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Last day: Understanding sheaves via stalks, and via “nice base” of topology. SpecR:
the set.

Today: Spec R: the set, and the Zariski topology.

Here is a reminder of where we are going. Affine schemes Spec R will be defined as
a topological space with a sheaf of rings, that we will refer to as the sheaf of functions,
called the structure sheaf. A scheme in general will be such a thing (a topological space
with a sheaf of rings) that locally looks like Spec R’s. Last day we defined the set: it is the
set of primes of R.

We're in the process of doing lots of examples. In the course of doing these examples,
we are saying things that we aren’t allowed to say yet, because we’re using words that
we haven’t defined. We're doing this because it will motivate where we’re going.

We discussed the example R = k[x] where k is algebraically closed (notation: A} =
Spec k[x]). This has old-fashioned points (x — a) corresponding to a € k. (Such a point is
often just called a, rather than (x —a).) But we have a new point, (0). (Notational caution:
0 # (0).) This is a “smooth irreducible curve”. (We don’t know what any of these words
mean!)

We then discussed R = Z. This has points (p) where p is an old-fashioned prime, and
the point (0). This is also a smooth irreducible curve (whatever that means).

We discussed the case R = k[x] where k is not necessarily algebraically closed, in partic-
ular k = R. The maximal ideals here correspond to unions of Galois conjugates of points
in Al

Example 6 for more arithmetic people: IF,[x]. As in the previous examples, this is a Unique
Factorization Domain, so we can figure out its primes in a hands-on way. The points
are (0), and irreducible polynomials, which come in any degree. Irreducible polynomials
correspond to sets of Galois conjugates in F,,. You should think about this, even if you are
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a geometric person — there is some arithmetic intuition that later turns into geometric
intuition.

Example 7. AZ = SpecClx,y]. (This discussion will apply with C replaced by any
algebraically closed field.) Sadly, C[x,y] is not a Principal Ideal Domain: (x,y) is not
a principal ideal. We can quickly name some prime ideals. One is (0), which has the
same flavor as the (0) ideals in the previous examples. (x — 2,y — 3) is prime, because
Clx,ul/(x—2,y —3) = C, where this isomorphism is via f(x,y) — f(2,3). More generally,
(x—a,y—Db) is prime for any (a, b) € C2. Also, if f(x,y) is an irreducible polynomial (e.g.
y — x% or y2 — x3) then (f(x,y)) is prime. We will later prove that we have identified all
these primes. Here is a picture: the “maximal primes” correspond to the old-fashioned
points in C? (I drew it). (0) somehow lives behind all of these points (I drew it). (y — x?)
somehow is associated to this parabola (I drew it). Etc. You can see from this picture that
we already want to think about “dimension”. The primes (x — a,y — b) are somehow of
dimension 0, the primes (f(x,y)) are of dimension 1, and (0) is somehow of dimension
2. I won'’t define dimension today, so every time I say it, you should imagine that I am
waving my hands wildly.

(This paragraph will not be comprehensible in the notes.) Let’s try to picture this.
Where is the prime (y — x%)? Well, is it in the plane? Yes. Is it at (2,4)? No. Is it in
the set cut out by y — x?? Yes. Is it in the set cut out by (y? — x3)? No. Is it in the set cut
out by xy(y —x?)? Yes.

Note: maximal ideals correspond to “smallest” points. Smaller ideals correspond to
“bigger” points. “One prime ideal contains another” means that the points “have the
opposite containment.” All of this will be made precise once we have a topology. This
order-reversal can be a little confusing (and will remain so even once we have made the
notions precise).

Example: A = SpecC[xy,...,x,]. (More generally, A} = Speckl[x,...,x,], and even
AR = SpecR[x1, ..., %] where Ri is an arbitrary ring.)

For concreteness, let’s consider n = 3. We now have an interesting question in algebra:
What are the prime ideals of C[x, y, z]? We have (x—a,y—b, z—c). This is a maximal ideal,
with residue field C; we think of these as “0-dimensional points”. Have we discovered
all the maximal ideals? The answer is yes, by Hilbert’s Nullstellensatz, which is covered
in Math 210.

Hilbert's Nullstellensatz, Version 1. (This is sometimes called the “weak version” of
the Nullstellensatz.) Suppose R = k[xy,...,xn], where k is an algebraically closed field.
Then the maximal ideals are precisely those of the form (x; — ay,...,xn — a,), where
a; € k.

