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Welcome back to the third quarter! The theme for this quarter, insofar as there is one,
will be “useful ideas to know”. We’ll start with differentials for the first three lectures.

I prefer to start any topic with a number of examples, but in this case I’m going to
spend a fair amount of time discussing technicalities, and then get to a number of exam-
ples. Here is the main message I want you to get. Differentials are an intuitive geometric
notion, and we’re going to figure out the right description of them algebraically. I find
the algebraic manifestation a little non-intuitive, so I always like to tie it to the geometry.
So please don’t tune out of the statements. Also, I want you to notice that although the
algebraic statements are odd, none of the proofs are hard or long.

This topic could have been done as soon as we knew about morphisms and quasico-
herent sheaves.

1. MOTIVATION AND GAME PLAN

Suppose X is a “smooth” k-variety. We hope to define a tangent bundle. We’ll see that
the right way to do this will easily apply in much more general circumstances.

• We’ll see that cotangent is more “natural” for schemes than tangent bundle. This is
similar to the fact that the Zariski cotangent space is more natural than the tangent space
(i.e. if A is a ring and m is a maximal ideal, then m/m2 is “more natural” than (m/m2)∨. So
we’ll define the cotangent sheaf first.

• Our construction will work for general X, even if X is not “smooth” (or even at all nice,
e.g. finite type). The cotangent sheaf won’t be locally free, but it will still be a quasicoher-
ent sheaf.

• Better yet, this construction will work “relatively”. For any X → Y, we’ll define ΩX/Y , a
quasicoherent sheaf on X, the sheaf of relative differentials. This will specialize to the earlier
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case by taking Y = Spec k. The idea is that this glues together the cotangent sheaves of
the fibers of the family. (I drew an intuitive picture in the “smooth” case. I introduced the
phrase “vertical (co)tangent vectors”.)

2. THE AFFINE CASE: THREE DEFINITIONS

We’ll first study the affine case. Suppose A is a B-algebra, so we have a morphism of
rings φ : B → A and a morphism of schemes Spec A → Spec B. I will define an A-module
ΩA/B in three ways. This is called the module of relative differentials or the module of Kähler
differentials. The module of differentials will be defined to be this module, as well as a
map d : A → ΩA/B satisfying three properties.
(i) additivity. da + da ′ = d(a + a ′)

(ii) Leibniz. d(aa ′) = a da ′ + a ′da

(iii) triviality on pullbacks. db = 0 for b ∈ φ(B).

As motivation, think of the case B = k. So for example, dan = nan−1da, and more
generally, if f is a polynomial in one variable, df(a) = f ′(a) da (where f ′ is defined
formally: if f =

∑
cix

i then f ′ =
∑

ciix
i−1).

I’ll give you three definitions of this sheaf in the affine case (i.e. this module). The first
is a concrete hands-on definition. The second is by universal property. And the third will
globalize well, and will allow us to define ΩX/Y conveniently in general.

The first two definitions are analogous to what we have seen for tensor product. Recall
that there are two common definitions of ⊗. The first is in terms of formal symbols satis-
fying some rules. This is handy for showing certain things, e.g. if M → M ′ is surjective,
then so is M ⊗ N → M ′ ⊗ N. The second is by universal property.

2.1. First definition of differentials: explicit description. We define ΩA/B to be finite
A-linear combinations of symbols “da” for a ∈ A, subject to the three rules (i)–(iii) above.
For example, take A = k[x, y], B = k. Then a sample differential is 3x2 dy + 4dx ∈ ΩA/B.
We have identities such as d(3xy2) = 3y2 dx + 6xy dy.

Key fact. Note that if A is generated over B (as an algebra) by xi ∈ A (where i lies in
some index set, possibly infinite), subject to some relations rj (where j lies in some index
set, and each is a polynomial in some finite number of the xi), then the A-module ΩA/B

is generated by the dxi, subject to the relations (i)—(iii) and drj = 0. In short, we needn’t
take every single element of A; we can take a generating set. And we needn’t take every
single relation among these generating elements; we can take generators of the relations.

2.2. Exercise. Verify the above key fact.

In particular:
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2.3. Proposition. — If A is a finitely generated B-algebra, then ΩA/B is a finite type (i.e. finitely
generated) A-module. If A is a finitely presented B-algebra, then ΩA/B is a finitely presented
A-module.

(“Finitely presented” algebra means finite number of generators (=finite type) and finite
number of relations. If A is Noetherian, then the two hypotheses are the same, so most of
you will not care.)

Let’s now see some examples. Among these examples are three particularly important
kinds of ring maps that we often consider: adding free variables; localizing; and taking
quotients. If we know how to deal with these, we know (at least in theory) how to deal
with any ring map.

2.4. Example: taking a quotient. If A = B/I, then ΩA/B = 0 basically immediately:
da = 0 for all a ∈ A, as each such a is the image of an element of B. This should be
believable; in this case, there are no “vertical tangent vectors”.

2.5. Example: adding variables. If A = B[x1, . . . , xn], then ΩA/B = Adx1 ⊕ · · · ⊕ Adxn.
(Note that this argument applies even if we add an arbitrarily infinite number of inde-

terminates.) The intuitive geometry behind this makes the answer very reasonable. The
cotangent bundle should indeed be trivial of rank n.

2.6. Example: two variables and one relation. If B = C, and A = C[x, y]/(y2 − x3), then
ΩA/B = C dx ⊕ C dy/(2y dy − 3x2 dx).

2.7. Example: localization. If S is a multiplicative set of B, and A = S−1B, then ΩA/B = 0.
Reason: Note that the quotient rule holds. (If b = as, then db = a ds+s da, which can be
rearranged to give da = (s db−b ds)/s2.) Thus if a = b/s, then da = (s db−b ds)/s2 = 0.
(If A = Bf for example, this is intuitively believable; then Spec A is an open subset of
Spec B, so there should be no “vertical cotangent vectors”.)

2.8. Exercise: localization (stronger form). If S is a multiplicative set of A, show that
there is a natural isomorphism ΩS−1A/B

∼= S−1ΩA/B. (Again, this should be believable
from the intuitive picture of “vertical cotangent vectors”.) If T is a multiplicative set of
B, show that there is a natural isomorphism ΩS−1A/T−1B

∼= S−1ΩA/B where S is the multi-
plicative set of A that is the image of the multiplicative set T ⊂ B.

2.9. Exercise. (a) (pullback of differentials) If

A ′ Aoo

B ′

OO

B

OO

oo

is a commutative diagram, show that there is a natural homomorphism of A ′-modules
A ′ ⊗A ΩA/B → ΩA ′/B ′ . An important special case is B = B ′.
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(b) (differentials behave well with respect to base extension, affine case) If furthermore the above
diagram is a tensor diagram (i.e. A ′ ∼= B ′ ⊗B A) then show that A ′ ⊗A ΩA/B → ΩA ′/B ′ is
an isomorphism.

2.10. Exercise. Suppose k is a field, and K is a separable algebraic extension of k. Show
that ΩK/k = 0.

2.11. Exercise (Jacobian description of ΩA/B). — Suppose A = B[x1, . . . , xn]/(f1, . . . , fr).
Then ΩA/B = {⊕iBdxi}/{dfj = 0} maybe interpreted as the cokernel of the Jacobian matrix
J : A⊕r → A⊕n.

I now want to tell you two handy (geometrically motivated) exact sequences. The ar-
guments are a bit tricky. They are useful, but a little less useful than the foundation facts
above.

2.12. Theorem (the relative cotangent sequence, affine version). — Suppose C → B → A are ring
homomorphisms. Then there is a natural exact sequence of A-modules

A ⊗B ΩB/C → ΩA/C → ΩA/B → 0.

Before proving this, I drew a picture motivating the statement. I drew pictures of two
maps of schemes, Spec A

f // Spec B
g

// Spec C , where Spec C was a point, Spec B was
A1 (or a “smooth curve”), and Spec A was A2 (or a “smooth surface”). The tangent space
to a point upstairs has a subspace that is the tangent space to the vertical fiber. The
cokernel is the pullback of the tangent space to the image point in Spec B. Thus we have
an exact sequence 0 → TSpec A/ Spec B → TSpec A/ Spec C → f∗TSpec B/ Spec C → 0. We want the
corresponding sequence of cotangent vectors, so we dualize. We end up with precisely
the statement of the Theorem, except we also have left-exactness. This discrepancy is
because the statement of the theorem is more general; we’ll see that in the “smooth” case,
we’ll indeed have left-exactness.

Proof. (Before we start, note that surjectivity is clear, from da 7→ da. The composition over
the middle term is clearly 0: db → db → 0.) We wish to identify ΩA/B as the cokernel
of A ⊗B ΩB/C → ΩA/C. Now ΩA/B is exactly the same as ΩA/C, except we have extra
relations: db = 0 for b ∈ B. These are precisely the images of 1 ⊗ db on the left. �

2.13. Theorem (Conormal exact sequence, affine version). — Suppose B is a C-algebra, I is an
ideal of B, and A = B/I. Then there is a natural exact sequence of A-modules

I/I2 δ:i→=1⊗di// A ⊗B ΩB/C
a⊗db7→a db // ΩA/C

// 0.

Before getting to the proof, some discussion is necessary. (The discussion is trickier
than the proof itself!)
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The map δ is a bit subtle, so I’ll get into its details before discussing the geometry. For
any i ∈ I, δi = 1 ⊗ di. Note first that this is well-defined: If i, i ′ ∈ I, i ≡ i ′ (mod I2),
say i − i ′ = i ′′i ′′′ where i ′′, i ′′′ ∈ I, then δi − δi ′ = 1 ⊗ (i ′′ di ′′′ + i ′′′ di ′′) ∈ IΩB/C is 0 in
A ⊗B ΩB/C = (B/I) ⊗B ΩB/C. Next note that I/I2 indeed is an A = (B/I)-module. Finally,
note that the map I/I2 → A ⊗B ΩB/C is indeed a homomorphism of A-modules: If a ∈ A,
b ∈ I, then ab 7→ 1 ⊗ d(ab) = 1 ⊗ (a db + b da) = 1 ⊗ (a db) = a(1 ⊗ db).

Having dispatched that formalism, let me get back to the geometry. I drew a picture
where Spec C is a point, Spec B is a plane, and Spec A is something smooth in it. Let j

be the inclusion. Then we have 0 → TSpec A/ Spec C → j∗TSpec B/ Spec C → NSpec B/ Spec C → 0.
Dualizing it, we get 0 → N∨

A/B → A ⊗ ΩB/C → ΩA/C → 0. This exact sequence reminds
me of several things above and beyond the theorem. First of all, I/I2 will later be the
conormal bundle — hence the name of the theorem. Second, in good circumstances, the
conormal exact sequence of Theorem 2.13 will be injective on the left.

2.14. Aside: Why should I/I2 be the conormal bundle?. We’ll define I/I2 to be the conor-
mal bundle later, so I’ll try to give you an idea as to why this is reasonable. You be-
lieve now that m/m2 should be the cotangent space to a point in A

n. In other words,
(x1, . . . , xn)/(x1, . . . , xn)2 is the cotangent space to ~0 in An. Translation: it is the conormal
space to the point ~0 ∈ An. Then you might believe that in An+m, (x1, . . . , xn)/(x1, . . . , xn)2

is the conormal bundle to the coordinate n-plane A
m ⊂ A

n+m.

Let’s finally prove the conormal exact sequence.

