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Last day: Spec R: the set, and the topology

Today: The structure sheaf, and schemes in general.

Announcements: on problem set 2, there was a serious typo in # 10. Hom(F(U),G(U))
should read Hom(F |U,G|U). The notation is new, but will likely be clear to you after
you think about it a little. If F is a sheaf on X, and U is an open subset, then we can
define the sheaf F |U on U in the obvious way. This is sometimes called the restriction of the
sheaf F to the open set U (not to be confused with restriction maps!). This homomorphism
Hom(F |U,G|U) is the set of all sheaf homomorphisms from F |U to G|U. The revised version is
posted on the website.

Also, the final problem set this quarter will be due no later than Monday, December 12,
the Monday after the last class.

1. RECAP OF LAST DAY, AND FURTHER DISCUSSION

Last day, we saw lots of examples of the underlying sets of affine schemes, which cor-
respond to primes in a ring. In this dictionary, “an element r of the ring lying in a prime
ideal p” translates to “an element r of the ring vanishing at the point [p], and I will use
these phrases interchangeably.

There was some language I was using informally, and I’ve decided to make it more
formal: elements r ∈ R will officially be called “global functions”, and their value at the
point [p] will be r (mod p). This language will be “justified” by the end of today.

I then defined the Zariski topology. The closed subsets were just those points where
some set of ring elements all vanish.
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As a reminder, here are the key words that we learned about topological spaces: irre-
ducible; generic point; closed points (points p such that {p} = {p}; did I forget to say this
last time?); specialization/generization; quasicompact. All of these words can be used on
any topological spaces, but they tend to be boring (or highly improbable) on spaces that
you knew and loved before.

On Spec R, closed points correspond to maximal ideals of R. Also, I described a bijection
between closed subsets and radical ideals. The two maps of this bijection use the “van-
ishing set” function V and the “ideal of functions vanishing” function I. I also described
a bijection between points and closed subsets; one direction involved taking closures,
and the other involved taking generic points. Some of this was left to you in the form of
exercises.

As an example, consider the prime (or point) (y − x2) in k[x, y] (or Spec k[x, y]). What is
its closure? We look at all functions vanishing at this point, and see at what other points
they all vanish. In other words, we look for all prime ideals containing all elements of
this one. In other words, we look at all prime ideals containing this one. Picture: we get
all the closed points on the parabola. We get the closed set corresponding to this point.
(Caveat: I haven’t proved that I’ve described all the primes in k[x, y].)

In class, I spontaneously showed you that the Zariski closure of the countable set (n, n2)

in A
2
C

was the parabola. The Zariski closure of a finite set of points will just be itself: a
finite union of closed sets is closed.

Last day I showed that the Zariski topology behaves well with respect to taking quo-
tients, and localizing. I said a little more today.

About taking quotients: suppose you have a ring R, and an ideal I. Then there is a
bijection of the points of Spec R/I with the points of V(I) in Spec R. (Just unwind the
algebraic definition! Both correspond to primes p of R containing I.) My comments of last
day showed that this is in fact a homeomorphism: Spec R/I may be identified with the
closed subset of Spec R as a topological space: the subspace topology induced from Spec R

is indeed the topology of Spec R. The reason was not sophisticated: there is a natural
correspondence of closed subsets.

About localizing: this is quite a general procedure, so in general you can’t say much
besides the fact that Spec S−1R is naturally a subset of Spec R, with the induced topology.
Last day I discussed the important case where S = R−p, the complement of a prime ideal,
so then S−1R = Rp.

But there is a second important example of localization, when S = {1, f, f2, . . . } for
some f ∈ R. In this case we get the ring denoted Rf. In this case, Spec Rf is D(f), again just
by unwinding the definitions: both consist of the primes not containing f (= the points
where f doesn’t vanish). The Zariski topology on D(f) agrees with the Zariski topology
on Spec Rf.

Here is an exercise from last day. Show that (f1, . . . , fn) = (1) if and only if ∪D(fi) =
Spec R. I want to do it for you, to show you how it can be interpreted simultaneously in
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both algebra and geometry. Here is one direction. Suppose [p] /∈ ∪D(fi). You can unwind
this to get an algebraic statement. I think of it as follows. All of the fi vanish at [p], i.e. all
fi ∈ p, so then (f1, . . . ) ⊂ p and hence this ideal can’t be all of R. Conversely, consider the
ideal (f1, . . . ). If it isn’t R, then it is contained in a maximal ideal. (For logic-lovers: we’re
using the axiom of choice, which I said I’d assume at the very start of this class.) But then
there is some prime ideal containing all the fi. Translation: [m] /∈ D(fi) for any i. (As an
added bonus: this argument shows that if Spec R is an infinite union ∪i∈ID(fi), then in fact
it is a union of a finite number of these. This is one way of proving quasicompactness.)