There are other prime ideals too. We have (0), which is a “3-dimensional point”. We
have (f(x,u,z)), where f is irreducible. To this we associate the hypersurface f = 0, so
this is “2-dimensional” in nature. Do we have them all? No! One clue: we’re missing
dimension 1 things. Here is a “one-dimensional” prime ideal: (x,y). (Picture: it is the
z-axis, which is cut out by x =y = 0.) How do we check that this is prime? The easiest
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way is to check that the quotient is an integral domain, and indeed C[x, y, zl/(x,y) = Clz]
is an integral domain (and visibly the functions on the z-axis). There are lots of one-
dimensional primes, and it is not possible to classify them in a reasonable way. It will turn
out that they correspond to things that we think of as “irreducible” curves: the natural
answer to this algebraic question is geometric.

0.1. We now come to two more general flavors of affine schemes that will be useful in the
future. There are two nice ways of producing new rings from a ring R. One is by taking
the quotient by an ideal I. The other is by localizing at a multiplicative set. We'll see how
Spec behaves with respect to these operations. In both cases, the new ring has a Spec that
is a subset of the Spec of the old ring.

Important example: Spec R/1in terms of Spec R. As a motivating example, consider Spec R/1
where R = C[x, yl, I = (xy). We have a picture of Spec R, which is the complex plane, with
some mysterious extra “higher-dimensional points”. Important algebra fact: The primes
of R/I are in bijection with the primes of R containing I. (Here I'm using a prerequisite
from Math 210. You should review this fact! This is not a result that you should memorize
— you should know why it is true. If you don’t remember why it is true, or didn’t know
this fact, then treat this as an exercise and do it yourself.) Thus we can picture Spec R/I
as a subset of Spec R. We have the “0-dimensional points” (a,0) and (0, b). We also have
two “1-dimensional points” (x) and (y).

We get a bit more: the inclusion structure on the primes of R/I corresponds to the
inclusion structure on the primes containing I. More precisely, if J; C J, in R/I, and K; is
the ideal of R corresopnding to J;, then Ky C K.

So the minimal primes of C/(xy) are the “biggest” points we see, and there are two
of them: (x) and (y). Thus we have the intuition that will later be precise: the minimal
primes correspond to the “components” of Spec R.

Important example: Spec S™'R in terms of Spec R, where S is a multiplicative subset of R.
There are two particularly important flavors of multiplicative subsets. The first is R — p,
where p is a prime ideal. (Check that this is a multiplicative set!) The localization S™'R
is denoted R,. Here is a motivating example: R = C[x,yl, S = R — (x,y). The second is
{1,f,f2,...}, where f € R. The localization is denoted Ry. (Notational warning: If (f) is a
prime ideal, then R¢ # R¢).) Here is an example: R = C[x, y], f = x.

Important algebra fact (to review and know): The primes of S~'R are in bijection with
the primes of R that don’t meet the multiplicative set S. So if S = R — p where p is a
prime ideal, the primes of S™'R are just the primes of R contained in p. If S = {1,f,1%,...},
the primes of S™'R are just those primes not containing f (the points where “f doesn’t
vanish”). A bit more is true: the inclusion structure on the primes of S~'R corresponds to
the inclusion structure on the primes not meeting S. (If you didn’t know it, take this as an
exercise and prove it yourself!)

In each of these two cases, a picture is worth a thousand words. In these notes, I'm not
making pictures unfortunately. But I'll try to describe them in less than a thousand words.



The case of S = {1,f,?,...} is easier: we just throw out those points where f vanishes.
(We will soon call this a distinguished open set, once we know what open sets are.) In our
example of R = k[x, y], f = x, we throw out the y-axis.

Warning: sometimes people are first introduced to localizations in the special case that
R is an integral domain. In this case, R < Ry, but this isn’t true in general. Here’s the
definition of localization (which you should be familiar with). The elements of S~'R are
of the form r/s wherer € Rand s € S, and (r1/s1) X (r2/s2) = (r172/s182), and (r1/s1) +
(r2/82) = (T182+5s172)/(5182). We say thatr1/s; =1,/s, if forsome s € S s(r15,—1251) = 0.

Example/warning: R[1/0] = 0. Everything in R[1/0] is 0. (Geometrically, this is good:
the locus of points where 0 doesn’t vanish is the empty set, so certainly D(0) = Spec Ro.)

In general, inverting zero-divisors can make things behave weirdly. Example: R =
k[x,yl/(xy). f = x. What do you get? It’s actually a straightforward ring, and we’ll use
some geometric intuition to figure out what it is. Speck[x, yl/(xy) “is” the union of the
two axes in the plane. Localizing means throwing out the locus where x vanishes. So
we're left with the x-axis, minus the origin, so we expect Speck[x|,. So there should be
some natural isomorphism (k[x,yl/(xy))x = kl[x|x. Exercise. Figure out why these two

rings are isomorphic. (You'll see that y on the left goes to 0 on the right.)

