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Last day: end of category theory background. Motivation for and definitions of
presheaf, sheaf, stalk.

Today: Presheaves and sheaves. Morphisms thereof. Sheafification.

I will be away Wednesday Oct. 5 to Thursday Oct. 13. The next class will be Friday, Oc-
tober 14. That means there will be no class this Wednesday, or next Monday or Wednesday.
If you want to be on the e-mail list (low traffic), and didn’t sign up last day, please let me
know.

Problem set 1 out today, due Monday Oct. 17.

1. WHERE WE WERE

At this point, you’re likely wondering when we’re going to get to some algebraic ge-
ometry. We’ll start that next class. We’re currently learning how to think about things
correctly. When we define interesting new objects, we’ll learn how we want them to be-
have because we know a little category theory.

1.1. Category theory. I think in the heat of the last lecture, I skipped something I shouldn’t
have. An abelian category has several properties. One of these is that the morphisms form
abelian groups: Hom(A, B) is an abelian group. This behaves well with respect to com-
position. For example if f, g : A → B, and h : B → C, then h ◦ (f + g) = h ◦ f + h ◦ g.
There is an obvious dual statement, that I’ll leave to you. This implies other things, such
as for example 0 ◦ f = 0. I think I forgot to say the above. An abelian category also has
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a 0-object (an object that is both a final object and initial object). An abelian category has
finite products. If you stopped there, you’d have the definition of an additive category.

In an additive category, you can define things like kernels, cokernels, images, epimor-
phisms, monomorphisms, etc. In an abelian category, these things behave just way you
expect them to, from your experience with R-modules. I’ve put the definition in the last
day’s notes.

2. PRESHEAVES AND SHEAVES

We then described presheaves and sheaves on a topological space X. I’m going to re-
mind you of two examples, and introduce a third. The first example was of a sheaf of
nice functions, say differentiable functions, which I will temporarily call OX. This is an
example of a sheaf of rings.

The axioms are as follows. We can have sheaves of rings, groups, abelian groups, and
sets.

To each open set, we associate a ring F(U). Elements of this ring are called sections of the
sheaf over U. (Notational warning: Several notations are in use, for various good reasons:
F(U) = Γ(F , U) = H0(F , U). I will use them all.)

If U ⊂ V is an inclusion of open sets, we have restriction maps resV,U;F(V) → F(U).

The map resU,U must be the identity for all U.

If you take a section over a big open set, and restrict it to a medium open set, and then
restrict that to a small open set, then you get the same thing as if you restrict the section
on the big open set to the small open set all at once. In other words, if U ↪→ V ↪→ W, then
the following diagram commutes:

F(W)
resW,V

//

resW,U
$$HH

HHH
HH

HH
F(V)

resV,U
{{vv

vv
vv

vv
v

F(U)

A subtle point that you shouldn’t worry about at the start are the sections over the
empty set. F(∅) should be the final object in the category under consideration (sets: a
set with one element; abelian groups: 0; rings: the 0-ring). (I’m tentatively going to say
that there is a 1-element ring. In other words, I will not assume that rings satisfy 1 6= 0.
Every ring maps to the 0-ring. But it doesn’t map to any other ring, because in a ring
morphisms, 0 goes to 0, and 1 goes to 1, but in every ring beside this one, 0 6= 1. I think
this convention will solve some problems, but it will undoubtedly cause others, and I
may eat my words, so only worry about it if you really want to.)
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Something satisfying the properties I’ve described is a presheaf. (For experts: a presheaf
of rings is the same thing as a contravariant functor from the category of open sets to the
category of rings, plus that final object annoyance, see problem set 1.)

Sections of presheaves F have germs at each point x ∈ X where they are defined, and the
set of germs is denoted Fx, and is called the stalk of F at x. Elements of the stalk correspond
to sections over some open set containing x. Two of these sections are considered the same
if they agree on some smaller open set. If F is a sheaf of rings, then Fx is a ring, and ditto
for rings replaced by other categories we like.

We add two more axioms to make this into a sheaf.

Identity axiom. If {Ui}i∈I is a cover of U, and f1, f2 ∈ F(U), and resU,Ui
f1 = resU,Ui

f2,
then f1 = f2.

