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Last day: Presheaves and sheaves. Morphisms thereof. Sheafification.

Today: Understanding sheaves via stalks. Understanding sheaves via “sheaves on a
nice base of a topology”. Affine schemes Spec R: the set.

Here’s where we are. I introduced you to some of the notions of category theory. Our
motivation is as follows. We will be creating some new mathematical objects, and we
expect them to act like object we have seen before. We could try to nail down precisely
what we mean, and what minimal set of things we have to check in order to verify that
they act the way we expect. Fortunately, we don’t have to — other people have done this
before us, by defining key notions, like abelian categories, which behave like modules
over a ring.

We then defined presheaves and sheaves. We have seen sheaves of sets and rings.
We have also seen sheaves of abelian groups and of OX-modules, which form an abelian
category. Let me contrast again presheaves and sheaves. Presheaves are simpler to define,
and notions such as kernel and cokernel are straightforward, and are defined open set by
open set. Sheaves are more complicated to define, and some notions such as cokernel
require the notion of sheafification. But we like sheaves because they are in some sense
geometric; you can get information about a sheaf locally. Today, I’d like to go over some
of the things we talked about last day in more detail. I’m going to talk again about stalks,
and how information about sheaves are contained in stalks.

First, a small comment I should have said earlier. Suppose we have an exact sequence
of sheaves of abelian groups (or OX-modules) on X

0 → F → G → H.
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If U ⊂ X is any open set, then
0 → F(U) → G(U) → H(U)

is exact. Translation: taking sections over U is a left-exact functor. Reason: the kernel sheaf
of G → H is in fact the kernel presheaf (see the previous lectures). Note that G(U) → H(U)
is not necessarily surjective (the functor is not exact); a counterexample is given by our
old friend

0 → Z → OX → O∗
X → 0.

(By now you should be able to guess what U to use.)

1. STALKS, AND SHEAFIFICATION

1.1. Important exercise. Prove that a section of a sheaf is determined by its germs, i.e.

F(U) →
∏

x∈U

Fx

is injective. (Hint: you won’t use the gluability axiom. So this is true for separated
presheaves.)

Corollary. In particular, if a sheaf has all stalks 0, then it is the 0-sheaf.

1.2. Morphisms and stalks.

1.3. Exercise. Show that morphisms of presheaves (and sheaves) induce morphisms of
stalks.

1.4. Exercise. Show that morphisms of sheaves are determined by morphisms of stalks.
Hint # 1: you won’t use the gluability axiom. So this is true of morphisms of separated
presheaves. Hint # 2: study the following diagram.

(1) F(U) //

_�

��

G(U)
_�

��∏
x∈U Fx

//
∏

x∈U Gx

1.5. Exercise. Show that a morphism of sheaves is an isomorphism if and only if it
induces an isomorphism of all stalks. (Hint: Use (1). Injectivity uses the previous exercise.
Surjectivity will use gluability.)

1.6. Exercise. (a) Show that Exercise 1.1 is false for general presheaves. (Hint: take a
2-point space with the discrete topology, i.e. every subset is open.)
(b) Show that Exercise 1.4 is false for general presheaves. (Hint: a 2-point space suffices.)
(c) Show that Exercise 1.5 is false for general presheaves.
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1.7. Description of sheafification. I described sheafification a bit quickly last time. I will
do it again now.

Suppose F is a presheaf on a topological space X. We define F sh as follows. Sections
over U ⊂ X are stalks at each point, with compatibility conditions (to each element of the
stalk, there is a representative (g, U) with g restricting correctly to all stalks in U). More
explicitly:

F sh(U) := {(fx ∈ Fx)x∈U : ∀x ∈ U, ∃UX with x ⊂ Ux ⊂ U, Fx ∈ F(Ux) : Fx
y = fy∀y ∈ Ux}.

(Those who want to worry about the empty set are welcome to.)

This is less confusing than it seems. F sh(U) is clearly a sheaf: we have restriction maps;
they commute; we have identity and gluability. It would be good to know that it satisfies
the universal property of sheafification.