Proof of the conormal exact sequence (affine version) 2.13. We need to identify the cokernel of
δ : I/I2 → A⊗B ΩB/C with ΩA/C. Consider A⊗B ΩB/C. As an A-module, it is generated by
db (b ∈ B), subject to three relations: dc = 0 for c ∈ φ(C) (where φ : C → B describes B

as a C-algebra), additivity, and the Leibniz rule. Given any relation in B, d of that relation
is 0.

Now ΩA/C is defined similarly, except there are more relations in A; these are precisely
the elements of i ∈ B. Thus we obtain ΩA/C by starting out with A ⊗B ΩB/C, and adding
the additional relations di where i ∈ I. But this is precisely the image of δ! �

2.15. Second definition: universal property. Here is a second definition that we’ll use at
least once, and is certainly important philosophically. Suppose A is a B-algebra, and M

is a A-module. An B-linear derivation of A into M is a map d : A → M of B-modules (not
necessarily A-modules) satisfying the Leibniz rule: d(fg) = f dg + g df. As an example,
suppose B = k, and A = k[x], and M = A. Then an example of a k-linear derivation is
d/dx. As a second example, if B = k, A = k[x], and M = k. Then an example of a k-linear
derivation is d/dx|0.
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Then d : A → ΩA/B is defined by the following universal property: any other B-linear
derivation d ′ : A → M factors uniquely through d:

A
d

""DD
DD

DD
DD

d ′

// M

ΩA/B

f

<<yyyyyyyy

Here f is a map of A-modules. (Note again that d and d ′ are not! They are only B-linear.)
By universal property nonsense, if it exists, it is unique up to unique isomorphism. The
candidate I described earlier clearly satisfies this universal property (in particular, it is a
derivation!), hence this is it. [Thus Ω is the “unversal derivation”. I should rewrite this
paragraph at some point.]

The next result will give you more evidence that this deserves to be called the (relative)
cotangent bundle.

2.16. Proposition. Suppose B is a k-algebra, with residue field k. Then the natural map δ :

m/m2 → ΩB/k ⊗B k is an isomorphism.

I skipped this proof in class, but promised it in the notes.

Proof. By the conormal exact sequence 2.13 with I = m and A = C = k, δ is a surjection
(as Ωk/k = 0), so we need to show that it is injection, or equivalently that Homk(ΩB/k ⊗B

k, k) → Homk(m/m2, k) is a surjection. But any element on the right is indeed a derivation
from B to k (an earlier exercise from back in the dark ages on the Zariski tangent space),
which is precisely an element of HomB(ΩB/k, k) (by the universal property of ΩB/k), which
is canonically isomorphic to Homk(ΩB/k ⊗B k, k) as desired. �

Remark. As a corollary, this (in combination with the Jacobian exercise 2.11 above) gives
a second proof of an exercise from the first quarter, showing the Jacobian criterion for
nonsingular varieties over an algebraically closed field.

Aside. If you wish, you can use the universal property to show that ΩA/B behaves well
with respect to localization. For example, if S is a multiplicative set of A, then there is a
natural isomorphism ΩS−1A/B

∼= S−1ΩA/B. This can be used to give a different solution
to Exercise 2.8. It can also be used to give a second definition of ΩX/Y for a morphism
of schemes X → Y (different from the one given below): we define it as a quasicoherent
sheaf, by describing how it behaves on affine open sets, and showing that it behaves well
with respect to distinguished localization.

Next day, I’ll give a third definition which will globalize well, and we’ll see that we
already understand differentials for morphisms of schemes.

E-mail address: vakil@math.stanford.edu
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Last day I introduced differentials on affine schemes, for a morphism B → A. The
differential was an A-module, as well as a homomorphism of B-modules, d : A → ΩA/B.
The A-module ΩA/B is generated by da, and d satisfies 3 rules: additivity, Leibniz rule,
and db = 0 (or d1 = 0). It satisfies a universal property: any derivation A → M uniquely
factors through an A-module homomorphism ΩA/B → M.

1. A THIRD DEFINITION OF Ω, SUITABLE FOR EASY GLOBALIZATION

1.1. Third definition. We now want to globalize this definition for an arbitrary morphism
of schemes f : X → Y. We could do this “affine by affine”; we just need to make sure that
the above notion behaves well with respect to “change of affine sets”. Thus a relative
differential on X would be the data of, for every affine U ⊂ X, a differential of the form∑

ai dbi, and on the intersection of two affine open sets U ∩ U ′, with representatives∑
ai dbi on U and

∑
a ′

i db ′

i on the second, an equality on the overlap. Instead, we’ll take
a different tack. We’ll get what intuitively seems to be a very weird definition! I’ll give
the definition, then give you some intuition, and then get back to the definition.

Suppose f : X → Y be any morphism of schemes. Recall that δ : X → X ×Y X is a locally
closed immersion (Class 9, p. 5). Thus there is an open subscheme U ⊂ X ×Y X for which
δ : X → U is a closed immersion, cut out by a quasicoherent sheaf of ideals I. Then I/I2

is a quasicoherent sheaf naturally supported on X (affine-locally this is the statement that
I/I2 is naturally an A/I-module). We call this the conormal sheaf to X (or somewhat more
precisely,to the locally closed immersion). (For the motivation for this name, see last day’s
notes.) We denote it by N∨

X/X×YX. Then we will define ΩX/Y as this conormal sheaf.

(Small technical point for pedants: what does I2 mean? In general, if I and J are
quasicoherent ideal sheaves on a scheme Z, what does IJ mean? Of course it means that
on each affine, we take the product of the two corresponding ideals. To make sure this

Date: Thursday, April 6, 2006. Last minor update June 25, 2007. c© 2005, 2006, 2007 by Ravi Vakil.
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is well-defined, we need only check that if A is a ring, and f ∈ A, and I, J ⊂ A are two
ideals, then (IJ)f = IfJf in Af.)

Brief aside on (co)normal sheaves to locally closed immersions. For any locally closed im-
mersion W → Z, we can define the conormal sheaf N∨

W/Z, a quasicoherent sheaf on W,
similarly, and the normal sheaf as its dual NW/Z := Hom(N∨,OW). This is somewhat im-
perfect notation, as it suggests that the dual of N is always N ∨. This is not always true,
as for A-modules, the natural morphism from a module to its double-dual is not always
an isomorphism. (Modules for which this is true are called reflexive, but we won’t use this
notion.)

1.2. Exercise: normal bundles to effective Cartier divisors. Suppose D ⊂ X is an effective
Cartier divisor. Show that the conormal sheaf N∨

D/X is O(−D)|D (and in particular is an
invertible sheaf), and hence that the normal sheaf is O(D)|D. It may be surprising that the
normal sheaf should be locally free if X ∼= A

2 and D is the union of the two axes (and more
generally if X is nonsingular but D is singular), because you may be used to thinking that
the normal bundle is isomorphic to a “tubular neighborhood”.

Let’s get back to talking about differentials.

We now define the d operator d : OX → ΩX/Y . Let π1, π2 : X ×Y X → X be the two
projections. Then define d : OX → ΩX/Y on the open set U as follows: df = π∗

2f − π∗

1f.
(Warning: this is not a morphism of quasicoherent sheaves, although it is OY-linear.) We’ll
soon see that this is indeed a derivation, and at the same time see that our new notion of
differentials agrees with our old definition on affine open sets, and hence globalizes the
definition.

Before we do, let me try to convince you that this is a reasonable definition to make.
(This paragraph is informal, and is in no way mathematically rigorous.) Say for example
that Y is a point, and X is something smooth. Then the tangent space to X × X is TX ⊕ TX:
TX×X = TX ⊕ TX. Restrict this to the diagonal ∆, and look at the normal bundle exact
sequence:

0 → T∆ → TX×X|∆ → N∆,X → 0.

Now the left morphism sends v to (v, v), so the cokernel can be interpreted as (v, −v).
Thus N∆,X is isomorphic to TX. Thus we can turn this on its head: we know how to find
the normal bundle (or more precisely the conormal sheaf), and we can use this to define
the tangent bundle (or more precisely the cotangent sheaf). (Experts may want to ponder
the above paragraph when Y is more general, but where X → Y is “nice”. You may wish
to think in the category of manifolds, and let X → Y be a submersion.)

Let’s now see how this works for the special case Spec A → Spec B. Then the diagonal
Spec A ↪→ Spec A⊗B A corresponds to the ideal I of A⊗B A that is the cokernel of the ring
map

∑
xi ⊗ yi →

∑
xiyi.
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The derivation is d : A → A ⊗B A, a 7→ da := 1 ⊗ a − a ⊗ 1 (taken modulo I2). (I
shouldn’t really call this “d” until I’ve verified that it agrees with our earlier definition,
but bear with me.)

Let’s check that this satisfies the 3 conditions, i.e. that it is a derivation. Two are imme-
diate: it is linear, vanishes on elements of b. Let’s check the Leibniz rule:

d(aa ′) − a da ′ − a ′ da = 1 ⊗ aa ′ − aa ′ ⊗ 1 − a ⊗ a ′ + aa ′ ⊗ 1 − a ′ ⊗ a + a ′a ⊗ 1

= −a ⊗ a ′ − a ′ ⊗ a + a ′a ⊗ 1 + 1 ⊗ aa ′

= (1 ⊗ a − a ⊗ 1)(1 ⊗ a ′ − a ′ ⊗ 1)

∈ I2.

Thus by the universal property of ΩA/B, we get a natural morphism ΩA/B → I/I2 of
A-modules.

1.3. Theorem. — The natural morphism f : ΩA/B → I/I2 induced by the universal property of
ΩA/B is an isomorphism.

Proof. We’ll show this as follows. (i) We’ll show that f is surjective, and (ii) we will describe
g : I/I2 → ΩA/B such that g ◦ f : ΩA/B → ΩA/B is the identity. Both of these steps will be
very short. Then we’ll be done, as to show f ◦ g is the identity, we need only show (by
surjectivity of g) that (f ◦ g)(f(a)) = f(a), which is true (by (ii) g ◦ f = id).

(i) For surjectivity, we wish to show that I is generated (modulo I2) by a ⊗ 1 − 1 ⊗ a as
a runs over the elements of A. This has a one sentence explanation: If

∑
xi ⊗ yi ∈ I, i.e.∑

xiyi = 0 in A, then
∑

i xi ⊗ yi =
∑

i xi(1 ⊗ yi − yi ⊗ 1).

(ii) Define g : I/I2 → ΩA/B by x ⊗ y 7→ x dy. We need to check that this is well-defined,
i.e. that elements of I2 are sent to 0, i.e. we need that

(∑
xi ⊗ yi

) (∑
x ′

j ⊗ y ′

j

)

=
∑

i,j

xix
′

j ⊗ yiy
′

j 7→ 0

where
∑

i xiyi =
∑

x ′

jy
′

j = 0. But by the Leibniz rule,
∑

i,j

xix
′

j d(yiy
′

j) =
∑

i,j

xix
′

jyi dy ′

j +
∑

i,j

xix
′

jy
′

j dyi

=

(

∑

i

xiyi

)(

∑

j

x ′

j dy ′

j

)

+

(

∑

i

xi dyi

)(

∑

j

x ′

jy
′

j

)

= 0.

Then f ◦ g is indeed the identity, as

da
g
// 1 ⊗ a − a ⊗ 1

f
// 1 da − a d1 = da

as desired. �

We can now use our understanding of how Ω works on affine open sets to state some
global results.
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1.4. Exercise. Suppose f : X → Y is locally of finite type, and X is locally Noetherian.
Show that ΩX/Y is a coherent sheaf on X.

The relative cotangent exact sequence and the conormal exact sequence for schemes
now directly follow.

