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Today: About this course. Why algebraic geometry? Motivation and program. Crash
course in category theory: universal properties, Yoneda’s lemma.

1. WELCOME

Welcome! This is Math 216A, Foundations of Algebraic Geometry, the first of a three-
quarter sequence on the topic. I’d like to tell you a little about what I intend with this
course.

Algebraic geometry is a subject that somehow connects and unifies several parts of
mathematics, including obviously algebra and geometry, but also number theory, and
depending on your point of view many other things, including topology, string theory,
etc. As a result, it can be a handy thing to know if you are in a variety of subjects, no-
tably number theory, symplectic geometry, and certain kinds of topology. The power of
the field arises from a point of view that was developed in the 1960’s in Paris, by the
group led by Alexandre Grothendieck. The power comes from rather heavy formal and
technical machinery, in which it is easy to lose sight of the intuitive nature of the objects
under consideration. This is one reason why it used to strike fear into the hearts of the
uninitiated.

The rough edges have been softened over the ensuing decades, but there is an in-
escapable need to understand the subject on its own terms.

This class is intended to be an experiment. I hope to try several things, which are
mutually incompatible. Over the year, I want to cover the foundations of the subject
fairly completely: the idea of varieties and schemes, the morphisms between them, their
properties, cohomology theories, and more. I would like to do this rigorously, while
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trying hard to keep track of the geometric intuition behind it. This is the second time I
will have taught such a class, and the first time I’m going to try to do this without working
from a text. So in particular, I may find that I talk myself into a corner, and may tell you
about something, and then realize I’ll have to go backwards and say a little more about
an earlier something.

Some of you have asked what background will be required, and how fast this class will
move. In terms of background, I’m going to try to assume as little as possible, ideally just
commutative ring theory, and some comfort with things like prime ideals and localiza-
tion. (All my rings will be commutative, and have unit!) The more you know, the better, of
course. But if I say things that you don’t understand, please slow me down in class, and
also talk to me after class. Given the amount of material that there is in the foundations
of the subject, I’m afraid I’m going to move faster than I would like, which means that
for you it will be like drinking from a firehose, as one of you put it. If it helps, I’m very
happy to do my part to make it easier for you, and I’m happy to talk about things outside
of class. I also intend to post notes for as many classes as I can. They will usually appear
before the next class, but not always.

In particular, this will not be the type of class where you can sit back and hope to pick
up things casually. The only way to avoid losing yourself in a sea of definitions is to
become comfortable with the ideas by playing with examples.

To this end, I intend to give problem sets, to be handed in. They aren’t intended to
be onerous, and if they become so, please tell me. But they are intended to force you to
become familiar with the ideas we’ll be using.

Okay, I think I’ve said enough to scare most of you away from coming back, so I want to
emphasize that I’d like to do everything in my power to make it better, short of covering
less material. The best way to get comfortable with the material is to talk to me on a
regular basis about it.

One other technical detail: you’ll undoubtedly have noticed that this class is schedule
for Mondays, Wednesdays, and Fridays, 9–10:30, 4 1

2
hours per week, not the usual 3.

That’s not because I’m psychotic; it was presumably a mistake. So I’m going to take
advantage of it, and most weeks just meet two days a week, and I’ll propose usually
meeting on Mondays and Wednesday. I’ll be away for some days, and so I’ll make up for
it by meeting on Fridays as well some weeks. I’ll warn you well in advance.

Office hours: I haven’t decided if it will be useful to have formal office hours rather than
being available to talk after class, and also on many days by appointment. One possibility
would be to have office hours on the 3rd day of the week during the time scheduled for
class. Another is to have it some afternoon. I’m open to suggestions.

Okay, let’s get down to business. I’d like to say a few words about what algebraic
geometry is about, and then to start discussing the machinery.

Texts: Here are some books to have handy. Hartshorne’s Algebraic Geometry has most of
the material that I’ll be discussing. It isn’t a book that you should sit down and read, but
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you might find it handy to flip through for certain results. It should be at the bookstore,
and is on 2-day reserve at the library. Mumford’s Red Book of Varieties and Schemes has
a good deal of the material I’ll be discussing, and with a lot of motivation too. That is
also on 2-day reserve in the library. The second edition is strictly worse than the 1st,
because someone at Springer retyped it without understanding the math, introducing
an irritating number of errors. If you would like something gentler, I would suggest
Shafarevich’s books on algebraic geometry. Another excellent foundational reference is
Eisenbud and Harris’ book The geometry of schemes, and Harris’ earlier book Algebraic
geometry is a beautiful tour of the subject.