1.8. Exercise. The stalks of F sh are the same as the stalks of F . Reason: Use the concrete
description of the stalks.

1.9. Exercise. For any morphism of presheaves φ : F → G, we get a natural induced
morphism of sheaves φsh : F sh → Gsh.

We have a natural presheaf morphism F → F sh. This induces a natural morphism of
stalks Fx → F sh

x (Exercise 1.3). This is an isomorphism by remark a couple of paragraphs
previous. Hence if F is a sheaf already, then F → F sh is an isomorphism, by Exercise 1.5.
If we knew that F sh satisfied the universal property of sheafification, this would have
been immediate by abstract nonsense, but we don’t know that yet. In fact, we’ll show
that now. Suppose we have the solid arrows in

F //

!!C
C

C

C

C

C

C

C

F sh

��

G.

We want to show that there exists a dashed arrow as in the diagram, making the diagram
commute, and we want to show that it is unique. By 1.9, F → G induces a morphism
F sh → Gsh = G, so we have existence.

For uniqueness: as morphisms of sheaves are determined by morphisms of stalks (Ex-
ercise 1.4), and for any x ∈ X, we have a commutative diagram

Fx
=

//

!!C
C

C

C

C

C

C

C

F sh
x

��

Gx,

we are done. Thus F → F sh is indeed the sheafification.

Four properties of morphisms of sheaves that you can check on stalks.
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You can verify the following.

• A morphism of sheaves of sets is injective (monomorphism) if and only if it is
injective on all stalks.

• Same with surjective (epimorphism).
• Same with isomorphic — we’ve already seen this.
• Suppose F → G → H is a complex of sheaves of abelian groups (or OX-modules).

Then it is exact if and only if it is on stalks.

I’ll prove one of these, to show you how it works: surjectivity.

Suppose first that we have surjectivity on all stalks for a morphism φ : F → G. We want
to check the definition of epimorphism. Suppose we have α : F → H, and β, γ : G → H
such that α = β ◦ φ = γ ◦ φ.

F
φ

//

α
��

@

@

@

@

@

@

@

@

G

≤1?

��

H

Then by taking stalks at x, we have

Fx

φx
//

αx
!!B

B

B

B

B

B

B

B

Gx

βx,γx

��

Hx

By surjectivity (epimorphism-ness) of the morphisms of stalks, βx = γx. But as mor-
phisms are determined by morphisms at stalks (Exercise 1.4), we must have β = γ.

Next assume that φ : F → G is an epimorphism of sheaves, and x ∈ X. We will show
that φx : Fx → Gx is a epimorphism for any given x ∈ X. Choose for H any skyscraper
sheaf supported at x. (the stalk of a skyscraper sheaf at the skyscraper point is just the
skyscraper set/group/ring). Then the maps α, β, γ factor through the stalk maps:

F //

��

G

��

i∗Fx
//

##F

F

F

F

F

F

F

F

F

i∗Gx

��

skyscrapers

H

and then we are basically done.

2. RECOVERING SHEAVES FROM A “SHEAF ON A BASE”

Sheaves are natural things to want to think about, but hard to get one’s hands on. We
like the identity and gluability axioms, but they make proving things trickier than for
presheaves. We’ve just talked about how we can understand sheaves using stalks. I now
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want to introduce a second way of getting a hold of sheaves, by introducing the notion of
a sheaf on a nice base.

First, let me define the notion of a base of a topology. Suppose we have a topological
space X, i.e. we know which subsets of X are open {Ui}. Then a base of a topology is a
subcollection of the open sets {Bj} ⊂ {Ui}, such that each Ui is a union of the Bj. There is
one example that you have seen early in your mathematical life. Suppose X = Rn. Then
the way the usual topology is often first defined is by defining open balls Br(x) = {y ∈
Rn : |y − x| < r} are open sets, and declaring that any union of balls is open. So the balls
form a base of the usual topology. Equivalently, we often say that they generate the usual
topology. As an application of how we use them, if you want to check continuity of some
map f : X → Rn for example, you need only think about the pullback of balls on Rn.

There is a slightly nicer notion I want to use. A base is particularly pleasant if the
intersection of any two elements is also an element of the base. (Does this have a name?)
I will call this a nice base. For example if X = Rn, then a base would be convex open sets.
Certainly the intersection of two convex open sets is another convex open set. Also, this
certainly forms a base, because it includes the balls.