1.5. Theorem. — (Relative cotangent exact sequence) Suppose X
f

// Y
g

// Z be morphisms
of schemes. Then there is an exact sequence of quasicoherent sheaves on X

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.

(Conormal exact sequence) Suppose f : X → Y morphism of schemes, Z ↪→ X closed subscheme of
X, with ideal sheaf I. Then there is an exact sequence of sheaves on Z:

I/I2 δ
// ΩX/Y ⊗OZ

// ΩZ/Y
// 0.

Similarly, the sheaf of relative differentials pull back, and behave well under base
change.

1.6. Theorem (pullback of differentials). — (a) If

X ′
g

//

��

X

��

Y ′ // Y

is a commutative diagram of schemes, there is a natural homomorphism of quasicoherent sheaves
on X ′ g∗ΩX/Y → ΩX ′/Y ′ . An important special case is Y = Y ′.
(b) (Ω behaves well under base change) If furthermore the above diagram is a tensor diagram (i.e.
X ′ ∼= X ⊗Y Y ′) then g∗ΩX/Y → ΩX ′/Y ′ is an isomorphism.

This follows immediately from an Exercise in last day’s notes. Part (a) implicitly came
up in our earlier discussion of the Riemann-Hurwitz formula.

As a particular case of part (b), the fiber of the sheaf of relative differentials is indeed
the sheaf of differentials of the fiber. Thus this notion indeed glues together the differentials on
each fiber.

2. EXAMPLES

2.1. The projective line. As an important first example, let’s consider P
1
k, with the usual

projective coordinates x0 and x1. As usual, the first patch corresponds to x0 6= 0, and is of
the form Spec k[x1/0] where x1/0 = x1/x0. The second patch corresponds to x1 6= 0, and is
of the form Spec k[x0/1] where x0/1 = x0/x1.
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Both patches are isomorphic to A
1
k, and ΩA1

k
= OA1

k
. (More precisely, Ωk[x]/k = k[x] dx.)

Thus ΩP1
k

is an invertible sheaf (a line bundle). Now we have classified the invertible
sheaves on P

1
k — they are each of the form O(m). So which invertible sheaf is ΩP1/k?

Let’s take a section, dx1/0 on the first patch. It has no zeros or poles there, so let’s check
what happens on the other patch. As x1/0 = 1/x0/1, we have dx1/0 = −(1/x2

0/1) dx0/1.
Thus this section has a double pole where x0/1 = 0. Hence ΩP1

k
/k

∼= O(−2).

Note that the above argument did not depend on k being a field, and indeed we could
replace k with any ring A (or indeed with any base scheme).

2.2. A plane curve. Consider next the plane curve y2 = x3 − x in A
2
k, where the char-

acteristic of k is not 2. Then the differentials are generated by dx and dy, subject to the
constraint that

2y dy = (3x2 − 1) dx.

Thus in the locus where y 6= 0, dx is a generator (as dy can be expressed in terms of dx).
Similarly, in the locus where 3x2 − 1 6= 0, dy is a generator. These two loci cover the entire
curve, as solving y = 0 gives x3 − x = 0, i.e. x = 0 or ±1, and in each of these cases
3x2 − 1 6= 0.

Now consider the differential dx. Where does it vanish? Answer: precisely where
y = 0. You should find this believable from the picture (which I gave in class).

2.3. Exercise: differentials on hyperelliptic curves. Consider the double cover f : C →
P

1
k branched over 2g+2 distinct points. (We saw earlier that this curve has genus g.) Then

ΩC/k is again an invertible sheaf. What is its degree? (Hint: let x be a coordinate on one
of the coordinate patches of P

1
k. Consider f∗dx on C, and count poles and zeros.) In class

I gave a sketch showing that you should expect the answer to be 2g − 2.

2.4. Exercise: differentials on nonsingular plane curves. Suppose C is a nonsingular
plane curve of degree d in P

2
k, where k is algebraically closed. By considering coordinate

patches, find the degree of ΩC/k. Make any reasonable simplifying assumption (so that
you believe that your result still holds for “most” curves).

Because Ω behaves well under pullback, note that the assumption that k is algebraically
closed may be quickly excised:

2.5. Exercise. Suppose that C is a nonsingular projective curve over k such that ΩC/k is an
invertible sheaf. (We’ll see that for nonsingular curves, the sheaf of differentials is always
locally free. But we don’t yet know that.) Let Ck = C ×Spec k Spec k. Show that ΩC

k
/k is

locally free, and that

deg ΩCk/k = deg ΩC/k.
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2.6. Projective space. We next examine the differentials of projective space P
n
k . As

projective space is covered by affine open sets of the form A
n, on which the differential

form a rank n locally free sheaf, ΩPn
k

/k is also a rank n locally free sheaf.

2.7. Theorem (the Euler exact sequence). — The sheaf of differentials ΩPn
k /k satisfies the following

exact sequence
0 → ΩPn

A
→ OPn

A
(−1)⊕(n+1) → OPn

A
→ 0.

This is handy, because you can get a hold of Ω in a concrete way. Next day I will give
an explicit example, to give you some practice.

I discussed some philosophy behind this theorem. Next day, I’ll give a proof, and repeat
the philosophy.

E-mail address: vakil@math.stanford.edu
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These are notes from both class 39 and class 40.

Today: the Euler exact sequence. Discussion of nonsingular varieties over alge-
braically closed fields: Bertini’s theorem, the Riemann-Hurwitz formula, and the (co)normal
exact sequence for nonsingular subvarieties of nonsingular varieties.

We have now established the general theory of differentials, and we are now going to
apply it.

1. PROJECTIVE SPACE AND THE EULER EXACT SEQUENCE

We next examine the differentials of projective space P
n
k , or more generally P

n
A where

A is an arbitrary ring. As projective space is covered by affine open sets, on which the
differentials form a rank n locally free sheaf, ΩPn

A
/A is also a rank n locally free sheaf.

1.1. Important Theorem (the Euler exact sequence). — The sheaf of differentials ΩPn
A

/A satisfies
the following exact sequence

0 → ΩPn
A

→ O(−1)⊕(n+1) → OPn
A

→ 0.

This is handy, because you can get a hold of Ω in a concrete way. Here is an explicit
example, to give you practice.

1.2. Exercise. Show that H1(Pn
A, Tn

Pn
A
) = 0. (This later turns out to be an important cal-

culation for the following reason. If X is a nonsingular variety, H1(X, TX) parametrizes
deformations of the variety. Thus projective space can’t deform, and is “rigid”.)

Date: Tuesday, April 11 and Thursday, April 13, 2006. Last minor update June 25, 2007. c© 2005, 2006,
2007 by Ravi Vakil.
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Let’s prove the Euler exact sequence. I find this an amazing fact, and while I can prove
it, I don’t understand in my bones why this is true. Maybe someone can give me some
enlightenment.

Proof. (What’s really going on in this proof is that we consider those differentials on
A

n+1
A \ {0} that are pullbacks of differentials on P

n
A.)

I’ll describe a map O(−1)⊕(n+1) → O, and later identify the kernel with ΩX/Y . The map
is given by

(s0, s1, . . . , sn) 7→ x0s0 + x1s1 + · · ·+ xnsn.

Note that this is a degree 1 map.

Now I have to identify the kernel of this map with differentials, and I can do this on
each open set (so long as I do it in a way that works simultaneously for each open set).
So let’s consider the open set U0, where x0 6= 0, and we have coordinates xj/0 = xj/x0

(1 ≤ j ≤ n). Given a differential
f1(x1/0, . . . , xn/0) dx1/0 + · · ·+ fn(x1/0, . . . , xn/0) dxn/0

we must produce n+1 sections of O(−1). As motivation, let me just look at the first term,
and pretend that the projective coordinates are actual coordinates.

f1 dx1/0 = f1 d(x1/x0)

= f1

x0 dx1 − x1 dx0

x2
0

= −
x1

x2
0

f1 dx0 +
f1

x0

dx1

Note that x0 times the “coefficient of dx0” plus x1 times the “coefficient of dx1” is 0, and
also both coefficients are of homogeneous degree −1. Motivated by this, we take:

(1) f1 dx1/0 + · · · + fn dxn/0 7→

(

−
x1

x2
0

f1 − · · · −
xn

x2
0

fn,
f1

x0

,
f2

x0

, · · · ,
fn

x0

)

Note that over U0, this indeed gives an injection of ΩPn
A

to O(−1)⊕(n+1) that surjects onto
the kernel of O(−1)⊕(n+1) → OX (if (g0, . . . , gn) is in the kernel, take fi = x0gi for i > 0).

Let’s make sure this construction, applied to two different coordinate patches (say U0

and U1) gives the same answer. (This verification is best ignored on a first reading.) Note
that

f1 dx1/0 + f2 dx2/0 + · · · = f1 d
1

x0/1

+ f2 d
x2/1

x0/1

+ · · ·

= −
f1

x2
0/1

dx0/1 +
f2

x0/1

dx2/1 −
f2x2/1

x2
0/1

dx0/1 + · · ·

= −
f1 + f2x2/1 + · · ·

x2
0/1

dx0/1 +
f2x1

x0

dx2/1 + · · · .

Under this map, the dx2/1 term goes to the second factor (where the factors are indexed 0

through n) in O(−1)⊕(n+1), and yields f2/x0 as desired (and similarly for dxj/1 for j > 2).
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Also, the dx0/1 term goes to the “zero” factor, and yields

(

n∑

j=1

fi(xi/x1)/(x0/x1)
2)/x1 = fixi/x2

0

as desired. Finally, the “first” factor must be correct because the sum over i of xi times the
ith factor is 0. �

Generalizations of the Euler exact sequence are quite useful. We won’t use them later
this year, so I’ll state them without proof. Note that the argument applies without change
if Spec A is replaced by an arbitrary base scheme. The Euler exact sequence further gen-
eralizes in a number of ways. As a first step, suppose V is a rank n + 1 locally free sheaf
(or vector bundle) on a scheme X. Then ΩPV/X sits in an Euler exact sequence:

0 → ΩPV/X → O(−1) ⊗ V∨ → OX → 0

If π : PV → X, the map O(−1)⊗V∨ → OX is induced by V∨ ⊗π∗O(1) ∼= (V∨ ⊗V)⊗OX →
OX, where V∨ ⊗ V → A is the trace map.

For another generalization, fix a base field, and let G(m, n + 1) be the space of vector
spaces of dimension m in an (n + 1)-dimensional vector space V . (This is called the
Grassmannian. We have not shown that this is actually a variety in any natural way, but it
is. The case m = 1 is P

n.) Then over G(m, n+ 1) we have a short exact sequence of locally
free sheaves

0 → S → V ⊗OG(m,n+1) → Q → 0

where V⊗OG(m,n+1) is a trivial bundle, and S is the “universal subbundle” (such that over
a point [V ′ ⊂ V] of the Grassmannian G(m, n + 1), S|[V ′⊂V ] is V if you can see what that
means). Then
(2) ΩG(m,n+1)/k

∼= Hom(Q, S).

1.3. Exercise. In the case of projective space, m = 1, S = O(−1). Verify (2) in this case.

This Grassmannian fact generalizes further to Grassmannian bundles.

2. VARIETIES OVER ALGEBRAICALLY CLOSED FIELDS

We’ll now discuss differentials in the case of interest to most people: varieties over
algebraically closed fields. I’d like to begin with a couple of remarks.