For background, it will be handy to have your favorite commutative algebra book
around. Good examples are Eisenbud’s Commutative Algebra with a View to Algebraic Ge-
ometry, or Atiyah and Macdonald’s Commutative Algebra. If you’d like something with
homological algebra, category theory, and abstract nonsense, I’d suggest Weibel’s book
Introduction to Homological Algebra.

2. WHY ALGEBRAIC GEOMETRY?

It is hard to define algebraic geometry in its vast generality in a couple of sentences. So
I’ll talk around it a bit.

As a motivation, consider the study of manifolds. Real manifolds are things that locally
look like bits of real n-space, and they are glued together to make interesting shapes.
There is already some subtlety here — when you glue things together, you have to specify
what kind of gluing is allowed. For example, if the transition functions are required to be
differentiable, then you get the notion of a differentiable manifold.

A great example of a manifold is a submanifold of Rn (consider a picture of a torus).
In fact, any compact manifold can be described in such a way. You could even make this
your definition, and not worry about gluing. This is a good way to think about manifolds,
but not the best way. There is something arbitrary and inessential about defining mani-
folds in this way. Much cleaner is the notion of an abstract manifold, which is the current
definition used by the mathematical community.

There is an even more sophisticated way of thinking about manifolds. A differentiable
manifold is obviously a topological space, but it is a little bit more. There is a very clever
way of summarizing what additional information is there, basically by declaring what
functions on this topological space are differentiable. The right notion is that of a sheaf,
which is a simple idea, that I’ll soon define for you. It is true, but non-obvious, that this
ring of functions that we are declaring to be differentiable determines the differentiable
manifold structure.

Very roughly, algebraic geometry, at least in its geometric guise, is the kind of geometry
you can describe with polynomials. So you are allowed to talk about things like y2 = x3 +

x, but not y = sin x. So some of the fundamental geometric objects under consideration
are things in n-space cut out by polynomials. Depending on how you define them, they
are called affine varieties or affine schemes. They are the analogues of the patches on a
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manifold. Then you can glue these things together, using things that you can describe
with polynomials, to obtain more general varieties and schemes. So then we’ll have these
algebraic objects, that we call varieties or schemes, and we can talk about maps between
them, and things like that.

In comparison with manifold theory, we’ve really restricted ourselves by only letting
ourselves use polynomials. But on the other hand, we have gained a huge amount too.
First of all, we can now talk about things that aren’t smooth (that are singular), and we
can work with these things. (One thing we’ll have to do is to define what we mean by
smooth and singular!) Also, we needn’t work over the real or complex numbers, so we
can talk about arithmetic questions, such as: what are the rational points on y2 = x3 + x2?
(Here, we work over the field Q.) More generally, the recipe by which we make geometric
objects out of things to do with polynomials can generalize drastically, and we can make
a geometric object out of rings. This ends up being surprisingly useful — all sorts of
old facts in algebra can be interpreted geometrically, and indeed progress in the field of
commutative algebra these days usually requires a strong geometric background.

Let me give you some examples that will show you some surprising links between
geometry and number theory. To the ring of integers Z, we will associate a smooth curve
Spec Z. In fact, to the ring of integers in a number field, there is always a smooth curve,
and to its orders (subrings), we have singular = non-smooth curves.

