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1. Playing with the structure sheaf 1

Last day: The structure sheaf.

Today: M̃, sheaf associated to R-module M; Chinese remainder theorem; germs and
value at a point of the structure sheaf; non-affine schemes A2 −(0, 0), line with doubled
origin, Pn.

Another problem set 2 issue, about the pullback sheaf. First, I think I’d like to call it the
inverse image sheaf, because I don’t want to confuse it with something that I’ll also call
the pullback. Second, and more importantly, I didn’t give the correct definition.

Here is what I should have said (and what is now in the problem set). Define f−1Gpre(U) =
lim→V⊃f(U) G(V). Then show that this is a presheaf. Then the sheafification of this is said
to be the inverse image sheaf (sometimes called the pullback sheaf) f−1G := (f−1Gpre)sh.
Thanks to Kate for pointing out this important patch!

1. PLAYING WITH THE STRUCTURE SHEAF

Here’s where we were last day. We defined the structure sheaf OSpec R on an affine scheme
Spec R. We did this by describing it as a sheaf on the distinguished base.

An immediate consequence is that we can recover our ring R from the scheme Spec R

by taking global sections, as the entire scheme is D(1):

Γ(Spec R,OSpec R) = Γ(D(1),OSpecR) as D(1) = Spec R

= R1 (i.e. allow 1’s in the denominator) by definition
= R

Another easy consequence is that the restriction of the sheaf OSpec R to the distinguished
open set D(f) gives us the affine scheme Spec Rf. Thus not only does the set restrict, but
also the topology (as we’ve seen), and the structure sheaf (as this exercise shows).
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1.1. Important but easy exercise. Suppose f ∈ R. Show that under the identification of D(f)
in Spec R with Spec Rf, there is a natural isomorphism of sheaves (D(f),OSpecR|D(f)) ∼=
(Spec Rf,OSpec Rf

).

The proof of Big Theorem of last time (that the object OSpec R defined by Γ(D(f),OSpecR) =
Rf forms a sheaf on the distinguished base, and hence a sheaf) immediately generalizes,
as the following exercise shows. This exercise will be essential for the definition of a
quasicoherent sheaf later on.

1.2. Important but easy exercise. Suppose M is an R-module. Show that the following
construction describes a sheaf M̃ on the distinguished base. To D(f) we associate Mf =
M ⊗R Rf; the restriction map is the “obvious” one. This is a sheaf of OSpec R-modules! We
get a natural bijection: rings, modules ↔ Affine schemes, M̃.

Useful fact for later: As a consequence, note that if (f1, . . . , fr) = R, we have identified
M with a specific submodule of Mf1

× · · · × Mfr
. Even though M → Mfi

may not be an
inclusion for any fi, M → Mf1

× · · · × Mfr
is an inclusion. We don’t care yet, but we’ll

care about this later, and I’ll invoke this fact. (Reason: we’ll want to show that if M has
some nice property, then Mf does too, which will be easy. We’ll also want to show that if
(f1, . . . , fn) = R, then if Mfi

have this property, then M does too.)

1.3. Brief fun: The Chinese Remainder Theorem is a geometric fact. I want to show you
that the Chinese Remainder theorem is embedded in what we’ve done, which shouldn’t
be obvious to you. I’ll show this by example. The Chinese Remainder Theorem says
that knowing an integer modulo 60 is the same as knowing an integer modulo 3, 4, and
5. Here’s how to see this in the language of schemes. What is Spec Z/(60)? What are
the primes of this ring? Answer: those prime ideals containing (60), i.e. those primes
dividing 60, i.e. (2), (3), and (5). So here is my picture of the scheme [3 dots]. They are
all closed points, as these are all maximal ideals, so the topology is the discrete topology.
What are the stalks? You can check that they are Z/4, Z/3, and Z/5. My picture is actually
like this (draw a small arrow on (2)): the scheme has nilpotents here (22 ≡ 0 (mod 4)). So
what are global sections on this scheme? They are sections on this open set (2), this other
open set (3), and this third open set (5). In other words, we have a natural isomorphism
of rings

Z/60 → Z/4 × Z/3 × Z/5.