Gluability axiom. given fi ∈ F(Ui) for all i, such that resUi,Ui∩Uj
fi = resUj,Ui∩Uj

fj for
all i, j, then there is some f ∈ F(U) such that resU,Ui

f = fi for all i.

Example 2 (on problem set 1). Suppose we are given a continuous map f : Y → X. The
“sections of f” form a sheaf. More precisely, to each open set U of X, associate the set of
continuous maps s to Y such that f ◦ s = id|U. This forms a sheaf. (Example for those who
know this language: a vector bundle.)

Example 3: Sheaf of OX-modules. Suppose OX is a sheaf of rings on X. Then we define
the notion of a sheaf of OX-modules. We have a metaphor: rings is to modules, as sheaves
of rings is to sheaves of modules.

There is only one possible definition that could go with this name, so let’s figure out
what it is. For each U, F(U) should be a OX(U)-module. Furthermore, this structure
should behave well with respect to restriction maps. This means the following. If U ↪→ V ,
then

OX(V) × F(V)
action

//

resV,U

��

F(V)

resV,U

��

OX(U) × F(U)
action

// F(U)

commutes. You should think about this later, and convince yourself that I haven’t forgot-
ten anything.

For category theorists: the notion of R-module generalizes the notion of abelian group,
because an abelian group is the same thing as a Z-module. It is similarly immediate that
the notion of OX-module generalizes the notion of sheaf of abelian groups, because the
latter is the same thing as a Z-module, where Z is the locally constant sheaf with values
in Z. Hence when we are proving things about OX-modules, we are also proving things
about sheaves of abelian groups. For experts: Someone pointed out that we can make
the same notion of presheaf of OX-modules, where OX is a presheaf of rings. In this setting,
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presheaves of abelian groups are the same as modules over the constant presheaf Z
pre . I

doubt we will use this, so feel free to ignore it.

3. MORPHISMS OF PRESHEAVES AND SHEAVES

I’ll now tell you how to map presheaves to each other; and similarly for sheaves. In
other words, I am describing the category of presheaves and the category of sheaves.

A morphism of presheaves of sets f : F → G is a collection of maps fU : F(U) → G(U)

that commute with the restrictions, in the sense that: if U ↪→ V then

F(V)

resV,U

��

fV
// G(V)

resV,U

��

F(U)
fU

// G(U)

commutes. (Notice: the underlying space remains X!) A morphism of sheaves is defined
in the same way. (For category-lovers: a morphism of presheaves on X is a natural trans-
formation of functors. This definition describes the category of sheaves on X as a full
subcategory of the category of presheaves on X.)

A morphism of presheaves (or sheaves) of rings (or groups, or abelian groups, or OX-
modules) is defined in the same way.

Exercise. Show morphisms of (pre)sheaves induces morphisms of stalks.

Interesting examples of morphisms of presheaves of abelian groups. Let X = C with
the usual (analytic) topology, and define OX to be the sheaf of holomorphic functions, and
O∗

X to be the sheaf of invertible (= nowhere 0) holomorphic functions. This is a sheaf of abelian
groups under multiplication. We have maps of presheaves

1 // Z
pre ×2πi

// OX

exp
// O∗

X
// 1

where Z
pre is the constant presheaf. This is not an exact sequence of presheaves, and it is

worth figuring out why. (Hint: it is not exact at OX or O∗
X. Replacing Z

pre with the locally
constant sheaf Z remedies the first, but not the second.)

Now abelian groups, and R-modules, form an abelian category — by which I just mean
that you are used to taking kernels, images, etc. — and you might hope for the same
for sheaves of abelian groups, and sheaves of OX-modules. That is indeed the case.
Presheaves are easier to understand in this way.

The presheaves of abelian groups on X, or OX-modules on X, form an abelian category. If f :

F → G is a morphism of presheaves, then ker f is a presheaf, with (ker f)(U) = ker fU, and
(im f)(U) = im fU. The resulting things are indeed presheaves. For example, if U ↪→ V ,
there is a natural map G(V)/fV(F(V)) → G(U)/fU(F(U)), as we observe by chasing the
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following diagram:

F(V)

resV,U

��

// G(V)

resV,U

��

// G(V)/F(V)

��

// 0

F(U) // G(U) // G(U)/F(U) // 0.