Now suppose we have a sheaf F on X, and a nice base {Bi} on X. Then consider the in-
formation ({F(Bi)}, {φij : F(Bi) → F(Bj)}, which is a subset of the information contained
in the sheaf — we are only paying attention to the information involving elements of the
base, not all open sets.

Observation. We can recover the entire sheaf from this information. Proof:

F(U) = {(fi ∈ F(Bi))Bi⊂U : φij(fi) = fj}.

The map from the left side to the right side is clear. We get a map from the right side to
the left side as follows. By gluability, each element gives at least one element of the left
side. By identity, it gives a unique element.

Conclusion: we can recover a sheaf from less information. This even suggests a notion,
that of a sheaf on a nice base.

A sheaf of sets (rings etc.) on a nice base {Bi} is the following. For each Bi in the base,
we have a set F(Bi). If Bi ⊂ Bj, we have maps resji : F(Bj) → F(Bi). (Everywhere things
called B are assumed to be in the base.) If Bi ⊂ Bj ⊂ Bk, then resBk,Bi

= resBj,Bi
◦ resBk,Bj

.
For the pedants, F(∅) is a one-element set (a final object). So far we have defined a presheaf
on a nice base.

We also have base identity: If B = ∪Bi, then if f, g ∈ F(B) such that resB,Bi
f = resB,Bi

g

for all i, then f = g.

And base gluability: If B = ∪Bi, and we have fi ∈ F(Bi) such that fi agrees with fj on
basic open set Bi ∩ Bj (i.e. resBi,Bi∩Bj

fi = resBj,Bi∩Bj
fj) then there exist f ∈ F(B) such that

resB,Bi
= fi for all i.
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2.1. Theorem. — Suppose we have data F(Ui), φij, satisfying “base presheaf”, “base identity”
and “base gluability”. Then (if the base is nice) this uniquely determines a sheaf of sets (or rings,
etc.) F , extending this.

This argument will later get trumped by one given in Class 13.

Proof. Step 1: define the sections over an arbitrary U. For U 6= ∅, define

F(U) = {fi ∈ F(Bi) for all Bi ⊂ U : resBi,Bi∩Bj
fi = resBj,Bi∩Bj

fj in F(Bi ∩ Bj)}

where if the set is empty, then we use the final object in our category; this is the only place
where we needed to determine our category in advance. We get resU,V in the obvious
way. We get a presheaf.

F(Bi) = F(Bi) and resBi,Bj
is as expected; both are clear.

Step 2: check the identity axiom. Take f, g ∈ F(U) restricting to fi ∈ F(Ui). Then f, g agree
on any base element contained in some Ui. We’ll show that for each Bj ⊂ U, they agree.
Take a cover of Bj by base elements each contained entirely in some Ui. The intersection
of any two is also contained some Ui; they agree there too. Hence by “base identity” we
get identity.

Step 3: check the gluability axiom. Suppose we have some fi ∈ F(Ui) that agree on
overlaps. Take any Bj ⊂ ∪Ui. Take a cover by basic opens that each lie in some Ui. Then
they agree on overlaps. By “base gluability”, we get a section over Bj. (Unique by “base
identity”.) Any two of the fj’s agree on the overlap. �

2.2. Remark. In practice, to find a section of such a sheaf over some open set U we may
choose a smaller (finite if possible) cover of U.

Eventually, we will define a sheaf on a base in general, not just on a nice base. Experts
may want to ponder the definition, and how to prove the above theorem in that case.

2.3. Important Exercise. (a) Verify that a morphism of sheaves is determined by a mor-
phism on the base. (b) Show that a “morphism of sheaves on the base” (i.e. such that the
diagram

Γ(Bi,F) //

��

Γ(Bi,G)

��

Γ(Bj,F) // Γ(Bj,G)

commutes) gives a morphism of sheaves.

2.4. Remark. Suppose you have a presheaf you want to sheafify, and when restricted to a
base it is already a sheaf. Then the sheafification is obtained by taking this process.
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Example: Let X = C, and consider the sequence

1 // Z
×2πi

// OX

exp
// O∗

X
// 1.

Let’s check that it is exact, using our new knowledge. We instead work on the nice base of
convex open sets. then on these open sets, this is indeed exact. The key fact here is that on
any convex open set B, every element of O∗

X(B) has a logarithm, so we have surjectivity
here.