An old flavor of Diophantine question is something like this. Given an equation in two
variables, y2 = x3 + x2, how many rational solutions are there? So we’re looking to solve
this equation over the field Q. Instead, let’s look at the equation over the field C. It turns
out that we get a complex surface, perhaps singular, and certainly non-compact. So let
me separate all the singular points, and compactify, by adding in points. The resulting
thing turns out to be a compact oriented surface, so (assuming it is connected) it has a
genus g, which is the number of holes it has. For example, y2 = x3 + x2 turns out to have
genus 0. Then Mordell conjectured that if the genus is at least 2, then there are at most
a finite number of rational solutions. The set of complex solutions somehow tells you
about the number of rational solutions! Mordell’s conjecture was proved by Faltings, and
earned him a Fields Medal in 1986. As an application, consider Fermat’s Last Theorem.
We’re looking for integer solutions to xn + yn = zn. If you think about it, we are basically
looking for rational solutions to Xn + Yn = 1. Well, it turns out that this has genus

(

n−1

2

)

— we’ll verify something close to this at some point in the future. Thus if n is at least 4,
there are only a finite number of solutions. Thus Falting’s Theorem implies that for each
n ≥ 4, there are only a finite number of counterexamples to Fermat’s last theorem. Of
course, we now know that Fermat is true — but Falting’s theorem applies much more
widely — for example, in more variables. The equations x3 + y2 + z14 + xy + 17 = 0 and
3x14 + x34y + · · · = 0, assuming their complex solutions form a surface of genus at least 2,
which they probably do, have only a finite number of solutions.

So here is where we are going. Algebraic geometry involves a new kind of “space”,
which will allow both singularities, and arithmetic interpretations. We are going to define
these spaces, and define maps between them, and other geometric constructions such as
vector bundles and sheaves, and pretty soon, cohomology groups.
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3. PRELIMINARIES ON CATEGORY THEORY

In order to think about these notions clearly and cleanly, it really helps to use the lan-
guage of categories. There is not much to know about categories to get started; it is just a
very useful language.

Here is an informal definition. I won’t give you the precise definition unless you really
want me to. A category has some objects, and some maps, or morphisms, between them.
(For the pedants, I won’t worry about sets and classes. And I’m going to accept the axiom
of choice.) The prototypical example to keep in mind is the category of sets. The objects are
sets, and the morphisms are maps of sets. Another good example is that of vector spaces
over your favorite filed k. The objects are k-vector spaces, and the morphisms are linear
transformations.

For each object, there is always an identity morphism from from the object to itself. There
is a way of composing morphisms: if you have a morphism f : A → B and another
g : B → C, then there is a composed morphism g ◦ f : A → C. I could be pedantic and
say that we have a map of sets Mor(A, B) × Mor(B, C) → Mor(A, C). Composition is
associative: (h◦g)◦ f = h◦ (g◦ f). When you compose with the identity, you get the same
thing.

Exercise. A category in which each morphism is an isomorphism is called a groupoid.
(a) A perverse definition of a group is: a groupoid with one element. Make sense of this.
(b) Describe a groupoid that is not a group. (This isn’t an important notion for this course.
The point of this exercise is to give you some practice with categories, by relating them to
an object you know well.)

Here are a couple of other important categories. If R is a ring, then R-modules form a
category. In the special case where R is a field, we get the category of vector spaces. There
is a category of rings, where the objects are rings, and the morphisms are morphisms of
rings (which I’ll assume send 1 to 1).

If we have a category, then we have a notion of isomorphism between two objects (if
we have two morphisms f : A → B and g : B → A, both of whose compositions are the
identity on the appropriate object), and a notion of automorphism.

3.1. Functors. A covariant functor is a map from one category to another, sending objects
to objects, and morphisms to morphisms, such that everything behaves the way you want
it to; if F : A → B, and a1, a2 ∈ A, and m : a1 → a2 is a morphism in A, then F(m) is a
morphism from F(a1) → F(a2) in B. Everything composes the way it should.

Example: If A is the category of complex vector spaces, and B is the category of sets,
then there is a forgetful functor where to a complex vector space, we associate the set of
its elements. Then linear transformations certainly can be interpreted as set maps.

A contravariant functor is just the same, except the arrows switch directions: in the above
language, F(m) is now an arrow from F(a2) to F(a1).
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Example: If A is the category complex vector spaces, then taking duals gives a con-
travariant functor A → A. Indeed, to each linear transformation V → W, we have a dual
transformation W∗ → V∗.

3.2. Universal properties. Given some category that we come up with, we often will
have ways of producing new objects from old. In good circumstances, such a definition
can be made using the notion of a universal property. Informally, we wish that there is an
object with some property. We first show that if it exists, then it is essentially unique, or
more precisely, is unique up to unique isomorphism. Then we go about constructing an
example of such an object.