Thus I have defined G/F , by showing what its sections are, and what its restriction maps
are. I have to check that it restriction maps compose — exercise. Hence I’ve defined a
presheaf. I still have to convince you that it deserves to be called a cokernel. Exercise. Do
this. It is less hard than you might think. Here is the definition of cokernel of g : F → G.
It is a morphism h : G → H such that h ◦ g = 0, and for any i : G → I such that i ◦ g = 0,
there is a unique morphism j : H → I such that j ◦ h = i:

F // G //

��
?

?
?

?
??

?
?

H

∃!

��

I

(Translation: cokernels in an additive category are defined by a universal property. Hence
if they exist, they are unique. We are checking that our construction satisfies the universal
property.)

Punchline: The presheaves of OX-modules is an abelian category, and as nice as can be.
We can define terms such as subpresheaf, image presheaf, quotient presheaf, cokernel presheaf.
You construct kernels, quotients, cokernels, and images open set by open set. (Quotients
are special cases of cokernels.)

Exercise. In particular: if 0 → F1 → F2 → · · · → Fn → 0 is an exact sequence of
presheaves, then 0 → F1(U) → F2(U) → · · · → Fn(U) → 0 is also an exact sequence for
all U, and vice versa.

However, we are interested in more geometric objects, sheaves, where things are can
be understood in terms of their local behavior, thanks to the identity and gluing axioms.

3.1. The category of sheaves of OX-modules is trickier. It turns out that the kernel
of a morphism of sheaves is also sheaf. Exercise. Show that this is true. (Confusing
translation: this subpresheaf of a sheaf is in fact also a sheaf.) Thus we have the notion of
a subsheaf.

But other notions behave weirdly.

Example: image sheaf. We don’t need an abelian category to talk about images — the
notion of image makes sense for a map of sets. And the notion of image is a bit prob-
lematic even for sheaves of sets. Let’s go back to our example of OX

exp
// O∗

X . What is
the image presheaf? Well, if U is a simply connected open set, then this is surjective: every
non-zero holomorphic function on a simply connected set has a logarithm (in fact many).
However, this is not true if U is not simply connected — the function f(z) = z on C − 0

does not have a logarithm.
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However, it locally does.

So what do we do? Answer 1: throw up our hands. Answer 2: Develop a new definition
of image. We can’t just define anything — we need to figure out what we want the image
to be. Answer: category theoretic definition.

The patch: sheafification. Define sheafification of a presheaf by universal property:
F → F sh. Hence if it is exists, it is unique up to unique isomorphism. (This is analogous
to the method of getting a group from a semigroup, see last day’s notes.)

(Category-lovers: this says that sheafification is left-adjoint to the forgetful functor. This
is just like groupification.)

Theorem (later today): Sheafification exists. (The specific construction will later be
useful, but we won’t need anything but the universal property right now.)

In class, I attempted to show that the sheafification of the image presheaf satisfies the
universal property of the image sheaf, but I realized that I misstated the property. Instead,
I will let you show that the sheaf of the cokernel presheaf satisfies the universal property
of the cokernel sheaf. See the notes about one page previous for the definition of the
cokernel.

Exercise. Do this.

Possible exercise. I’ll tell you the definition of the image sheaf, and you can check.

Remark for experts: someone pointed out in class that likely the same arguments apply
without change whenever you have an adjoint to a forgetful functor.

In short: OX-modules form an abelian category. To define image and cokernel (and
quotient), you need to sheafify.

3.2. Exercise. Suppose f : F → G is a morphism of sheaves. Show that there are natural
isomorphisms im f ∼= F/ ker f and coker f ∼= G/ im f.

Tensor products of OX-modules: also requires sheafification.

3.3. Exercise. Define what we should mean by tensor product of two OX-modules. Verify
that this construction satisfies your definition. (Hint: sheafification is required.)