2.1. Remark: nonsingularity may be checked at closed points. Recall from the first quarter
a deep fact about regular local rings that we haven’t proved: Any localization of a reg-
ular local ring at a prime is again regular local ring. (For a reference, see Matsumura’s
Commutative Algebra, p. 139.) I’m going to continue to use this without proof. It is pos-
sible I’ll write up a proof later. But in any case, if this bothers you, you could re-define
nonsingularity of locally finite type schemes over fields to be what other people call “non-
singularity at closed points”, and the results of this section will hold.
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2.2. Remark for non-algebraically closed people. Even if you are interested in non-algebraically
closed fields, this section should still be of interest to you. In particular, if X is a variety
over a field k, and Xk = X×Spec kSpec k, then Xk nonsingular implies that X is nonsingular.
(You may wish to prove this yourself. By Remark 2.1, it suffices to check at closed points.)
Possible exercise. In fact if k is separably closed, then Xk is nonsingular if and only if X is
nonsingular, but this is a little bit harder.

Suppose for the rest of this section that X is a pure n-dimensional locally finite type
scheme over an algebraically closed field k (e.g. a k-variety).

2.3. Proposition. — ΩX/k is locally free of rank n if and only if X is nonsingular.

Proof. By Remark 2.1, it suffices to prove that ΩX/k is locally free of rank n if and only
if the closed points of X is nonsingular. Now ΩX/k is locally free of rank n if and only
if its fibers at all the closed points are rank n (recall that fibers jump in closed subsets).
As the fiber of the cotangent sheaf is canonically isomorphic to the Zariski tangent space
at closed points (done earlier), the Zariski tangent space at every closed point must have
dimension n, i.e. the closed points are all nonsingular. �

Using this Proposition, we can get a new result using a neat trick.

2.4. Theorem. — If X is integral, there is an dense open subset U of X which is nonsingular.

Proof. The n = 0 case is immediate, so we assume n > 0.

We will show that the rank at the generic point is n. Then by uppersemicontinuity of
the rank of a coherent sheaf (done earlier), it must be n in an open neighborhood of the
generic point, and we are done by Proposition 2.3.

We thus have to check that if K is the fraction field of a dimension n integral finite-
type k-scheme, i.e. if K is a transcendence degree n extension of k, then ΩK/k is an n-
dimensional vector space. But any transcendence degree n > 1 extension is separably
generated: we can find n algebraically independent elements of K over k, say x1, . . . , xn,
such that K/k(x1, . . . , xn) is separable. (This is a fact about transcendence theory.) Then
ΩK/k is generated by dx1, . . . , dxn (as dx1, . . . , dxn generate Ωk(x1,...,xn)/k, and any element
of K is separable over k(x1, . . . , xn) — this is summarized most compactly using the affine
form of the relative cotangent sequence). �

2.5. Bertini’s Theorem. — Suppose X is a nonsingular closed subvariety of P
n
k (where the standing

hypothesis for this section, that k is algebraically closed, holds). Then there is an open subset of
hyperplanes H of P

n
k such that H doesn’t contain any component of X, and the scheme H ∩ X is

a nonsingular variety. More precisely, this is an open subset of the dual projective space P
n
k

∨. In
particular, there exists a hyperplane H in P

n
k not containing any component of X such that the

scheme H ∩ X is also a nonsingular variety.
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(We’ve already shown in our section on cohomology that if X is connected, then H ∩ X

is connected.)

We may have used this before to show the existence of nonsingular curves of any genus,
for example, although I don’t think we did. (We discussed Bertini in class 35, p. 4.)

Note that this implies that a general degree d > 0 hypersurface in P
n
k also intersects X

in a nonsingular subvariety of codimension 1 in X: replace X ↪→ P
n with the composition

X ↪→ P
n

↪→ P
N where the latter morphism is the dth Veronese map.

Proof. In order to keep the language of the proof as clean as possible, I’ll assume X is
irreducible, but essentially the same proof applies in general.

The central idea of the proof is quite naive and straightforward. We’ll describe the
hyperplanes that are “bad”, and show that they form a closed subset of dimension at
most n−1 of P

n
k

∨, and hence that the complement is a dense open subset. More precisely,
we will define a projective variety Y ⊂ X × P

n
k

∨ that will be:
Y = {(p ∈ X, H ⊂ P

n
k) : p ∈ H, p is a singular point of H ∩ X, or X ⊂ H}

We will see that dim Y ≤ n − 1. Thus the image of Y in P
n
k

∨ will be a closed subset (the
image of a closed subset by a projective hence closed morphism!), of dimension of n − 1,
and its complement is open.

We’ll show that Y has dimension n − 1 as follows. Consider the map Y → X, send-
ing (p, H) to p. Then a little thought will convince you that there is a (n − dim X − 1)-
dimensional family of hyperplanes through p ∈ X such that X∩H is singular at p, or such
that X is contained in H. (Those two conditions can be summarized quickly as: H contains
the “first-order formal neighborhood of p in X”, SpecOX,p/m2 where m is the maximal
ideal of OX,p.) Hence we expect Y to be a projective bundle, whose fibers are dimension
n − dim X − 1, and hence that Y has dimension at most dim X + (n − dim X − 1) = n − 1.
In fact this is the case, but we’ll show a little less (e.g. we won’t show that Y → X is a pro-
jective bundle) because we don’t need to prove this full statement to complete our proof
of Bertini’s theorem.

Let’s put this strategy into action. We first define Y more precisely, in terms of equations
on P

n × P
n∨, where the coordinates on P

n are x0, . . . xn, and the dual coordinates on P
n∨

are a0, . . . , an. Suppose X is cut out by f1, . . . , fr. (We will soon verify that this definition
of Y is independent of these equations.) Then we take these equations as some of the
defining equations of Y. (So far we have defined the subscheme X × P

n∨.) We also add
the equation a0x0 + · · ·+ anxn = 0. (So far we have described the subscheme of P

n × P
n∨

corresponding to points (p, H) where p ∈ X and p ∈ H.) Note that the Jacobian matrix






∂f1

∂x1
(p) · · · ∂fr

∂x1
(p)

... . . . ...
∂f1

∂xn
(p) · · · ∂fr

∂xn
(p)







has corank equal to dim X at all closed points of X — this is precisely the Jacobian con-
dition for nonsingularity (class 12, p. 3, 1.6). (Although we won’t use this fact, in fact it
has that corank dim X everywhere on X. Reason: the locus where the corank jumps is a
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closed locus, as this is described by equations, namely determinants of minors. Thus as
the corank is constant at all closed points, it is constant everywhere.) We then require that
the Jacobian matrix with a new row (a0, · · · , an) has corank ≥ dim X (hence = dim X).
This is cut out by equations (determinants of minors). By the Jacobian description of the
Zariski tangent space, this condition encodes the requirement that the Zariski tangent
space of H ∩ X at p has dimension precisely dim X, which is dim H ∩ X + 1 (i.e. H ∩ X is
singular at p) if H does not contain X, or if H contains X. This is precisely the notion that
we hoped to capture.

Before getting on with our proof, let’s do an example to convince ourselves that this
algebra is describing the geometry we desire. Consider the plane conic x2

0 − x2
1 − x2

2 = 0

over a field of characteristic not 2, which I picture as the circle x2 + y2 = 1 from the
real picture in the chart U0. (At this point I drew a picture.) Consider the point (1, 1, 0),
corresponding to (1, 0) on the circle. We expect the tangent line in the affine plane to be
x = 1, which should correspond to x0 − x1 = 0. Let’s see what the algebra gives us.
The Jacobian matrix is

(

2x0 −2x1 −2x2

)

=
(

2 −2 0
)

, which indeed has rank 1 as

expected. Our recipe asks that the matrix
(

2 −2 0

a0 a1 a2

)

have rank 1, which means that
(a0, a1, a2) = (a0, −a0, 0), and also that a0x0 + a1x1 + a2x2 = 0, which is precisely what
we wanted!

Returning to our construction, we can see that the Y just described is independent of
the choice of f1, . . . , fr (although we won’t need this fact).

Here’s why. It suffices to show that if we add in a redundant equation (some homo-
geneous f0 that is a k[x0, . . . , xn]-linear combination of the fi), we get the same Y (as then
if we had a completely different set of f’s, we could add them in one at a time, and then
remove the old f’s one at a time). If we add in a redundant equation, then that row in the
Jacobian matrix will be a k[x0, . . . , xn]-linear combination of other rows, and thus the rank
remains unchanged. (There is a slight issue I am glossing over here — f0 may vanish on
Y despite not being a linear combination of f1, . . . , fn.)

We’ll next show that dim Y = n − 1. For each p ∈ X, let Zp be the locus of hyperplanes
containing p, such that H ∩ X is singular at p, or else contains all of X; what is the di-
mension of Zp? (For those who have heard of these words: what is the dimension of the
locus of hyperplanes containing a first-order formal neighborhood of p in X?) Suppose
dim X = d. Then this should impose d + 1 conditions on hyperplanes. This means that it
is a codimension d + 1, or dimension n − d − 1, projective space. Thus we should expect
Y → X to be a projective bundle of relative dimension n−d−1 over a variety of dimension
d, and hence that dim Y = n−1. For convenience, I’ll verify a little less: that dim Y ≤ n−1.

Suppose Y has dimension N. Let H1, . . . , Hd be general hyperplanes such that H1∩· · ·∩
Hd ∩ X is a finite set of points (this was an exercise from long ago, class 31, ex. 1.5, p. 4).
Then if π : Y → X is the projection to X, then (using Krull’s Principal Ideal Theorem)

n − d − 1 = dim Y ∩ π∗H1 ∩ · · · ∩ π∗Hd ≥ dim Y − d

from which dim Y ≤ n − 1. �
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2.6. Exercise-. Show that Bertini’s theorem still holds even if X is singular in dimension 0.
(This isn’t that important.)

2.7. Remark.. The image in P
n tends to be a divisor. This is classically called the dual

variety. The following exercise will give you some sense of it.

2.8. Exercise. Suppose C ⊂ P
2 is a nonsingular conic over a field of characteristic not

2. Show that the dual variety is also a conic. (More precisely, suppose C is cut out by
f(x0, x1, x2) = 0. Show that {(a0, a1, a2) : a0x0 + a1x1 + a2x2 = 0} is cut out by a quadratic
equation.) Thus for example, through a general point in the plane, there are two tangents
to C. (The points on a line in the dual plane corresponds to those lines through a point of
the original plane.)

We’ll soon find the degree of the dual to a degree d curve (after we discuss the Riemann-
Hurwitz formula), at least modulo some assumptions.

2.9. The Riemann-Hurwitz formula.

We’re now ready to discuss and prove the Riemann-Hurwitz formula. We continue to
work over an algebraically closed field k. Everything below can be mildly modified to
work for a perfect field, e.g. any field of characteristic 0, and I’ll describe this at the end of
the discussion (Remark 2.17).

Definition (separable morphisms). A finite morphism between integral schemes f : X → Y

is said to be separable if it is dominant, and the induced extension of function fields
FF(X)/FF(Y) is a separable extension. (Similarly, a generically finite morphism is gener-
ically separable if it is dominant, and the induced extension of function fields is a separable
extension. We may not use this notion.) Note that this comes for free in characteristic 0.

2.10. Proposition. — If f : X → Y is a finite separable morphism of nonsingular integral curves,
then we have an exact sequence

0 → f∗ΩY/k → ΩX/k → ΩX/Y → 0.