On a related note:

1.4. Exercise. Show that the disjoint union of a finite number of affine schemes is also an
affine scheme. (Hint: say what the ring is.)

This is always false for an infinite number of affine schemes:

1.5. Unimportant exercise. An infinite disjoint union of (non-empty) affine schemes is not
an affine scheme. (One-word hint: quasicompactness.)
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1.6. Stalks of this sheaf: germs, and values at a point. Like every sheaf, the structure
sheaf has stalks, and we shouldn’t be surprised if they are interesting from an algebraic
point of view. In fact, we have seen them before.

1.7. Exercise. Show that the stalk of OSpec R at the point [p] is the ring Rp. (Hint: use dis-
tinguished open sets in the direct limit you use to define the stalk. In the course of doing
this, you’ll discover a useful principle. In the concrete definition of stalk, the elements
were sections of the sheaf over some open set containing our point, and two sections over
different open sets were considered the same if they agreed on some smaller open set. In
fact, you can just consider elements of your base when doing this. This is called a cofinal
system in the directed set.) This is yet another reason to like the notion of a sheaf on a base.

The residue field of a scheme at a point is the local ring modulo its maximal ideal.

Essentially the same argument will show that the stalk of the sheaf M̃ at [p] is Mp.

So now we can make precise some of our intuition. Suppose [p] is a point in some open
set U of Spec R. For example, say R = k[x, y], p = (x) (draw picture), and U = A2 − (0, 0).
(First, make sure you see that this is an open set! (0, 0) = V((x, y)) is indeed closed. Make
sure you see that [p] indeed is in U.)

• Then a function on U, i.e. a section of OSpec R over U, has a germ near [p], which
is an element of Rp. Note that this is a local ring, with maximal ideal pRp. In our
example, consider the function (3x4 + x2 + xy + y2)/(3x2 + xy + y2 + 1), which is
defined on the open set D(3x2 + xy + y2 + 1). Because there are no factors of x in
the denominator, it is indeed in Rp.

• A germ has a value at [p], which is an element of Rp/pRp. (This is isomorphic to
Frac(R/p), the fraction field of the quotient domain.) So the value of a function at
a point always takes values in a field. In our example, to see the value of our germ
at x = 0, we simply set x = 0! So we get the value y2/(y2 + 1), which is certainly
in Frack[y].

• We say that the germ vanishes at p if the value is zero. In our example, the germ
doesn’t vanish at p.

If anything makes you nervous, you should make up an example to assuage your ner-
vousness. (Example: 27/4 is a regular function on Spec Z − {(2), (7)}. What is its value at
(5)? Answer: 2/(−1) ≡ −2 (mod 5). What is its value at (0)? Answer: 27/4. Where does
it vanish? At (3).)

1.8. An extended example. I now want to work through an example with you, to show
that this distinguished base is indeed something that you can work with. Let R = k[x, y],
so Spec R = A2

k. If you want, you can let k be C, but that won’t be relevant. Let’s work out
the space of functions on the open set U = A2 − (0, 0).

It is a non-obvious fact that you can’t cut out this set with a single equation, so this isn’t
a distinguished open set. We’ll see why fairly soon. But in any case, even if we’re not sure
if this is a distinguished open set, we can describe it as the union of two things which are
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distinguished open sets. If I throw out the x axis, i.e. the set y = 0, I get the distinguished
open set D(y). If I throw out the y axis, i.e. x = 0, I get the distinguished open set D(x).
So U = D(x) ∪ D(y). (Remark: U = A2 − V(x, y) and U = D(x) ∪ D(y). Coincidence?
I think not!) We will find the functions on U by gluing together functions on D(x) and
D(y).