Important comment: This machinery will let us bring our geometric intuition to alge-
bra. There is one point where your intuition will be false, and I want to tell you now, so
you can adjust your intuition appropriately. Suppose we have a function (ring element)
vanishing at all points. Is it zero? Not necessarily! Translation: is intersection of all prime
ideals necessarily just 0? No: k[ε]/ε2 is a good example, as ε 6= 0, but ε2 = 0. This
is called the ring of dual numbers (over the field k). Any function whose power is zero
certainly lies in the intersection of all prime ideals. And the converse is true (algebraic
fact): the intersection of all the prime ideals consists of functions for which some power
is zero, otherwise known as the nilradical N. (Ring elements that have a power that is 0

are called nilpotents.) Summary: “functions on affine schemes” will not be determined by
their values at points. (For example: Spec k[ε]/ε2 has one point. 3 + 4ε has value 3 at that
point, but the function isn’t 3.) In particular, any function vanishing at all points might
not be zero, but some power of it is zero. This takes some getting used to.

1.1. Easy fun unimportant exercise. Suppose we have a polynomial f(x) ∈ k[x]. Instead, we
work in k[x, ε]/ε2. What then is f(x + ε)? (Do a couple of examples, and you will see the
pattern. For example, if f(x) = 3x3 + 2x, we get f(x + ε) = (3x3 + 2x) + ε(9x2 + 2). Prove
the pattern!) Useful tip: the dual numbers are a good source of (counter)examples, being
the “smallest ring with nilpotents”. They will also end up being important in defining
differential information.

Here is one more (important!) algebraic fact: suppose D(f) ⊂ D(g). Then fn ∈ (g)
for some n. I’m going to let you prove this (Exercise from last day), but I want to tell
you how I think of it geometrically. Draw a picture of Spec R. Draw the closed subset
V(g) = Spec R/(g). That’s where g vanishes, and the complement is D(g), where g doesn’t
vanish. Then f is a function on this closed subset, and it vanishes at all points of the closed
subset. (Translation: Consider f as an element of the ring R/(g).) Now any function
vanishing at every point of Spec a ring must have some power which is 0. Translation:
there is some n such that fn = 0 in R/(g), i.e. fn ≡ 0 (mod g) in R, i.e. fn ∈ (g).

2. THE FINAL INGREDIENT IN THE DEFINITION OF AFFINE SCHEMES: THE STRUCTURE
SHEAF

The final ingredient in the definition of an affine scheme is the structure sheaf OSpec R,
which we think of as the “sheaf of algebraic functions”. These functions will have values
at points, but won’t be determined by their values at points. Like all sheaves, they will
indeed be determined by their germs.
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It suffices to describe it as a sheaf on the nice base of distinguished open sets. We
define the sections on the base by
(1) OSpec R(D(f)) = Rf

We define the restriction maps resD(g),D(f) as follows. If D(f) ⊂ D(g), then we have shown
that fn ∈ (g), i.e. we can write fn = ag. There is a natural map Rg → Rf given by
r/gm 7→ (ram)/(fmn), and we define

resD(g),D(f) : OSpec R(D(g)) → OSpec R(D(f))

to be this map.

2.1. Exercise. (a) Verify that (1) is well-defined, i.e. if D(f) = D(f ′) then Rf is canonically
isomorphic to Rf ′ . (b) Show that resD(g),D(f) is well-defined, i.e. that it is independent of
the choice of a and n, and if D(f) = D(f ′) and D(g) = D(g ′), then

Rg

∼

��

resD(g),D(f)
// Rf

∼

��

Rg ′

resD(g ′),D(f ′)
// Rf ′

commutes.

We now come to the big theorem of today.

2.2. Theorem. — The data just described gives a sheaf on the (nice) distinguished base, and hence
determines a sheaf on the topological space Spec R.

This sheaf is called the structure sheaf, and will be denoted OSpec R, or sometimes O if
the scheme in question is clear from the context. Such a topological space, with sheaf, will
be called an affine scheme. The notation Spec R will hereafter be a topological space, with
a structure sheaf.

Proof. Clearly this is a presheaf on the base: if D(f) ⊂ D(g) ⊂ D(h) then the following
diagram commutes:

(2) Rh

resD(h),D(g)
//

resD(h),D(f)
  

AA
AA

AA
AA

Rg

resD(g),D(f)
~~}}

}}
}}

}}

Rf.