Proof. We have right-exactness by the relative cotangent sequence, so we need to check
only that φ : f∗ΩY/k → ΩX/k is injective. Now ΩY/k is an invertible sheaf on Y, so f∗ΩY/k

is an invertible sheaf on X. Thus it has no torsion subsheaf, so we need only check that
φ is an inclusion at the generic point. We thus tensor with Oη where η is the generic
point of X. This is an exact functor (it is localization), and Oη ⊗ ΩX/Y = 0 (as FF(X)/FF(Y)

is a separable by hypothesis, and Ω for separable field extensions is 0 by Ex. 2.10, class
37, which was also Ex. 4, problem set 17). Also, Oη ⊗ f∗ΩY/k and Oη ⊗ ΩX/k are both
one-dimensional Oη-vector spaces (they are the stalks of invertible sheaves at the generic
point). Thus by considering

Oη ⊗ f∗ΩY/k → Oη ⊗ ΩX/k → Oη ⊗ ΩX/Y → 0
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(which is
Oη → Oη → 0 → 0)

we see that Oη⊗f∗ΩY/k → Oη⊗ΩX/k is injective, and thus that f∗ΩY/k → ΩX/k is injective.
�

2.11. It is worth noting what goes wrong for non-separable morphisms. For example,
suppose k is a field of characteristic p, consider the map f : A

1
k = Spec k[t] → A

1
k =

Spec k[u] given by u = tp. Then ΩA1
k
/k is the trivial invertible sheaf generated by dt. As

another (similar but different) example, if K = k(x) and K ′ = K(xp), then the inclusion
K ′

↪→ K induces f : Spec K[t] → Spec K ′[t]. Once again, Ωf is an invertible sheaf, generated
by dx (which in this case is pulled back from ΩK/K ′ on Spec K). In both of these cases, we
have maps from one affine line to another, and there are vertical tangent vectors.

2.12. The sheaf ΩX/Y on the right side of Proposition 2.10 is a coherent sheaf not supported
at the generic point. Hence it is supported at a finite number of points. These are called
the ramification points (and the images downstairs are called the branch points). I drew a
picture here.

Let’s check out what happens at closed points. We have two discrete valuation rings,
say Spec A → Spec B. I’ve assumed that we are working over an algebraically closed field
k, so this morphism B → A induces an isomorphism of residue fields (with k). Suppose
their uniformizers are s and t respectively, with t 7→ usn where u is a unit of A. Then

dt = d(usn) = unsn−1 ds + sn du.

This vanishes to order at least n − 1, and precisely n − 1 if n doesn’t divide the character-
istic. The former case is called tame ramification, and the latter is called wild ramification.
We call this order the ramification order at this point of X.

Define the ramification divisor on X as the sum of all points with their corresponding
ramifications (only finitely many of which are non-zero). The image of this divisor on Y

is called the branch divisor.

2.13. Straightforward exercise: interpreting the ramification divisor in terms of number of preim-
ages. Suppose all the ramification above y ∈ Y is tame. Show that the degree of the
branch divisor at y is deg(f : X → Y) − #f−1(y). Thus the multiplicity of the branch
divisor counts the extent to which the number of preimages is less than the degree.

2.14. Proposition. — Suppose R is the ramification divisor of f : X → Y. Then ΩX(−R) ∼= f∗ΩY .

Note that we are making no assumption that X or Y is projective.

Proof. This says that we can interpret the invertible sheaf f∗ΩY over an open set of X as
those differentials on X vanishing along the ramification divisor. But that is the content of
Proposition 2.10. �
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Then the Riemann-Hurwitz formula follows!

2.15. Theorem (Riemann-Hurwitz). — Suppose f : X → Y is a finite separable morphism of
curves. Let n = deg f. Then 2g(X) − 2 = n(2g(Y) − 2) + deg R.

Note that we now need the projective hypotheses in order to take degrees of invertible
sheaves.

Proof. This follows by taking the degree of both sides of Proposition 2.14 (and using the
fact that the pullback of a degree d line bundle by a finite degree n morphism is dn, which
was an earlier exercise, Ex. 3.1, class 29, p. 3, or Ex. 2, problem set 13). �

2.16. Exercise: degree of dual curves. Describe the degree of the dual to a nonsingular
degree d plane curve C as follows. Pick a general point p ∈ P

2. Find the number of
tangents to C through p, by noting that projection from p gives a degree d map to P

1

(why?) by a curve of known genus (you’ve calculated this before), and that ramification
of this cover of P

1 corresponds to a tangents through p. (Feel free to make assumptions,
e.g. that for a general p this branched cover has the simplest possible branching — this
should be a back-of-an-envelope calculation.)

2.17. Remark: Riemann-Hurwitz over perfect fields. This discussion can be extended to work
when the base field is not algebraically closed; perfect will suffice. The place we assumed
that the base field was algebraically closed was after we reduced to understanding the
ramification of the morphism of the spectrum of one discrete valuation ring over our base
field k to the spectrum of another, and we assumed that this map induced an isomorphism
of residue fields. In general, it can be a finite extension. Let’s analyze this case explicitly.
Consider a map Spec A → Spec B of spectra of discrete valuation rings, corresponding to
a ring extension B → A. Let s be the uniformizer of A, and t the uniformizer of B. Let m

be the maximal ideal of A, and n the maximal ideal of A. Then as A/m is a finite extension
of B/n, it is generated over B/n by a single element (we’re invoking here the theorem of
the primitive element, and we use the “perfect” assumption here). Let s ′ be any lift of this
element of A/m to A. Then A is generated over B by s and s ′, so ΩA/B is generated by ds

and ds ′. The contribution of ds is as described above. You can show that ds ′ = 0. Thus
all calculations above carry without change, except for the following.

(i) We have to compute the degree of the ramification divisor appropriately: we need
to include as a factor the degree of the field extension of the residue field of the point on
the source (over k).

(ii) Exercise 2.13 doesn’t work, but can be patched by replacing #f−1(y) with the num-
ber of geometric preimages.

As an example of what happens differently in (ii), consider the degree 2 finite morphism
X = Spec Z[i] → Y = Spec Z. We can compute ΩZ[i]/Z directly, as Z[i] ∼= Z[x]/(x2 + 1):
ΩZ[i]/Z

∼= Z[i]dx/(2dx). In other words, it is supported at the prime (1 + i) (the unique
prime above [(2)] ∈ Spec Z). However, the number of preimages of points in Spec Z is not
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always 2 away from the point [(2)]; half the time (including, for example, over [(3)]) there
is one point, but the field extension is separable.

2.18. Exercise (aside): Artin-Schreier covers. In characteristic 0, the only connected un-
branched cover of A

1 is the isomorphism A
1

∼
//

A
1 ; that was an earlier example/exercise,

when we discussed Riemann-Hurwitz the first time. In positive characteristic, this needn’t
be true, because of wild ramification. Show that the morphism corresponding to k[x] →
k[x, y]/(yp − xp − y) is such a map. (Once the theory of the algebraic fundamental group
is developed, this translates to: “A

1 is not simply connected in characteristic p.”)

2.19. The conormal exact sequence for nonsingular varieties.

Recall the conormal exact sequence. Suppose f : X → Y morphism of schemes, Z ↪→ X

closed subscheme of X, with ideal sheaf I. Then there is an exact sequence of sheaves on
Z:

I/I2 δ
// ΩX/Y ⊗OZ

// ΩZ/Y
// 0.

I promised you that in good situations this is exact on the left as well, as our geometric
intuition predicts. Now let Z = Spec k (where k = k), and Y a nonsingular k-variety,
and X ⊂ Y an irreducible closed subscheme cut out by the quasicoherent sheaf of ideals
I ⊂ OY .

2.20. Theorem (conormal exact sequence for nonsingular varieties). — X is nonsingular if and
only if (i) ΩX/k is locally free, and (ii) the conormal exact sequence is exact on the left also:

0 // I/I2 δ
// ΩX/Y ⊗OZ

// ΩZ/Y
// 0.

Moreover, if Y is nonsingular, then I is locally generated by codim(X, Y) elements, and I/I2 is a
locally free of rank codim(X, Y).

This latter condition is the definition of something being a local complete intersection in a
nonsingular scheme.

You can read a proof of this in Hartshorne II.8.17. I’m not going to present it in class, as
we’ll never use it. The only case I’ve ever seen used is the implication that if X is nonsin-
gular, then (i) and (ii) hold; and we’ve already checked (i). This implication (that in the
case of a nonsingular subvariety of a nonsingular variety, the conormal and hence nor-
mal exact sequence is exact) is very useful for relating the differentials on a nonsingular
subvariety to the normal bundle.

The real content is that in the case of a nonsingular subvariety of a nonsingular variety,
the conormal exact sequence is exact on the left as well, and in this nice case we have a
short exact sequence of locally free sheaves (vector bundles). By dualizing, i.e. applying
Hom(·,OX), we obtain the normal exact sequence

0 → TX/k → TY/k → NX/Y → 0

10



which is very handy. Note that dualizing an exact sequence will give you a left-exact
sequence in general, but dualizing an exact sequence of locally free sheaves will always
be locally free. (In fact, all you need is that the third term is locally free. I could make this
an exercise; it may also follow if I define Ext soon after defining Tor, as an exercise.)

E-mail address: vakil@math.stanford.edu
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1. INTRODUCTION TO FLATNESS

We come next to the important concept of flatness. This topic is also not a hard topic,
and we could have dealt with it as soon as we had discussed quasicoherent sheaves and
morphisms. But it is an intuitively unexpected one, and the algebra and geometry are
not obviously connected, so we’ve left it for relatively late. It is answer to many of your
geometric prayers, but you just haven’t realized it yet.

The notion of flatness apparently was first defined in Serre’s landmark “GAGA” paper.

Here are some of the reasons it is a good concept. We would like to make sense of the
notion of “fibration” in the algebraic category (i.e. in algebraic geometry, as opposed to
differential geometry), and it turns out that flatness is essential to this definition. It turns
out that flat is the right algebraic version of a “nice” or “continuous” family, and this
notion is more general than you might think. For example, the double cover A

1 → A
1

over an algebraically closed field given by y 7→ x2 is a flat family, which we interpret as
two points coming together to a fat point. The fact that the degree of this map always is 2
is a symptom of how this family is well-behaved. Another key example is that of a family
of smooth curves degenerating to a nodal curve, that I sketched on the board in class.
One can prove things about smooth curves by first proving them about the nodal curve,
and then showing that the result behaves well in flat families. In general, we’ll see that
certain things behave well in nice families, such as cohomology groups (and even better
Euler characteristics) of fibers.

Date: Tuesday, April 18 and Thursday, April 20, 2006. Last small update June 25, 2007. c© 2005, 2006,
2007 by Ravi Vakil.
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There is a second flavor of prayer that is answered. It would be very nice if tensor
product (of quasicoherent sheaves, or of modules over a ring) were an exact functor, and
certain statements of results and proofs we have seen would be cleaner if this were true.
Those modules for which tensoring is always exact are flat (this will be the definition!),
and hence for flat modules (or quasicoherent sheaves, or soon, morphisms) we’ll be able
to get some very useful statements. A flip side of that is that exact sequences of flat mod-
ules remain exact when tensored with any other module.

In this section, we’ll discuss flat morphisms. When introducing a new notion, I prefer
to start with a number of geometric examples, and figure out the algebra on the fly. In
this case, because there is enough algebra, I’ll instead discuss the algebra at some length
and then later explain why you care geometrically. This will require more patience than
usual on your part.

2. ALGEBRAIC DEFINITION AND EASY FACTS

Many facts about flatness are easy or immediate, and a few are tricky. I’m going to try
to make clear which is which, to help you remember the easy facts and the idea of proof
for the harder facts.