What are the functions on D(x)? They are, by definition, Rx = k[x, y, 1/x]. In other
words, they are things like this: 3x2 + xy+ 3y/x+ 14/x4. What are the functions on D(y)?
They are, by definition, Ry = k[x, y, 1/y]. Note that R ↪→ Rx, Ry. This is because x and y

are not zero-divisors. (In fact, R is an integral domain — it has no zero-divisors, besides
0 — so localization is always an inclusion.) So we are looking for functions on D(x) and
D(y) that agree on D(x) ∩ D(y) = D(xy), i.e. they are just the same function. Well, which
things of this first form are also of the second form? Just old-fashioned polynomials —

(1) Γ(U,OA2) ≡ k[x, y].

In other words, we get no extra functions by throwing out this point. Notice how easy
that was to calculate!

This is interesting: any function on A2 − (0, 0) extends over all of A2. (Aside: This
is an analog of Hartogs’ theorem in complex geometry: you can extend a holomorphic
function defined on the complement of a set of codimension at least two on a complex
manifold over the missing set. This will work more generally in the algebraic setting: you
can extend over points in codimension at least 2 not only if they are smooth, but also if
they are mildly singular — what we will call normal.)

We can now see that this is not an affine scheme. Here’s why: otherwise, if (U,OA2 |U) =
(Spec S,OSpec S), then we can recover S by taking global sections:

S = Γ(U,OA2 |U),

which we have already identified in (1) as k[x, y]. So if U is affine, then U = A2
k. But we

get more: we can recover the points of Spec S by taking the primes of S. In particular,
the prime ideal (x, y) of S should cut out a point of Spec S. But on U, V(x) ∩ V(y) = ∅.
Conclusion: U is not an affine scheme. (If you are ever looking for a counterexample to
something, and you are expecting one involving a non-affine scheme, keep this example
in mind!)

It is however a scheme.

Again, let me repeat the definition of a scheme. It is a topological space X, along with
a sheaf of rings OX, such that any point x ∈ X has a neighborhood U such that (U,OX|U)
is an affine scheme (i.e. we have a homeomorphism of U with some Spec R, say f : U →

Spec R, and an isomorphism OX|U ∼= OR, where the two spaces are identified). The scheme
can be denoted (X,OX), although it is often denoted X, with the structure sheaf implicit.

I stated earlier in the notes, Exercise 1.1 (and at roughly at this point in the class): If we
take the underlying subset of D(f) with the restriction of the sheaf OSpec R, we obtain the
scheme Spec Rf.
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If X is a scheme, and U is any open subset, then (U,OX|U) is also a scheme. Exercise.
Prove this. (U,OX|U) is called an open subscheme of U. If U is also an affine scheme, we
often say U is an affine open subset, or an affine open subscheme, or sometimes informally
just an affine open. For an example, D(f) is an affine open subscheme of Spec R.

1.9. Exercise. Show that if X is a scheme, then the affine open sets form a base for the
Zariski topology. (Warning: they don’t form a nice base, as we’ll see in Exercise 1.11
below. However, in “most nice situations” this will be true, as we will later see, when we
define the analogue of “Hausdorffness”, called separatedness.)

You’ve already seen two examples of non-affine schemes: an infinite disjoint union of
non-empty schemes, and A

2 − (0, 0). I want to give you two more important examples.
They are important because they are the first examples of fundamental behavior, the first
pathological, and the second central.

First, I need to tell you how to glue two schemes together. Suppose you have two
schemes (X,OX) and (Y,OY), and open subsets U ⊂ X and V ⊂ Y, along with a homeo-
morphism U ∼= V , and an isomorphism of structure sheaves (U,OX|U) ∼= (V,OY |V). Then
we can glue these together to get a single scheme. Reason: let W be X and Y glued to-
gether along the isomorphism U ∼= V . Then problem 9 on the second problem set shows
that the structure sheaves can be glued together to get a sheaf of rings. Note that this is
indeed a scheme: any point has a neighborhood that is an affine scheme. (Do you see
why?)

