cone of Proj R is Proj R[T], where T is one more variable. For example, the
cone corresponding to the conic Proj k[x,y, zl/(x* + y* = z?) is Proj klx,y, z, TI/(x* + y* +
z?). I then discussed this in the cases above, in §1.4.

1.5. Exercise. Show that the projective cone of Proj R has an open subscheme that is the
affine cone, and that its complement V(T) can be associated with Proj R (as a topological
space). (More precisely, setting T = 0 cuts out a scheme isomorphic to Proj R.)

2. A MORE GENERAL NOTION OF Proj

Let’s abstract these notions. In the examples we’ve been doing, we have a graded ring
S = klxo,...,xnl/I where I is a homogeneous ideal (i.e. I is generated by homogeneous
elements of k[xy, ...,xn]). Here we are taking the usual grading on kl[xo, ..., X,], where
each x; has weight 1. Then S is also a graded ring, and we’ll call its graded pieces Sy, S,
etc. (In a graded ring: S, X S;; = Siwyn. Note that Sy is a subring, and S is a Sy-algebra.)

Notice in our example that Sy = k, and S is generated over Sy by S;.

2.1. Definition. Assume for the rest of the day that S, is a graded ring (with grading
Z2°). 1t is automatically a module over Sy. Suppose Sy is a module over some ring A.
(Imagine that A = Sy = k.) Now S := ®;-0S; is an ideal, which we will call the irrelevant
ideal; suppose that it is a finitely generated ideal.

2.2. Exercise. Show that S, is a finitely-generated S,-algebra.
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Here is an example to keep in mind: S, = k[xo, X1, x2] (with the usual grading). In this
case we will build P%.

I will now define the scheme, that I will denote ProjS.. I will define it as a set, with a
topology, and a structure sheaf. It will be enlightening to picture this in terms of the affine
cone Spec S... We will think of Proj S, as the affine cone, minus the origin, modded out by
multiplication by scalars.

The points of Proj S, are defined to be the homogeneous prime ideals, except for any
ideal containing the irrelevant ideal. (I waved my hands in the air linking this to Spec S..)

We'll define the topology by defining the closed subsets. The closed subsets are of the
form V(I), where I is a homogeneous ideal. Particularly important open sets will the
distinguished open sets D(f) = Proj S, — V(f), where f € S, is homogeneous. They form a
base for the same reason as the analogous distinguished open sets did in the affine case.

Note: If D(f) € D(g), then f™ € (g) for some n, and vice versa. We’ve done this before
in the affine case .

Clearly D(f) " D(g) = D(fg), by the same immediate argument as in the affine case.

We define Op,;s.(D(f)) = (S¢)o, where (S¢)o means the 0-graded piece of the graded
ring (S¢). As before, we check that this is well-defined (i.e. if D(f) = D(f’), then we are
defining the same ring). In our example of S. = k[xo, x1, x2l, if we take f = x,, we get

(klxo, X1, %2lx )0 := k[X1/0,X2/0]-

We now check that this is a sheaf. I could show that this is a sheaf on the base, and the
argument would be the same. But instead, here is a trickier argument: I claim that

(D(f), Oprojs,) = Spec(St)o.

You can do this by showing that the distinguished base elements of Proj R contained in
D(f) are precisely the distinguished base elements of Spec(S¢)o, and the two sheaves have
identifiable sections, and the restriction maps are the same.

2.3. Important Exercise. Do this. (Caution: don’t assume degf = 1.)

2.4. Example: P%. P = Proj Alxo,...,xn). This is great, because we didn’t have to do any
messy gluing.

2.5. Exercise. Check that this agrees with our earlier version of projective space.
2.6. Exercise. Show that Y = P? — (x* + y? + z? = 0) is affine, and find its corresponding
ring (= find its ring of global sections).

We like this definition for a more abstract reason. Let V be an n + 1-dimensional vector
space over k. (Here k can be replaced by A as well.) Let Sym' V* = k@ V* @ Sym* V* @ - -.
The dual here may be confusing; it’s here for reasons that will become apparent far later.)
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If for example V is the dual of the vector space with basis associated to xo, ..., %, we
would have Sym' V* = Kk[xo,...,xn]. Then we can define Proj Sym V*. (This is often
called PV.) Ilike this definition because it doesn’t involved choosing a basis of V. [Picture
of vector bundle, and its projectivization. ]

If S, is generated by S; (as a Se-algebra), then Proj S, “sits in P;”. (Terminology: gen-
erated in degree 1.) k[Sym*Sq] = k[x,y,z] —=— S, implies S = k[x,y,z|/I, where I is a
homogeneous ideal. Example: S, = k[x,y, zl/(x* + y* — z?). It sits naturally in P

Next day: I'll describe some nice properties of projective S,-schemes.

E-mail address: vakil@math.stanford.edu