The definition of a flat A-module is very simple. Recall that if
(1) 0→ N ′ → N→ N ′′ → 0

is a short exact sequence of A-modules, andM is another A-module, then
M⊗A N

′ →M⊗A N →M⊗A N
′′ → 0

is exact. In other words, M⊗A is a right-exact functor. We say that M is a flat A-module if
M⊗A is an exact functor, i.e. if for all exact sequences (1),

0→M⊗A N
′ →M⊗A N→M⊗A N

′′ → 0

is exact as well.

Exercise. If N ′ → N → N ′′ is exact and M is a flat A-module, show that M ⊗A N
′ →

M⊗AN→ M⊗AN
′′ is exact. Hence any exact sequence ofA-modules remains exact upon

tensoring with M. (We’ve seen things like this before, so this should be fairly straightfor-
ward.)

We say that a ring homomorphism B → A is flat if A is flat as a B-module. (We don’t care
about the algebra structure of A.)

Here are two key examples of flat ring homomorphisms:

(i) free modules A-modules are clearly flat.
(ii) Localizations are flat: Suppose S is a multiplicative subset of B. Then B → S−1B is

a flat ring morphism.

Exercise. Verify (ii). We have used this before: localization is an exact functor.
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Here is a useful way of recognizing when a module is not flat. Flat modules are torsion-
free. More precisely, if x is a non-zero-divisor of A, and M is a flat A-module, then
M

×x
// M is injective. Reason: apply the exact functor M⊗A to the exact sequence

0 // A
×x

// A .

We make some quick but important observations:

2.1. Proposition (flatness is a stalk/prime-local property). — An A-module M is flat if and only
ifMp is a flat Ap-module for all primes p.

Proof. Suppose first that M is flat. Given any exact sequence of Ap-modules (1),

0→M⊗A N
′ →M⊗A N→M⊗A N

′′ → 0

is exact too. But M⊗A N is canonically isomorphic to M⊗Ap Np (exercise: show this!), so
Mp is a flat Ap-module.

Suppose next that M is not flat. Then there is some short exact sequence (1) that upon
tensoring with M becomes

(2) 0→ K→M⊗A N
′ →M⊗A N→M⊗A N

′′ → 0

where K 6= 0 is the kernel of M ⊗A N
′ → M ⊗A N. Then as K 6= 0, K has non-empty

support, so there is some prime p such that Kp 6= 0. Then

(3) 0 → N ′

p → Np → N ′′

p → 0

is a short exact sequence of Ap-modules (recall that localization is exact — see (ii) before
the statement of the Proposition), but is no longer exact upon tensoring (over Ap) with
Mp (as

(4) 0→ Kp → Mp ⊗Ap N
′

p →Mp ⊗Ap Np →Mp ⊗Ap N
′′

p → 0

is exact). (Here we use that localization commutes with tensor product.) �

2.2. Proposition (flatness is preserved by change of base ring). — If M flat A-module, A → B is
a homomorphism, then M⊗A B is a flat B-module.

Proof. Exercise. �

2.3. Proposition (transitivity of flatness). — If B is a flat A-algebra, and M is B-flat, then it is
also A-flat.

Proof. Exercise. (Hint: consider the natural isomorphism (M ⊗A B) ⊗B · ∼= M ⊗B (B ⊗A

·).) �

The extension of this notion to schemes is straightforward.
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2.4. Definition: flat quasicoherent sheaf. We say that a quasicoherent sheaf F on a scheme X
is flat (over X) if for all x ∈ X, Fx is a flat OX,x-module. In light of Proposition 2.1, we can
check this notion on affine open cover of X.

2.5. Definition: flat morphism. Similarly, we say that a morphism of schemes π : X → Y is
flat if for all x ∈ X, OX,x is a flat OY,π(x)-module. Again, we can check locally, on maps of
affine schemes.

We can combine these two definitions into a single definition.

2.6. Definition: flat quasicoherent sheaf over some base. Suppose π : X → Y is a morphism of
schemes, and F is a quasicoherent sheaf on X. We say that F is flat over Y if for all x ∈ X,
Fx is a flat OY,π(x)-module.

Definitions 2.4 and 2.5 correspond to the cases X = Y and F = OX respectively.

This definition can be extended without change to the category of ringed spaces, but
we won’t need this.

All of the Propositions above carry over naturally. For example, flatness is preserved by
base change. (More explicitly: suppose π : X → Y is a morphism, and F is a quasicoherent
sheaf on X, flat over Y. If Y ′ → Y is any morphism, and p : X ×Y Y

′ → X is the projection,
then p∗F is flat over Y ′.) Also, flatness is transitive. (More explicitly: suppose π : X → Y

and F is a quasicoherent sheaf on X, flat over Y. Suppose also that ψ : Y → Z is a flat
morphism. Then F is flat over Z.)

We also have other statements easily. For example: open immersions are flat.

2.7. Exercise. If X is a scheme, and η is the generic point for an irreducible component,
show that the natural morphism SpecOX,η → X is flat. (Hint: localization is flat.)

We earlier proved the following important fact, although we did not have the language
of flatness at the time.

2.8. Theorem (cohomology commutes with flat base change). — Suppose

X ′
g ′

//

f ′

��

X

f

��

Y ′
g

// Y

is a fiber diagram, and f (and thus f ′) is quasicompact and separated (so higher pushforwards
exist). Suppose also that g is flat, and F is a quasicoherent sheaf on X. Then the natural morphisms
g∗Rif∗F → Rif ′∗(g

∗F) are isomorphisms.

A special case that is often useful is the case where Y ′ is the generic point of a compo-
nent of Y. In other words, in light of Exercise 2.7, the stalk of the higher pushforward of
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F at the generic point is the cohomology of F on the fiber over the generic point. This
is a first example of something important: understanding cohomology of (quasicoher-
ent sheaves on) fibers in terms of higher pushforwards. (We would certainly hope that
higher pushforwards would tell us something about higher cohomology of fibers, but this
is certainly not a priori clear!)

(I might dig up the lecture reference later, but I’ll tell you now where proved it: where
we described this natural morphism, I had a comment that if we had exactness of tensor
product, them morphisms would be an isomorphism.)

We will spend the rest of our discussion on flatness as follows. First, we will ask our-
selves: what are the flat modules over particularly nice rings? More generally, how can
you check for flatness? And how should you picture it geometrically? We will then prove
additional facts about flatness, and using flatness, answering the essential question: “why
do we care?”

2.9. Faithful flatness. The notion of faithful flatness is handy, although we probably won’t
use it. We say that an extension of rings B → A is faithfully flat if for every A-module M,
M is A-flat if and only if M ⊗A B is B-flat. We say that a morphism of schemes X → Y

is faithfully flat if it is flat and surjective. These notions are the “same”, as shown by the
following exercise.

Exercise. Show that B → A is faithfully flat if and only if SpecA → SpecB is faithfully
flat.

3. THE “TOR” FUNCTORS, AND A “COHOMOLOGICAL” CRITERION FOR FLATNESS

In order to prove more facts about flatness, it is handy to have the notion of Tor. (Tor

is short for “torsion”. The reason for this name is that the 0th and/or 1st Tor-group
measures common torsion in abelian groups (aka Z-modules).) If you have never seen
this notion before, you may want to just remember its properties, which are natural. But
I’d like to prove everything anyway — it is surprisingly easy.

The idea behind Tor is as follows. Whenever we see a right-exact functor, we always
hope that it is the end of a long-exact sequence. Informally, given a short exact sequence
(1), we are hoping to see a long exact sequence

(5) · · · // TorA
i (M,N ′) // TorA

i (M,N) // TorA
i (M,N ′′) // · · ·

// TorA
1 (M,N ′) // TorA

1 (M,N) // TorA
1 (M,N ′′)

// M⊗A N
′ // M⊗A N // M⊗A N

′′ // 0.

More precisely, we are hoping for covariant functors TorA
i (·, N) from A-modules to A-

modules (giving 2/3 of the morphisms in that long exact sequence), with TorA
0 (M,N) ≡
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M ⊗A N, and natural δ morphisms TorA
i+1(M,N

′′) → TorA
i (M,N ′) for every short exact

sequence (1) giving the long exact sequence. (In case you care, “natural” means: given a
morphism of short exact sequences, the natural square you would write down involving
the δ-morphism must commute. I’m not going to state this explicitly.)

It turns out to be not too hard to make this work, and this will later motivate derived
functors. I’ll now define TorA

i (M,N). Take any resolution R of N by free modules:
· · · // A⊕n2 // A⊕n1 // A⊕n0 // N→ 0.

More precisely, build this resolution from right to left. Start by choosing generators of N
as an A-module, giving us A⊕n0 → N → 0. Then choose generators of the kernel, and so
on. Note that we are not requiring the ni to be finite, although if N is a finitely-generated
module and A is Noetherian (or more generally if N is coherent and A is coherent over
itself), we can choose the ni to be finite. Truncate the resolution, by stripping off the
last term. Then tensor with M (which may lose exactness!). Let Tori

A(M,N)R be the
homology of this complex at the ith stage (i ≥ 0). The subscript R reminds us that our
construction depends on the resolution, although we will soon see that it is independent
of the resolution.

We make some quick observations.
• TorA

0 (M,N)R ∼= M ⊗A N (and this isomorphism is canonical). Reason: as tensoring
is right exact, and A⊕n1 → A⊕n0 → N → 0 is exact, we have that M⊕n1 → M⊕n0 →
M ⊗A N → 0 is exact, and hence that the homology of the truncated complex M⊕n1 →
M⊕n0 → 0 is M⊗A N.
• IfM is flat, then TorA

i (M,N)R = 0 for all i.

Now given two modulesN andN ′ and resolutions R and R ′ ofN andN ′, we can “lift”
any morphism N→ N ′ to a morphism of the two resolutions:

· · · //

��

A⊕ni //

��

· · · //

��

A⊕n1 //

��

A⊕n0 //

��

N

��

// 0

· · · // A⊕n ′

i
// · · · // A⊕n ′

1
// A⊕n ′

0
// N ′ // 0

Denote the choice of lifts by R → R ′. Now truncate both complexes and tensor with
M. Maps of complexes induce maps of homology, so we have described maps (a priori
depending on R → R ′)

TorA
i (M,N)R → TorA

i (M,N ′)R ′.

We say two maps of complexes f, g : C∗ → C ′
∗ are homotopic if there is a sequence of

mapsw : Ci → C ′
i+1 such that f− g = dw+wd. Two homotopic maps give the same map

on homology. (Exercise: verify this if you haven’t seen this before.)

Crucial Exercise: Show that any two lifts R → R ′ are homotopic.

We now pull these observations together.

(1) We get a covariant functor from TorA
i (M,N)R → TorA

i (M,N ′)R ′ (independent of
the lift R → R ′).
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(2) Hence for any two resolutions R andR ′ we get a canonical isomorphism TorA
i (M,N)R ∼=

Tor1
i (M,N)R ′. Here’s why. Choose lifts R → R ′ and R ′ → R. The composition

R → R ′ → R is homotopic to the identity (as it is a lift of the identity mapN→ N).
Thus if fR→R ′ : TorA

i (M,N)R → Tor1
i (M,N)R ′ is the map induced by R → R ′, and

similarly fR ′→R is the map induced by R → R ′, then fR ′→R ◦ fR→R ′ is the identity,
and similarly fR→R ′ ◦ fR ′→R is the identity.

(3) Hence the covariant functor doesn’t depend on the resolutions!