A good example of this, that you may well have seen, is the notion of a tensor product
of R-modules. The way in which it is often defined is as follows. Suppose you have
two R-modules M and N. Then the tensor product M ⊗R N is often first defined for
people as follows: elements are of the form m ⊗ n (m ∈ M, n ∈ N), subject to relations
(m1 +m2)⊗n = m1⊗n+m2⊗n, m⊗(n1 +n2) = m⊗n1 +m⊗n2, r(m⊗n) = (rm)⊗n =

m ⊗ n (where r ∈ R).

Special case: if R is a field k, we get the tensor product of vector spaces.

Exercise (if you haven’t seen tensor products before). Calculate Z/10 ⊗Z Z/12. (The
point of this exercise is to give you a very little hands-on practice with tensor products.)

This is a weird definition!! And this is a clue that it is a “wrong” definition. A better
definition: notice that there is a natural R-bilinear map M×N → M⊗R N. Any R-bilinear
map M × N → C factors through the tensor product uniquely: M × N → M ⊗R N → C.
This is kind of clear when you think of it.

I could almost take this as the definition of the tensor product. Because if I could create
something satisfying this property, (M ⊗R N) ′, and you were to create something else
(M ⊗R N) ′′, then by my universal property for C = (M ⊗R N) ′′, there would be a unique
map (M ⊗R N) ′ → (M ⊗R N) ′′ interpolating M × N → (M ⊗R N) ′′, and similarly by your
universal property there would be a unique universal map (M⊗R N) ′′ → (M⊗R N) ′. The
composition of these two maps in one order

(M ⊗R N) ′ → (M ⊗R N) ′′ → (M ⊗R N) ′

has to be the identity, by the universal property for C = (M ⊗R N) ′, and similarly for
the other composition. Thus we have shown that these two maps are inverses, and our
two spaces are isomorphic. In short: our two definitions may not be the same, but there
is a canonical isomorphism between them. Then the “usual” construction works, but
someone else may have another construction which works just as well.

I want to make three remarks. First, if you have never seen this sort of argument before,
then you might think you get it, but you don’t. So you should go back over the notes, and
think about it some more, because it is rather amazing. Second, the language I would use
to describe this is as follows: There is an R-bilinear map t : M× N → M ⊗R N, unique up
to unique isomorphism, defined by the following universal property: for any R-bilinear
map s : M×N → C there is a unique f : M⊗R N → C such that s = f◦ t. Third, you might

6



notice that I didn’t use much about the R-module structure, and indeed I can vary this to
get a very general statement. This takes us to a powerful fact, that is very zen: it is very
deep, but also very shallow. It’s hard, but easy. It is black, but white. I’m going to tell you
about it, and it will be mysterious, but then I’ll show you some concrete examples.

Here is a motivational example: the notion of product. You have likely seen product
defined in many cases, for example the notion of a product of manifolds. In each case,
the definition agreed with your intuition of what a product should be. We can now make
this precise. I’ll describe product in the category of sets, in a categorical manner. Given
two sets M and N, there is a unique set M × N, along with maps to M and N, such that
for any other set S with maps to M and N, this map must factor uniquely through M × N:

S
∃!

##

M × N //

��

N

M.

You can immediately check that this agrees with the usual definition. But it has the ad-
vantage that we now have a definition in any category! The product may not exist, but
if it does, then we know that it is unique up to unique isomorphism! (Explain.) This is
handy even in cases that you understand. For example, one way of defining the product
of two manifolds M and N is to cut them both up in to charts, then take products of charts,
then glue them together. But if I cut up the manifolds in one way, and you cut them up in
another, how do we know our resulting manifolds are the “same”? We could wave our
hands, or make an annoying argument about refining covers, but instead, we should just
show that they are indeed products, and hence the “same” (aka isomorphic).