In the case of S = R — p, we keep only those primes contained in p. In our example R =
klx,yl, p = (x,y), we keep all those points corresponding to “things through the origin”,
i.e. the 0-dimensional point (x,y), the 2-dimensional point (0), and those 1-dimensional
points (f(x,y)) where f(x,y) is irreducible and f(0,0) = 0, i.e. those “irreducible curves
through the origin”. (There is a picture of this in Mumford’s Red Book: Example F, Ch. 2,
81, p. 140.)

Caution with notation: If p is a prime ideal, then R, means you're allowed to divide by
elements not in p. However, if f € R, Rf means you're allowed to divide by f. I find this a
bit confusing. Especially when (f) is a prime ideal, and then R # Ry.

1. AFFINE SCHEMES II: THE UNDERLYING TOPOLOGICAL SPACE

We now define the Zariski topology on Spec R. Topologies are often described using
open subsets, but it will more convenient for us to define this topology in terms of their
complements, closed subsets. If S is a subset of R, define

V(S) :={p € SpecR: S C p}.

We interpret this as the vanishing set of S; it is the set of points on which all elements of
S are zero. We declare that these (and no others) are the closed subsets.

1.1. Exercise. Show that if (S) is the ideal generated by S, then V(S) = V((S)). This lets
us restrict attention to vanishing sets of ideals.
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Let’s check that this is a topology. Remember the requirements: the empty set and the
total space should be open; the union of an arbitrary collection of open sets should be
open; and the intersection of two open sets should be open.

1.2. Exercise. (a) Show that () and Spec R are both open.

(b) (The intersection of two open sets is open.) Check that V(I;1,) = V(I;) U V(I,).

(c) (The union of any collection of open sets is open.) If I; is a collection of ideals (as i runs
over some index set), check that V(3 _, I;) = Ny V(L).

1.3. Properties of “vanishing set” function V(-). The function V() is obviously inclusion-
reversing: If S; C S, then V(S;) C V(S;). (Warning: We could have equality in the second
inclusion without equality in the first, as the next exercise shows.)

1.4. Exercise. If I C Ris an ideal, then define its radical by
V1:={reR:r" € I for somen € Z=°}.

Show that V(v/1) = V(I). (We say an ideal is radical if it equals its own radical.)

Hence: V(I]) = V(IN]). (Reason: (IN])? C IJ C In]J.) Combining this with Exercise 1.1,
we see

1.5. Examples. Let’s see how this meshes with our examples from earlier.

Recall that A}, as a set, was just the “old-fashioned” points (corresponding to maximal
ideals, in bijection with a € C), and one “weird” point (0). The Zariski topology on
Al is not that exciting. The open sets are the empty set, and A minus a finite number
of maximal ideals. (It “almost” has the cofinite topology. Notice that the open sets are
determined by their intersections with the “old-fashioned points”. The “weird” point (0)
comes along for the ride, which is a good sign that it is harmless. Ignoring the “weird”
point, observe that the topology on Al is a coarser topology than the analytic topology.)

The case SpecZ is similar. The topology is “almost” the cofinite topology in the same
way. The open sets are the empty set, and Spec Z minus a finite number of “ordinary”
((p) where p is prime) primes.

The case A% is more interesting. I discussed it in a bit of detail in class, using pictures.

1.6. Topological definitions. We’ll now define some words to do with the topology.

A topological space is said to be irreducible if it is not the union of two proper closed
subsets. In other words, X if irreducible if whenever X = Y U Z with Y and Z closed, we
haveY =XorZ =X.



1.7. Exercise. Show that if R is an integral domain, then Spec R is an irreducible topolog-
ical space. (Hint: look at the point [(0)].)

A point of a topological space x € X is said to be closed if {x} = {x}.

1.8. Exercise. Show that the closed points of Spec R correspond to the maximal ideals.

Given two points x, y of a topological space X, we say that x is a specialization of y, and
y is a generization of x, if x € {y}. This now makes precise our hand-waving about “one
point contained another”. It is of course nonsense for a point to contain another. But it is
no longer nonsense to say that the closure of a point contains another.

1.9. Exercise. If X = SpecR, show that [p] is a specialization of [q] if and only if q C p.
Verify to your satisfaction that this is precisely the intuition of “containment of points”
that we were talking about before.

We say that a point x € X is a generic point for a closed subset K if {x} = K.