Finally:
(4) For any short exact sequence (1) we get a long exact sequence of Tor’s (5). Here’s
why: given a short exact sequence (1), choose resolutions of N ′ and N ′′. Then use these
to get a resolution for N in the obvious way (see below; the map A⊕(n ′

0
→n ′′

0
) → N is the

composition A⊕n ′

0 → N ′ → N along with any lift of An ′′

0 → N ′′ to N) so that we have a
short exact sequence of resolutions

0

��

0

��

0

��

· · · // A⊕n ′

1

��

// A⊕n ′

0

��

// N ′

��

// 0

· · · // A⊕(n ′

1
+n ′′

1
)

��

// A⊕(n ′

0
+n ′′

0
)

��

// N

��

// 0

· · · // A⊕n ′′

1

��

// A⊕n ′′

0

��

// N ′′

��

// 0

0 0 0

Then truncate (removing the column (1)), tensor withM (obtaining a short exact sequence
of complexes) and take cohomology, yielding a long exact sequence.

We have thus established the foundations of Tor!

Note that if N is a free module, then TorA
i (M,N) = 0 for all M and all i > 0, as N has

itself as a resolution.

3.1. Remark: Projective resolutions. We used very little about free modules in the above
construction; in fact we used only that free modules are projective, i.e. those modules M
such that for any surjection M ′ → M ′′, it is possible to lift any morphism M → M ′′ to
M →M ′. This is summarized in the following diagram.

M

��

exists

||

M ′ // // M ′′

Equivalently, Hom(M, ·) is an exact functor (Hom(N, ·) is always left-exact for any N).
(More generally, we can define the notion of a projective object in any abelian category.)
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Hence (i) we can computeTorA
i (M,N) by taking any projective resolution of N, and (ii)

TorA
i (M,N) = 0 for any projective A-module N.

3.2. Remark: Generalizing this construction. The above description was low-tech, but
immediately generalizes drastically. All we are using is thatM⊗A is a right-exact functor.
In general, if F is any right-exact covariant functor from the category of A-modules to
any abelian category, this construction will define a sequence of functors LiF (called left-
derived functors of F) such that L0F = F and the Li’s give a long-exact sequence. We can
make this more general still. We say that an abelian category has enough projectives if for
any object N there is a surjection onto it from a projective object. Then if F is any right-
exact functor from an abelian category with enough projectives to any abelian category,
then F has left-derived functors.

3.3. Exercise. The notion of an injective object in an abelian category is dual to the notion
of a projective object. Define derived functors for (i) covariant left-exact functors (these
are called right-derived functors), (ii) contravariant left-exact functors (also right-derived
functors), and (iii) contravariant right-exact functors (these are called left-derived func-
tors), making explicit the necessary assumptions of the category having enough injectives
or projectives.

Here are two quick practice exercises, giving useful properties of Tor.

Important exercise. If B is A-flat, then we get isomorphism B ⊗ TorA
i (M,N) ∼= TorB

i (B ⊗
M,B ⊗ N). (This is tricky rather than hard; it has a clever one-line answer. Here is a
fancier fact that experts may want to try: if B is not A-flat, we don’t get an isomorphism;
instead we get a spectral sequence.)

Exercise- (not too important, but good practice if you haven’t played with Tor before). If x is
not a 0-divisor, show that TorA

i (A/x,M) is 0 for i > 1, and for i = 0, get M/xM, and for
i = 1, get (M : x) (those things sent to 0 upon multiplication by x).

3.4. “Symmetry” of Tor. The natural isomorphism M ⊗ N → N ⊗M extends to the
following.

3.5. Theorem. — There is a natural isomorphism Tori(M,N) ∼= Tor(N,M).

Proof. Take two resolutions of M andN:

· · · → A⊕m1 → A⊕m0 →M → 0

and

· · · → A⊕n1 → A⊕n0 → N → 0.
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Consider the double complex obtained by tensoring their truncations.

...

��

...

��

...

��

· · · // A⊕(m2+n2) //

��

A⊕(m1+n2) //

��

A⊕(m0+n2) //

��

0

· · · // A⊕(m2+n1) //

��

A⊕(m1+n1) //

��

A⊕(m0+n1) //

��

0

· · · // A⊕(m2+n0) //

��

A⊕(m1+n0) //

��

A⊕(m0+n0) //

��

0

0 0 0.

Apply our spectral sequence machinery. We compute the homology of this complex in
two ways.

We start by using the vertical arrows. Notice that the ith column is precisely the trun-
cated resolution of N, tensored with A⊕mi . Thus the homology in the vertical direction in
the ith column is 0 except in the bottom element of the column, where it isN⊕mi . We next
take homology in the horizontal direction. In the only non-zero row (the bottom row),
we see precisely the complex computing Tori(N,M). After using these second arrows,
the spectral sequence has converged. Thus the ith homology of the double complex is
(naturally isomorphic to) Tori(N,M).

Similarly, if we began with the arrows in the horizontal direction, we would conclude
that the ith homology of the double complex is Tori(M,N). �

This gives us a quick but very useful result. Recall that if 0 → N ′ → N → N ′′ → 0 is
exact, then so is the complex obtained by tensoring with M ifM is flat. (Indeed that is the
definition of flatness!) But in general we have an exact sequence

TorA
1 (M,N ′′) →M⊗A N

′ →M⊗A N →M⊗A N
′′ → 0

Hence we conclude:

3.6. Proposition. — If 0→ N ′ → N → N ′′ → 0 is exact, and N ′′ is flat, then 0 →M⊗A N
′ →

M⊗A N →M⊗A N
′′ → 0 is exact.

Note that we would have cared about this result long before learning about Tor. This
gives some motivation for learning about Tor. Presumably one can also show this directly
by some sort of diagram chase. (Is there an easy proof?)

One important consequence is the following. Suppose we have a short exact sequence
of sheaves on Y, and the rightmost element is flat (e.g. locally free). Then if we pull this
exact sequence back to X, it remains exact. (I think we may have used this.)
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3.7. An ideal-theoretic criterion for flatness. We come now to a useful fact. Observe that
Tor1(M,N) = 0 for all N implies that M is flat; this in turn implies that Tori(M,N) = 0

for all i > 0.

The following is a very useful variant on this.

3.8. Key theorem. — M is flat if and only if TorA
1 (M,A/I) = 0 for all ideals I.

(The interested reader can tweak the proof below a little to show that it suffices to
consider finitely generated ideals I, but we won’t use this fact.)

Proof. [The M’s and N’s are messed up in this proof.] We have already observed that if N
is flat, then TorA

1 (M,R/I) = 0 for all I. So we assume that TorA
1 (M,A/I) = 0, and hope to

prove that TorA
1 (M,N) = 0 for all A-modules N, and hence that M is flat.

By induction on the number of generators of N, we can prove that TorA
1 (M,N) = 0 for

all finitely generated modules N. (The base case is our assumption, and the inductive step
is as follows: if N is generated by a1, . . . , an, then let N ′ be the submodule generated by
a1, . . . , an−1, so 0 → N ′ → N → A/I → 0 is exact, where I is some ideal. Then the long
exact sequence for Tor gives us 0 = TorA

1 (M,N ′) → TorA
1 (M,N) → TorA

1 (M,A/I) = 0.)

We conclude by noting that N is the union (i.e. direct limit) of its finitely generated
submodules. As ⊗ commutes with direct limits, Tor1 commutes with direct limits as well.
(This requires some argument!)

Here is a sketch of an alternate conclusion. We wish to show that for any exact 0 →
N ′ → N, 0 → M ⊗ N ′ → M ⊗ N is also exact. Suppose

∑
mi ⊗ n

′
i 7→ 0 in M ⊗N. Then

that equality involves only finitely many elements of N. Work instead in the submodule
generated by these elements of N. Within these submodules, we see that

∑
mi ⊗ n

′
i = 0.

Thus this equality holds inside M⊗N ′ as well.

(I may try to write up a cleaner argument. Joe pointed out that the cleanest thing to do
is to show that injectivity commutes with direct limits.) �

This has some cheap but important consequences.

Recall (or reprove) that flatness over a domain implies torsion-free.

3.9. Corollary to Theorem 3.8. — Flatness over principal ideal domain is the same as torsion-free.

This follows directly from the proposition.

3.10. Important Exercise (flatness over the dual numbers). This fact is important in deforma-
tion theory and elsewhere. Show that M is flat over k[t]/t2 if and only if the natural map
M/tM→ tM is an isomorphism.
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3.11. Flatness in exact sequences.

Suppose 0→ M ′ →M →M ′′ → 0 is an exact sequence of A-modules.

3.12. Proposition. — If M and M ′′ are both flat, then so isM ′. If M ′ and M ′′ are both flat, then
so isM.

Proof. We use the characterization of flatness that N is flat if and only if Tori(N,N
′) = 0

for all i > 0,N ′. The result follows immediately from the long exact sequence for Tor. �

3.13. Unimportant remark. This begs the question: if M ′ and M are both flat, is M ′′ flat?
(The argument above breaks down.) The answer is no: over k[t], consider 0 → tk[t] →
k[t] → k[t]/t→ 0 (geometrically: the closed subscheme exact sequence for a point on A

1).
The module on the right has torsion, and hence is not flat. The other two modules are
free, hence flat.

3.14. Easy exercise. (We will use this shortly.) If 0 → M0 → M1 → · · · → Mn → 0 is an
exact sequence, and Mi is flat for i > 0, show that M0 is flat too. (Hint: break the exact
sequence into short exact sequences.)

We now come to the next result about flatness that will cause us to think hard.

3.15. Important Theorem (for coherent modules over Noetherian local rings, flat equals free). —
Suppose (A,m) is a local ring, and M is a coherent A-module (e.g. if A is Noetherian, then M is
finitely generated). Then M is flat if and only if it is free.

(It is true more generally, although we won’t use those facts: apparently we can replace
coherent with finitely presented, which only non-Noetherian people care about; or we
can give up coherent completely if A is Artinian, although I haven’t defined this notion.
Reference: Mumford p. 296. I may try to clean the proof up to work in these cases.)

Proof. Clearly we are going to be using Nakayama’s lemma. Now M/mM is a finite-
dimensional vector space over the fieldA/m. Choose a basis, and lift it to elementsm1, . . . ,
mn ∈ M. Then consider An → M given by ei 7→ mi. We’ll show this is an isomorphism.
This is surjective by Nakayama’s lemma: the image is all ofMmodulo the maximal ideal,
hence is everything. Let K be the kernel, which is finitely generated by coherence:

0→ K→ An → M→ 0.

Tensor this with A/m. As M is flat, the result is still exact (Proposition 3.6):

0 → K/mK→ (A/m)n →M/mM → 0.

But (A/m)n → M/mM is an isomorphism, so K/mK = 0. As K is finitely generated,
K = 0. �

Here is an immediate corollary (or really just a geometric interpretation).
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3.16. Corollary. — Suppose F is coherent over a locally Noetherian scheme X. Then F is flat over
X if and only if it is locally free.

(Reason: we have shown that local-freeness can be checked at the stalks.)

This is a useful fact. Here’s a consequence that we prove earlier by other means: if
C → C ′ is a surjective map of nonsingular irreducible projective curves, then π∗OC is
locally free.

In general, this gives us a useful criterion for flatness: Suppose X → Y finite, and Y inte-
gral. Then f is flat if and only if dimFF(Y) f∗(OX)y ⊗FF(Y) is constant. So the normalization
of a node is not flat (I drew a picture here).

3.17. A useful special case: flatness over nonsingular curves. When are morphisms to
nonsingular curves flat? Local rings of nonsingular curves are discrete valuation rings,
which are principal ideal domains, so for them flat = torsion-free (Prop. 3.9). Thus, any
map from a scheme to a nonsingular curve where all associated points go to a generic
point is flat. (I drew several pictures of this.)