3. TOWARD SCHEMES

We’re now ready to define schemes! Here is where we are going. After some more
motivation for what kind of objects affine schemes are, I’ll define affine schemes, which
are like balls in the analytic topology. We’ll generalize in three transverse directions. I’ll
define schemes in general, including projective schemes. I’ll define morphisms between
schemes. And I’ll define sheaves on schemes. These notions will take up the rest of the
quarter.

We will define schemes as a topological space along with a sheaf of “algebraic functions”
(that we’ll call the structure sheaf). Thus our construction will have three steps: we’ll
describe the set, then the topology, and then the sheaf.

We will try to draw pictures throughout; geometric intuition can guide algebra (and
vice versa). Pictures develop geometric intuition. We learn to draw them; the algebra
tells how to think about them geometrically. So these comments are saying: “this is a
good way to think”. Eventually the picture tells you some algebra.

4. MOTIVATING EXAMPLES

As motivation for why this is a good foundation for a kind of “space”, we’ll reinterpret
differentiable manifolds in this way. We will feel free to be informal in this section.

Usual definition of differentiable manifold: atlas, and gluing functions. (There is also a
Hausdorff axiom, which I’m going to neglect for now.)

A fancier definition is as follows: as a topological space, with a sheaf of differentiable
functions. (Some observations: Functions are determined by values at points. This is an
obvious statement, but won’t be true for schemes in general. Note: Stalks are local rings
(Ox, mx); the residue map is “value at a point” 0 → mx → Ox → R → 0, as I described in
an earlier class, probably class 1 or class 2.)

There is an interesting fact that I’d like to mention now, but that you’re not quite ready
for. So don’t write this down, but hopefully let some of it subconsciously sink into your
head. The tangent space at a point x can be naturally identified with (mx/m2

x)
∗. Let’s

make this a bit explicit. Every function vanishing at p canonically gives a functional on
the tangent space to X at p. If X = R2, the function sin x−y+y2 gives the functional x−y.
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Morphisms X → Y: these are certain continuous maps — but which ones? We can pull
back functions along continuous maps. Differentiable functions pull back to differentiable
functions. We haven’t defined the inverse image of sheaves yet — if you’re curious, that
will be in the second problem set — but if we had, we would have a map f−1OY → OX. (I
don’t want to call it “pullback” because that word is used for a slightly different concept.)
Inverse image is left-adjoint to pushforward, which we have seen, so we get map f# :
OY → f∗OX.

Interesting question: which continuous maps are differentiable? Answer: Precisely
those for which the induced map of functions sends differentiable functions to differen-
tiable functions. (Check on local patches.)

4.1. Unimportant Exercise. Show that a morphism of differentiable manifolds f : X → Y

with f(p) = q induces a morphism of stalks f# : OY,q → OX,p. Show that f#(mY,q) ⊂ mX,p.
(In other words, if you pull back a function that vanishes at q, you get a function that
vanishes at p.)

More for experts: Notice that this induces a map on tangent spaces (mX,p/m2
X,p)∗ →

(mY,q/m2
Y,q)∗. This is the tangent map you would geometrically expect. Interesting fact:

the cotangent space, and cotangent map, is somehow more algebraically natural, despite
the fact that tangent spaces, and tangent maps, are more geometrically natural. Rhetor-
ical questions: How to check for submersion (“smooth morphism”)? How to check for
inclusion, but not just set-theoretically? Answer: differential information.

[Then we have a normal exact sequence.

Vector bundle can be rewritten in terms of sheaves; explain how.]

Side Remark. Manifolds are covered by disks that are all isomorphic. Schemes will not
have isomorphic open sets, even varieties won’t. An example will be given later.

5. AFFINE SCHEMES I: THE UNDERLYING SET

For any ring R, we are going to define something called Spec R. First I’ll define it as
a set, then I’ll tell you its topology, and finally I’ll give you a sheaf of rings on it, which
I’ll call the sheaf of functions. Such an object is called an affine scheme. In the future,
Spec R will denote the set, the topology, and the structure sheaf, and I might use the
notation sp(Spec R) to mean the underlying topological space. But for now, as there is
no possibility of confusion, Spec R will just be the set.