3.4. Left-exactness of the global section functor. Left-exactness of global sections; hints of
cohomology. More precisely:

0 → F → G → H → 0

implies
0 → F(U) → G(U) → H(U)

is exact. Give example where not right exact, (Hint: 0 → Z → O → O∗ → 0.)
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Caution: The cokernel in the category of sheaves is a presheaf, but it is isn’t the cokernel
in the category of presheaves.

3.5. Important Exercise. Show the same thing (3.4) is true for pushforward sheaves. (The
previous case is the case of a map from U to a point.)

4. STALKS, AND SHEAFIFICATION

4.1. Important exercise. Prove that a section of a sheaf is determined by its germs, i.e.

Γ(U,F) →
∏

x∈U

Fx

is injective. (Hint: you won’t use the gluability axiom. So this is true for separated
presheaves.) [Answer: Suppose f, g ∈ Γ(U,F), with fx = gx in Fx for all x ∈ U. In terms
of the concrete interpretation of stalks, fx = (U, f) and gx = (U, g), and (U, f) = (U, g)

means that there is an open subset Ux of U, containing x, such that f|Ux
= g|Ux

. The Ux

cover U, so by the identity axiom for this cover of U, f = g.]

Corollary. In particular, if a sheaf has all stalks 0, then it is the 0-sheaf.

4.2. Morphisms and stalks.

4.3. Exercise. Show that morphisms of presheaves induce morphisms of stalks.

4.4. Exercise. Show that morphisms of sheaves are determined by morphisms of stalks.
Hint # 1: you won’t use the gluability axiom. So this is true of morphisms of separated
presheaves.) Hint # 2: study the following diagram.

(1) F(U) //

_�

��

G(U)
_�

��∏
x∈U Fx

//
∏

x∈U Gx

4.5. Exercise. Show that a morphism of sheaves is an isomorphism if and only if it induces
an isomorphism of all stalks. (Hint: Use (1). Injectivity uses from the previous exercise.
Surjectivity will use gluability.)

4.6. Exercise. (a) Show that Exercise 4.1 is false for general presheaves. (Hint: take a
2-point space with the discrete topology, i.e. every subset is open.)
(b) Show that Exercise 4.4 is false for general presheaves. (Hint: a 2-point space suffices.)
(c) Show that Exercise 4.5 is false for general presheaves.
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4.7. Description of sheafification. Suppose F is a presheaf on a topological space X. We
define F sh as follows. Sections over U ⊂ X are stalks at each point, with compatibility
conditions (to each element of the stalk, there is a representative (g, U) with g restricting
correctly to all stalks in U). More explicitly:

F sh(U) := {(fx ∈ Fx)x∈U : ∀x ∈ U, ∃x ⊂ Ux ⊂ U, Fx ∈ F(Ux) : Fx
y = fy∀y ∈ Ux}.

(Those who want to worry about the empty set are welcome to.)

This is clearly a sheaf: we have restriction maps; they commute; we have identity and
gluability.

4.8. For any morphism of presheaves φ : F → G, we get a natural induced morphism of
sheaves φsh : F sh → Gsh.

We have a natural presheaf morphism F → F sh. This induces a natural morphism
of stalks Fx → F sh

x (Exercise 4.3). Hence if F is a sheaf already, then F → F sh is an
isomorphism, by Exercise 4.5. If we knew that F sh satisfied the universal property of
sheafification, this would have been immediate by abstract nonsense, but we don’t know
that. In fact, we’ll show that now. Suppose we have the solid arrows in

F //

!!C
C

C
CC

C
C

C F sh

��

G.

We want to show that there exists a dashed arrow as in the diagram, making the diagram
commute, and we want to show that it is unique. By 4.8, F → G induces a morphism
F sh → Gsh = G, so we have existence.

For uniqueness: as morphisms of sheaves are determined by morphisms of stalks (Ex-
ercise 4.4), and for any x ∈ X, we have a commutative diagram

Fx
=

//

!!C
C

C
C

C
C

C
C

F sh
x

��

Gx,

we are done. Thus F → F sh is indeed the sheafification.
E-mail address: vakil@math.stanford.edu

8