So I’ll give you two non-affine schemes. In both cases, I will glue together two copies of
the affine line A1

k. Again, if it makes you feel better, let k = C, but it really doesn’t matter;
this is the last time I’ll say this.

Let X = Spec k[t], and Y = Spec k[u]. Let U = D(t) = Spec k[t, 1/t] ⊂ X and V = D(u) =
Spec k[u, 1/u] ⊂ Y.

We will get example 1 by gluing X and Y together along U and V . We will get example
2 by gluing X and Y together along U and V .

Example 1: the affine line with the doubled origin. Consider the isomorphism U ∼= V

via the isomorphism k[t, 1/t] ∼= k[u, 1/u] given by t ↔ u. Let the resulting scheme be
X. The picture looks like this [line with doubled origin]. This is called the affine line with
doubled origin.

As the picture suggests, intuitively this is an analogue of a failure of Hausdorffness. A
1

itself is not Hausdorff, so we can’t say that it is a failure of Hausdorffness. We see this
as weird and bad, so we’ll want to make up some definition that will prevent this from
happening. This will be the notion of separatedness. This will answer other of our prayers
as well. For example, on a separated scheme, the “affine base of the Zariski topology” is
nice — the intersection of two affine open sets will be affine.

5



1.10. Exercise. Show that X is not affine. Hint: calculate the ring of global sections, and
look back at the argument for A

2 − (0, 0).

1.11. Exercise. Do the same construction with A1 replaced by A2. You’ll have defined
the affine plane with doubled origin. Use this example to show that the affine base of the
topology isn’t a nice base, by describing two affine open sets whose intersection is not
affine.

Example 2: the projective line. Consider the isomorphism U ∼= V via the isomorphism
k[t, 1/t] ∼= k[u, 1/u] given by t ↔ 1/u. The picture looks like this [draw it]. Call the
resulting scheme the projective line over the field k, P1

k.

Notice how the points glue. Let me assume that k is algebraically closed for conve-
nience. (You can think about how this changes otherwise.) On the first affine line, we
have the closed (= “old-fashioned”) points (t − a), which we think of as “a on the t-line”,
and we have the generic point. On the second affine line, we have closed points that are
“b on the u-line”, and the generic point. Then a on the t-line is glued to 1/a on the u-line
(if a 6= 0 of course), and the generic point is glued to the generic point (the ideal (0) of
k[t] becomes the ideal (0) of k[t, 1/t] upon localization, and the ideal (0) of k[u] becomes
the ideal (0) of k[u, 1/u]. And (0) in k[t, 1/t] is (0) in k[u, 1/u] under the isomorphism
t ↔ 1/u).

We can interpret the closed (“old-fashioned”) points of P1 in the following way, which
may make this sound closer to the way you have seen projective space defined earlier.
The points are of the form [a; b], where a and b are not both zero, and [a; b] is identified
with [ac; bc] where c ∈ k∗. Then if b 6= 0, this is identified with a/b on the t-line, and if
a 6= 0, this is identified with b/a on the u-line.

1.12. Exercise. Show that P1
k is not affine. Hint: calculate the ring of global sections.

This one I will do for you.

The global sections correspond to sections over X and sections over Y that agree on the
overlap. A section on X is a polynomial f(t). A section on Y is a polynomial g(u). If I
restrict f(t) to the overlap, I get something I can still call f(t); and ditto for g(u). Now we
want them to be equal: f(t) = g(1/t). How many polynomials in t are at the same time
polynomials in 1/t? Not very many! Answer: only the constants k. Thus Γ(P1,OP1) = k.
If P1 were affine, then it would be Spec Γ(P1,OP1) = Spec k, i.e. one point. But it isn’t — it
has lots of points.

Note that we have proved an analog of a theorem: the only holomorphic functions on
CP

1 are the constants!