The set sp(Spec R) is the set of prime ideals of R.

Let’s do some examples. Along with the examples, I’ll say a few things that aren’t yet
rigorously defined. But I hope they will motivate the topological space we’ll eventually
define, and also the structure sheaf.
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Example 1. A1
C

= Spec C[x]. “The affine line”, “the affine line over C”. What are the
prime ideals? 0. (x − a) where a ∈ C. There are no others. Proof: C[x] is a Unique
Factorization Domain. Suppose p were prime. If p 6= 0, then suppose f(x) ∈ p is an
element of smallest degree. If f(x) is not linear, then factor f(x) = g(x)h(x), where g(x)
and h(x) have positive degree. Then g(x) or h(x) ∈ p, contradicting the minimality of the
degree of f. Hence there is a linear element (x − a) of p. Then I claim that p = (x − a).
Suppose f(x) ∈ p. Then the division algorithm would give f(x) = g(x)(x − a) + m where
m ∈ C. Then m = f(x) − g(x)(x − a) ∈ p. If m 6= 0, then 1 ∈ p, giving a contradiction:
prime ideals can’t contain 1.

Thus we have a picture of Spec C[x]. There is one point for each complex number, plus
one extra point. Where is this point? How do we think of it? We’ll soon see; but it
is a special kind of point. Because (0) is contained in all of these primes, I’m going to
somehow identify it with this line passing through all the other points. Here is one way
to think of it. You can ask me: is it on the line? I’d answer yes. You’d say: is it here? I’d
answer no. This is kind of zen.

To give you an idea of this space, let me make some statements that are currently unde-
fined. The functions on A1

C
are the polynomials. So f(x) = x2 − 3x + 1 is a function. What

is its value at (x − 1) = “1”? Plug in 1! Or evaluate mod x − 1 — same thing by division
algorithm! (What is its value at (0)? We’ll see later. In general, values at maximal ideals
are immediate, and we’ll have to think a bit more when primes aren’t maximal.)

Here is a “rational function”: (x − 3)3/(x − 2). This function is defined everywhere but
x = 2; it is an element of the structure sheaf on the open set A1

C
− {2}. It has a triple zero at

3, and a single pole at 2.

Example 2. Let k be an algebraically closed field. A1
k = Spec k[x]. The same thing works,

without change.

Example 3. Spec Z. One amazing fact is that from our perspective, this will look a lot
like the affine line. Another unique factorization domain. Prime ideals: (0), (p) where p

is prime. (Do this if you don’t know it!!) Hence we have a picture of this Spec (omitted
from notes).

Fun facts: 100 is a function on this space. It’s value at (3) is “1 (mod 3)”. It’s value at
(2) is “0 (mod 2)”, and in fact it has a double 0. We will have to think a little bit to make
sense of its value at (0).

27/4 is a rational function on Spec Z. It has a double pole at (2), a triple zero at (3).
What is its value at (5)? Answer

27 × 4−1 ≡ 2 × (−1) ≡ 3 (mod 5).

Example 4: stupid examples. Spec k where k is any field is boring: only one point. Spec 0,
where 0 is the zero-ring: the empty set, as 0 has no prime ideals.

Exercise. Describe the set Spec k[x]/x2. The ring k[x]/x2 is called the ring of dual numbers
(over k).
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Example 5: R[x]. The primes are (0), (x − a) where a ∈ R, and (x2 + ax + b) where
x2 + ax + b is an irreducible quadratic (exercise). The latter two are maximal ideals, i.e.
their quotients are fields. Example: R[x]/(x − 3) ∼= R, R[x]/(x2 + 1) ∼= C. So things
are a bit more complicated: we have points corresponding to real numbers, and points
corresponding to conjugate pairs of complex numbers. So consider the “function” x3 − 1 at
the point (x − 2). We get 7. How about at (x2 + 1)? We get

x3 − 1 ≡ x − 1 (mod x2 + 1).

This is profitably thought of as i − 1.

One moral of this example is that we can work over a non-algebraically closed field if
we wish. (i) It is more complicated, (ii) but we can recover much of the information we
wanted.

E-mail address: vakil@math.stanford.edu
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