3.3. Yoneda’s Lemma. I want to begin with an easy fact that I’ll state in a complicated
way. Suppose we have a category C. This isn’t scary — just pick your favorite friendly
low-brow category. Pick an object in your category A ∈ C. Then for any object C ∈ C, we
have a set of morphisms Mor(C, A). If we have a morphism f : B → C, we get a map of
sets
(1) Mor(C, A) → Mor(B, A),

just by composition: given a map from C to A, we immediately get a map from B to A

by precomposing with f. In fancy language, we have a contravariant functor from the
category C to the category of sets Sets. Yoneda’s lemma, or at least part of it, says that
this functor determines A up to unique isomorphism. Translation: If we have two objects
A and A ′, and isomorphisms
(2) iC : Mor(C, A) → Mor(C, A ′)

that commute with the maps (1), then the iC must be induced from a unique morphism
A → A ′.

Important Exercise. Prove this. This sounds hard, but it really is not. This statement
is so general that there are really only a couple of things that you could possibly try. For
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example, if you’re hoping to find an isomorphism A → A ′, where will you find it? Well,
you’re looking for an element Mor(A, A ′). So just plug in C = A to (2), and see where the
identity goes. (Everyone should prove Yoneda’s Lemma once in their life. This is your
chance.)

Remark. There is an analogous statement with the arrows reversed, where instead of
maps into A, you think of maps from A.

Example: Fibered products. Suppose we have morphisms X, Y → Z. Then the fibered
product is an object X×Z Y along with morphisms to X and Y, where the two compositions
X ×Z Y → Z agree, such that given any other object W with maps to X and Y (whose
compositions to Z agree), these maps factor through some unique W → X ×Z Y:

W
∃!

##

��
5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

))S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

X ×Z Y

πX

��

πY
// Y

g

��

X
f

// Z

The right way to interpret this is first to think about what it means in the category of sets.
I’ll tell you it, and let you figure out why I’m right: X×Z Y = {(x ∈ X, y ∈ Y) : f(x) = g(y)}.

In any category, we can make this definition, and we know thanks to Yoneda that if
it exists, then it is unique up to unique isomorphism, and so we should reasonably be
allowed to give it the name X×Z Y. We know what maps to it are: they are precisely maps
to X and maps to Y that agree on maps to Z.

(Remark for experts: if our category has a final object, then the fibered product over the
final object is just the product.)

The notion of fibered product will be important for us later.

Exercises on fibered product. (a) Interpret fibered product in the category of sets: If we
are given maps from sets X and Y to the set Z, interpret X ×Z Y. (This will help you build
intuition about this concept.)
(b) A morphism f : X → Y is said to be a a monomorphism if any two morphisms g1, g2 :

Z → X such that f ◦ g1 = f ◦ g2 must satisfy g1 = g2. This is the generalization of an
injection of sets. Prove that a morphism is a monomorphism if and only if the natural
morphism X → X ×Y X is an isomorphism. (We may then take this as the definition of
monomorphism.) (Monomorphisms aren’t very central to future discussions, although
they will come up again. This exercise is just good practice.)
(c) Suppose X → Y is a monomorphism, and W, Z → X are two morphisms. Show that
W×XZ and W×Y Z are canonically isomorphic. (We will use this later when talking about
fibered products.)
(d) Given X → Y → Z, show that there is a natural morphism X ×Y X → X ×Z X. (This is
trivial once you figure out what it is saying. The point of this exercise is to see why it is
trivial.)
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Important Exercise. Suppose T → R, S are two ring morphisms. Let I be an ideal of R.
We get a morphism R → R⊗T S by definition. Let Ie be the extension of I to R⊗T S. (These
are the elements

∑
j ij ⊗ sj where ij ∈ I, sj ∈ S. But it is more elegant to solve this exercise

using the universal property.) Show that there is a natural isomorphism
R/I ⊗T S ∼= (R ⊗T S)/Ie.

Hence the natural morphism S ⊗T R → S ⊗T R/I is a surjection. As an application, we
can compute tensor products of finitely generated k algebras over k. For example,

k[x1, x2]/(x2
1 − x2) ⊗k k[y1, y2]/(y3

1 + y3
2)

∼= k[x1, x2, y1, y2]/(x2
1 − x2, y

3
1 + y3

2).

Exercise. Define coproduct in a category by reversing all the arrows in the definition of
product. Show that coproduct for sets is disjoint union.

I then discussed adjoint functors briefly. I will describe them again briefly next day.

Next day: more examples of universal properties, including direct and inverse limits.
Groupification. Sheaves!

E-mail address: vakil@math.stanford.edu

9