You can check this directly. Here is a trick which helps (and may help you with Exer-
cise 2.1 above). As D(g) ⊂ D(h), D(gh) = D(g). (Translation: The locus where g doesn’t
vanish is a subset of where h doesn’t vanish, so the locus where gh doesn’t vanish is the
same as the locus where g doesn’t vanish.) So we can replace Rg by Rgh, and Rf by Rfgh, in
(2). The restriction maps are resD(h),D(gh) : a/h 7→ ag/gh, resD(gh),D(fgh) : b/gh 7→ bf/fgh,
and resD(h),D(fgh) : a/h → afg/fgh, so they clearly commute as desired.

We next check identity on the base. We deal with the case of a cover of the entire
space R, and let the reader verify that essentially the same argument holds for a cover
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of some Rf. Suppose that Spec R = ∪i∈AD(fi) where i runs over some index set I. By
quasicompactness, there is some finite subset of I, which we name {1, . . . , n}, such that
Spec R = ∪n

i=1D(fi), i.e. (f1, . . . , fn) = R. (Now you see why we like quasicompactness!)
Suppose we are given s ∈ R such that resSpec R,D(fi) s = 0 in Rfi

for all i. Hence there is
some m such that for each i ∈ {1, . . . , n}, fm

i s = 0. (Reminder: R → Rf. What goes to 0?
Precisely things killed by some power of f.) Now (fm

1 , . . . , fm
n ) = R (do you know why?),

so there are ri ∈ R with
∑n

i=1 rif
m
i = 1 in R, from which

s =
(∑

rif
m
i

)

s = 0.

Thus we have checked the “base identity” axiom for Spec R.

Remark. Serre has described this as a “partition of unity” argument, and if you look at
it in the right way, his insight is very enlightening.

2.3. Exercise. Make the tiny changes to the above argument to show base identity for any
distinguished open D(f).

We next show base gluability. As with base identity, we deal with the case where we
wish to glue sections to produce a section over Spec R. As before, we leave the general case
where we wish to glue sections to produce a section over D(f) to the reader (Exercise 2.4).

Suppose ∪i∈ID(fi) = Spec R, where I is a index set (possibly horribly uncountably infi-
nite). Suppose we are given

ai

fli
i

∈ Rfi
(i ∈ I)

such that for all i, j ∈ I, there is some mij ≥ li, lj with

(3) (fifj)
mij

(

f
lj
j ai − fli

i aj

)

= 0

in R. We wish to show that there is some r ∈ R such that r = ai/fli
i in Rfi

for all i ∈ I.

Choose a finite subset {1, . . . , n} ⊂ I with (f1, . . . , fn) = R.

To save ourself some notation, we may take the li to all be 1, by replacing fi with
fli
i (as D(fi) = D(fli

i )). We may take mij (1 ≤ i, j ≤ n) to be the same, say m — take
m = max mij.) The only reason to do this is to have fewer variables.

Let a ′
i = aif

m
i . Then ai/fi = a ′

i/fm+1
i , and (3) becomes

(4) fm+1
j a ′

i − fm+1
i a ′

j = 0

As (f1, . . . , fn) = R, we have (fm+1
1 , . . . , fm+1

n ) = R, from which 1 =
∑

bif
m+1
i for some

bi ∈ R. Define
r = b1a

′
1 + · · ·+ bna ′

n.
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This will be the r that we seek. For each i ∈ {1, . . . , n}, we will show that r − a ′
i/fm+1

i = 0

in Dfi
. Indeed,

rfm+1
i − a ′

i =

n∑

j=1

a ′
jbjf

m+1
i −

n∑

j=1

a ′
ibjf

m+1
j

=
∑

j6=i

bj(a
′
jf

m+1
i − a ′

if
m+1
j )

= 0 (by (4))

So are we done? No! We are supposed to have something that restricts to ai/fli
i for all

i ∈ I, not just i = 1, . . . , n. But a short trick takes care of this. We now show that for any
α ∈ I − {1, . . . , n}, r = aα/flα

α in Rfα
. Repeat the entire process above with {1, . . . , n, α} in

place of {1, . . . , n}, to obtain r ′ ∈ R which restricts to ai/fli
i for i ∈ {1, . . . , n, α}. Then by

base identity, r ′ = r. Hence r restricts to aα/flα
α as desired.

2.4. Exercise. Alter this argument appropriately to show base gluability for any distin-
guished open D(f).

�

So now you know what an affine scheme is!

We can even define a scheme in general: it is a topological space X, along with a struc-
ture sheaf OX, that locally looks like an affine scheme: for any x ∈ X, there is an open
neighborhood U of x such that (U,OX|U) is an affine scheme.

On Friday, I’ll discuss some of the ramifications of this definition. In particular, you’ll
see that stalks of this sheaf are something familiar, and I’ll show you that constructing
the sheaf by looking at this nice distinguished base isn’t just a kluge, it’s something very
natural — we’ll do this by finding sections of OA2 over the open set A

2 − (0, 0).
E-mail address: vakil@math.stanford.edu
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