1.13. Important exercise. Figure out how to define projective n-space Pn
k . Glue together

n + 1 opens each isomorphic to A
n
k . Show that the only global sections of the structure

sheaf are the constants, and hence that Pn
k is not affine if n > 0. (Hint: you might fear that

you will need some delicate interplay among all of your affine opens, but you will only
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need two of your opens to see this. There is even some geometric intuition behind this:
the complement of the union of two opens has codimension 2. But “Hartogs’ Theorem”
says that any function defined on this union extends to be a function on all of projective
space. Because we’re expecting to see only constants as functions on all of projective
space, we should already see this for this union of our two affine open sets.)

Exercise. The closed points of Pn
k (if k is algebraically closed) may be interpreted in the

same way as we interpreted the points of P1
k. The points are of the form [a0; . . . ; an], where

the ai are not all zero, and [a0; . . . ; an] is identified with [ca0; . . . ; can] where c ∈ k∗.

We will later give another definition of projective space. Your definition will be handy
for computing things. But there is something unnatural about it — projective space is
highly symmetric, and that isn’t clear from your point of view.

Note that your definition will give a definition of Pn
R for any ring R. This will be useful

later.

1.14. Example. Here is an example of a function on an open subset of a scheme that is a
bit surprising. On X = Spec k[w, x, y, z]/(wx−yz), consider the open subset D(y)∪D(w).
Show that the function x/y on D(y) agrees with z/w on D(w) on their overlap D(y) ∩
D(w). Hence they glue together to give a section. Justin points out that you may have
seen this before when thinking about analytic continuation in complex geometry — we
have a “holomorphic” function the description x/y on an open set, and this description
breaks down elsewhere, but you can still “analytically continue” it by giving the function
a different definition.

Follow-up for curious experts: This function has no “single description” as a well-
defined expression in terms of w, x, y, z! there is lots of interesting geometry here. Here
is a glimpse, in terms of words we have not yet defined. Spec k[w, x, y, z] is A4, and is, not
surprisingly, 4-dimensional. We are looking at the set X, which is a hypersurface, and is
3-dimensional. It is a cone over a smooth quadric surface in P3 [show them hyperboloid
of one sheet, and point out the two rulings]. D(y) is X minus some hypersurface, so we
are throwing away a codimension 1 locus. D(z) involves throwing another codimension
1 locus. You might think that their intersection is then codimension 2, and that maybe
failure of extending this weird function to a global polynomial comes because of a failure
of our Hartogs’-type theorem, which will be a failure of normality. But that’s not true —
V(y) ∩ V(z) is in fact codimension 1 — so no Hartogs-type theorem holds. Here is what
is actually going on. V(y) involves throwing away the (cone over the) union of two lines
l and m1, one in each “ruling” of the surface, and V(z) also involves throwing away the
(cone over the) union of two lines l and m2. The intersection is the (cone over the) line
l, which is a codimension 1 set. Neat fact: despite being “pure codimension 1”, it is not
cut out even set-theoretically by a single equation. (It is hard to get an example of this
behavior. This example is the simplest example I know.) This means that any expression
f(w, x, y, z)/g(w, x, y, z) for our function cannot correctly describe our function on D(y)∪
D(z) — at some point of D(y) ∪ D(z) it must be 0/0. Here’s why. Our function can’t be
defined on V(y) ∩ V(z), so g must vanish here. But then g can’t vanish just on the cone
over l — it must vanish elsewhere too. (For the experts among the experts: here is why
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the cone over l is not cut out set-theoretically by a single equation. If l = V(f), then D(f) is
affine. Let l ′ be another line in the same ruling as l, and let C(l) (resp. l ′ be the cone over l

(resp. l ′). Then C(l ′) can be given the structure of a closed subscheme of Spec k[w, x, y, z],
and can be given the structure of A2. Then C(l ′)∩V(f) is a closed subscheme of D(f). Any
closed subscheme of an affine scheme is affine. But l∩ l ′ = ∅, so the cone over l intersects
the cone over l ′ is a point, so C(l ′) ∩ V(f) is A

2 minus a point, which we’ve seen is not
affine, contradiction.)

E-mail address: vakil@math.stanford.edu
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