1.10. Exercise. Verify that [(y — x?)] € A?is a generic point for V(y — x?).

A topological space X is quasicompact if given any cover X = Uic1U; by open sets, there
is a finite subset S of the index set I such that X = UjcsU;. Informally: every cover has
a finite subcover. This is “half of the definition of quasicompactness”. We will like this
condition, because we are afraid of infinity.

1.11. Exercise. Show that SpecR is quasicompact. (Warning: it can have nonquasicom-
pact open sets.)

1.12. Exercise. If Xis a finite union of quasicompact spaces, show that X is quasicompact.

Earlier today, we explained that Spec R/ and Spec S™'R are naturally subsets of Spec R.
All of these have Zariski topologies, and it is natural to ask if the topology behaves well
with respect to these inclusions, and indeed it does.

1.13. Exercise. Suppose that I, S C R are an ideal and multiplicative subset respectively.
Show that Spec R/I is naturally a closed subset of Spec R. Show that the Zariski topology
on Spec R/1 (resp. Spec S™'R) is the subspace topology induced by inclusion in SpecR.
(Hint: compare closed subsets.)

1.14. The function I(-), taking subsets of SpecR to ideals of R. Here is another notion,
that is in some sense “opposite” to the vanishing set function V(-). Given a subset S C
Spec R, I(S) is the ideal of functions vanishing on S. Three quick points: it is clearly an

ideal. I(S) = I(S). And I(-) is inclusion-reversing: if S; C S;, then I(S,) C I(Sy).



1.15. Exercise/Example. Let R = k[x,yl. If S = {(x), (x — 1,y)} (draw this!), then I(S) con-
sists of those polynomials vanishing on the y axis, and at the point (1, 0). Give generators
for this ideal.

More generally:
1.16. Exercise. Show that V(I(S)) = S. Hence V(I(S)) = S for a closed set S.

1.17. Exercise. Suppose X C A3 is the union of the three axes. Give generators for the
ideal I(X).

Note that I(S) is always a radical ideal —if f € /I(S), then f™ vanishes on S for some
n > 0, so then f vanisheson S, so f € I(S).

Here is a handy algebraic fact to know. The nilradical 9t = M(R) of a ring R is defined as
v/0 — it consists of all functions that have a power that is zero. (Checked that this set is
indeed an ideal, for example that it is closed under addition!)

1.18. Theorem. The nilradical N(R) is the intersection of all the primes of R.

If you don’t know it, then look it up, or even better, prove it yourself. (Hint: one
direction is easy. The other will require knowing that any proper ideal of R is contained in
a maximal ideal, which requires the axiom of choice.) As a corollary, /1 is the intersection
of all the prime ideals containing I. (Hint of proof: consider the ring R/I, and use the
previous theorem.)

1.19. Exercise. Prove thatif I C Ris an ideal, then I(V(I)) = VL.

Hence in combination with Exercise 1.16, we get the following:

1.20. Theorem. — V(-) and I(-) give a bijection between closed subsets of Spec R and radical
ideals of R (where a closed subset gives a radical ideal by 1(-), and a radical ideal gives a closed
subset by V(-)).

1.21. Important Exercise. Show that V(-) and I(-) give a bijection between irreducible
closed subsets of Spec R and prime ideals of R. From this conclude that in Spec R there is a
bijection between points of Spec R and irreducible closed subsets of Spec R (where a point
determines an irreducible closed subset by taking the closure). Hence each irreducible
closed subset has precisely one generic point.

To drive this point home: Suppose Z is an irreducible closed subset of SpecR. Then
there is one and only one z € Z such that Z = {z}.



2. DISTINGUISHED OPEN SETS

If f € R, define the distinguished open set D(f) = {p € SpecR : f ¢ p}. It is the locus
where f doesn’t vanish. (I often privately write this as D(f # 0) to remind myself of this.
I also private call this a Doesn’t vanish set in analogy with V(f) being the Vanishing set.)
We have already seen this set when discussing Spec R¢ as a subset of Spec R.

2.1. Important exercise. Show that the distinguished opens form a base for the Zariski
topology.

2.2. Easy important exercise. Suppose f; € R for i € 1. Show that UicD(f;) = SpecR if
and only if (f;) = R.

2.3. Easy important exercise. Show that D(f) N D(g) = D(fg). Hence the distinguished
base is a nice base.

2.4. Easy important exercise. Show that if D(f) C D(g), then f™ € (g) for some n.

2.5. Easy important exercise. Show that f € 9 if and only if D(f) = 0.

We have already observed that the Zariski topology on the distinguished open D(f) C
Spec R coincides with the Zariski topology on Spec Ry.
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