Here’s a version we’ve seen before: a map from an irreducible curve to a nonsingular
curve.

Here is another important consequence, which we can informally state as: we can take
flat limits over one-parameter families. More precisely: suppose A is a discrete valuation
ring, and let 0 be the closed point of SpecA and η the generic point. Suppose X is a scheme
over A, and Y is a scheme over X|η. Let Y ′ be the scheme-theoretic closure of Y in X. Then
Y ′ is flat over A. Then Y ′|0 is often called the flat limit of Y.

(SupposeA is a discrete valuation ring, and let η be the generic point of SpecA. Suppose
X is proper overA, and Y is a closed subscheme of Xη. Exercise: Show that there is only one
closed subscheme Y ′ of X, proper over A, such that Y ′|η = Y, and Y ′ is flat over A. Aside
for experts: For those of you who know what the Hilbert scheme is, by taking the case
of X as projective space, this shows that the Hilbert scheme is proper, using the valuative
criterion for properness.)

3.18. Exercise (an interesting explicit example of a flat limit). (Here the base is A
1, not a

discrete valuation ring. You can either restrict to the discrete valuation ring that is the
stalk near 0, or generalize the above discussion appropriately.) Let X = A

3×A
1 → Y = A

1

over a field k, where the coordinates on A
3 are x, y, and z, and the coordinates on A

1 are
t. Define X away from t = 0 as the union of the two lines y = z = 0 (the x-axis) and
x = z − t = 0 (the y-axis translated by t). Find the flat limit at t = 0. (Hint: it is not the
union of the two axes, although it includes it. The flat limit is non-reduced.)

3.19. Stray but important remark: flat morphisms are (usually) open. I’m discussing
this here because I have no idea otherwise where to put it.
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3.20. Exercise. Prove that flat and locally finite type morphisms of locally Noetherian
schemes are open. (Hint: reduce to the affine case. Use Chevalley’s theorem to show that
the image is constructible. Reduce to a target that is the spectrum of a local ring. Show
that the generic point is hit.)

3.21. I ended by stating an important consequence of flatness: flat plus projective implies
constant Euler characteristic. I’ll state this properly in next Tuesday’s notes, where I will
also give consequences and a proof.

E-mail address: vakil@math.stanford.edu
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This week: constancy of Euler characteristic in flat families. The semicontinuity
theorem and consequences. Glimpses of the relative Picard scheme.

1. FLAT IMPLIES CONSTANT EULER CHARACTERISTIC

We come to an important consequence of flatness. We’ll see that this result implies
many answers and examples to questions that we would have asked before we even knew
about flatness.

1.1. Important Theorem. — Suppose f : X → Y is a projective morphism, and F is a coherent
sheaf on X, flat over Y. Suppose Y is locally Noetherian. Then

∑
(−1)ihi(XyF |y) is a locally

constant function of y ∈ Y. In other words, the Euler characteristic of F is constant in the fibers.

This is first sign that cohomology behaves well in families. (We’ll soon see a second:
the Semicontinuity Theorem 4.4.) Before getting to the proof, I’ll show you some of its
many consequences. (A second proof will be given after the semicontinuity discussion.)

The theorem also gives a necessary condition for flatness. It also sufficient if target is
integral and locally Noetherian, although we won’t use this. (Reference: You can trans-
late Hartshorne Theorem III.9.9 into this.) I seem to recall that both the necessary and
sufficient conditions are due to Serre, but I’m not sure of a reference. It is possible that
integrality is not necessary, and that reducedness suffices, but I haven’t checked.

Date: Tuesday, April 25 and Thursday, April 27, 2006. Last mior update: June 28, 2007. c© 2005, 2006,
2007 by Ravi Vakil.
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1.2. Corollary. — Assume the same hypotheses and notation as in Theorem 1.1. Then the Hilbert
polynomial of F is locally constant as a function of y ∈ Y.

Thus for example a flat family of varieties in projective space will all have the same
degree and genus (and the same dimension!). Another consequence of the corollary is
something remarkably useful.

1.3. Corollary. — An invertible sheaf on a flat projective family of connected nonsingular curves
has locally constant degree on the fibers.

Proof. An invertible sheaf L on a flat family of curves is always flat (as locally it is isomor-
phic to the structure sheaf). Hence χ(Ly) is constant. From the Riemann-Roch formula
χ(Ly) = deg(Ly) − g(Xy) + 1, using the local constancy of χ(Ly), the result follows. �

Riemann-Roch holds in more general circumstances, and hence the corollary does too.
Technically, in the example I’m about to give, we need Riemann-Roch for the union of
two P

1’s, which I haven’t shown. This can be shown in three ways. (i) I’ll prove that
Riemann-Roch holds for projective generically reduced curves later. (ii) You can prove it
by hand, as an exercise. (iii) You can consider this curve C inside P1 ×P1 as the union of a
“vertical fiber” and “horizontal fiber”. Any invertible sheaf on C is the restriction of some
O(a, b) on P1 × P1. Use additivity of Euler characteristics on 0 → OP1

×P1(a − 1, b − 1) →
OP1×P1(a, b) → OC(a, b) → 0, and note that we have earlier computed the χ(OP1×P1(c, d)).

This result has a lot of interesting consequences.

1.4. Example of a proper non-projective surface. We can use it to show that a certain proper
surface is not projective. Here is how.

Fix any field with more than two elements. We begin with a flat projective family of
curves whose X → P1, such that the fiber X0 over 0 is isomorphic to P1, and the fiber
X∞ over ∞ is isomorphic to two P1’s meeting at a point, X∞ = Y∞ ∪ Z∞. For example,
consider the family of conics in P2 (with projective coordinates x, y, z) parameterized by
P

1 (with projective coordinates λ and µ given by

λxy + µz(x + y + z) = 0.

This family unfortunately is singular for [λ; µ] = [0; 1] (as well as [1; 0] and one other point),
so change coordinates on P1 so that we obtain a family of the desired form.

We now take a break from this example to discuss an occasionally useful construction.

1.5. Gluing two schemes together along isomorphic closed subschemes. Suppose X ′ and X ′′

are two schemes, with closed subschemes W ′
↪→ X ′ and W ′′

↪→ X ′′, and an isomorphism
W ′ → W ′′. Then we can glue together X ′ and X ′′ along W ′ ∼= W ′′. We define this more
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formally as the coproduct:
W ′ ∼= W ′′ //

��

X ′

��
X ′′ // ?.

Exercise. Prove that this coproduct exists. Possible hint: work by analogy with our
product construction. If the coproduct exists, it is unique up to unique isomorphism.
Start with judiciously chosen affine open subsets, and glue.

Warning: You might hope that if you have a scheme X with two disjoint closed sub-
schemes W ′ and W ′′, and an isomorphism W ′ → W ′′, then you should be able to glue X

to itself along W ′ → W ′′. This is not always possible! I’ll give an example shortly. You
can still make sense of the quotient as an algebraic space, which I will not define here. If
you want to know what it is, ask Jarod, or come to one of the three lectures he’ll give later
this quarter.

1.6. Back to the non-projective surface. Now take two copies of the X we defined above;
call them X ′ and X ′′. Glue X ′ to X ′′ by identifying X ′

0 with Y ′′

∞ (in any way you want)
and Y ′

∞ with X ′′

0 . (Somewhat more explicitly: we are choosing an isomorphism X ′

0 ∪ Y ′

∞

with X ′′

0 ∪ Y ′′

∞ that “interchanges the components”.) I claim that the resulting surface X is
proper and not projective over the base field k. The first is an exercise.

Exercise. Show that X is proper over k. (Hint: show that the union of two proper
schemes is also proper.)

Suppose now that X is projective, and is embedded in projective space by an invertible
sheaf (line bundle) L. Then the degree of L on each curve of X is non-negative. For any
curve C ⊂ X, let deg C be the degree of L on C (or equivalently, the degree of C under this
projective embedding). Pull L back to X ′. Then this is a line bundle on a flat projective
family, so the degree is constant in fibers. Thus

deg X ′

0 = deg(Y ′

∞ ∪ Z ′

∞) = deg Y ′

∞ + deg Z ′

∞ > deg Y ′

∞.

(Technically, we have not shown that the middle equality holds, so you should think
about why that is clear.) Similarly deg X ′′

0 > deg Y ′′

∞. But after gluing, X ′

0 = Y ′′

∞ and
X ′′

0 = Y ′

∞, so we have a contradiction.

1.7. Remark. This is a stripped down version of Hironaka’s example in dimension 3.
Hironaka’s example has the advantage of being nonsingular. I’ll present that example
(and show how this one comes from Hironaka) when we discuss blow-ups. (I think it is
a fact that nonsingular proper surfaces over a field are always projective.)

1.8. Unimportant remark. You can do more fun things with this example. For example, we
know that projective surfaces can be covered by three affine open sets. This can be used
to give an example of (for any N) a proper surface that requires at least N affine open
subsets to cover it (see my paper with Mike Roth on my preprints page, Example 4.9).
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1.9. Problematic nature of the notion of “projective morphism”. This example shows that
the notion of being projective isn’t a great notion. There are four possible definitions that
might go with this notion. (1) We are following Grothendieck’s definition. This notion
is not local on the base. For example, by following the gluing above for the morphisms
X ′ → P1 and X ′′ → P1, we obtain a morphism π : X → P1∪P1, where the union on the right
is obtained by gluing the 0 of the first P1 to the ∞ of the second, and vice versa. Then away
from each node of the target, π is projective. (You could even give some explicit equations
if you wanted.) However, we know that π is not projective, as ρ : P1 ∪ P1 → Spec k is
projective, but we have already shown that ρ ◦ π : X → Spec k is not projective.

(2) Hartshorne’s definition is designed for finite type k-schemes, and is definitely the
wrong one for schemes in general.

(3) You could make our notion “local on the base” by also requiring more information:
e.g. the notion of a projective morphism could be a morphism of schemes X → Y along
with an invertible sheaf L on X that serves as an O(1). This is a little unpleasant; when
someone says “consider a projective surface”, they usually wouldn’t want to have any
particular projective embedding preferred.

(4) Another possible notion is that of locally projective: π : X → Y is locally projective if
there is an open cover of Y by Ui such that over each Ui, π is projective (in our original
sense (1)). The disadvantage is that this isn’t closed under composition, as is shown by
our example X → P1 ∪ P1 → Spec k.

1.10. Example: You can’t always glue a scheme to itself along isomorphic disjoint subschemes. In
class, we had an impromptu discussion of this, so it is a little rough. I’ll use a variation
of the above example. We’ll see that you can’t glue X to itself along an isomorphism
X0

∼= Y∞. (To make this a precise statement: there is no morphism π : X → W such that
there is a curve C ↪→ W such that π−1(W −U) = X−X0 −Y∞, and π maps both X0 and Y∞

isomorphically to W.) A picture here is essential!

If there were such a scheme W, consider the point π(Y∞ ∩ Z∞) ∈ W. It has an affine
neighborhood U; let K be its complement. Consider π−1(K). This is a closed subset of X,
missing Y∞ ∩Z∞. Note that it meets Y∞ (as the affine open U can contain no P1’s) and Z∞.
Discard all components of π−1(K) that are dimension 0, and that contain components of
fibers; call what’s left K ′. Caution: I need to make sure that I don’t end up discarding the points
on Y∞ and Z∞. I could show that π−1(K) has pure codimension 1, but I’d like to avoid doing that.
For now, assume that is the case; I may patch this later. Then K ′ is an effective Cartier divisor,
inducing an invertible sheaf on the surface X, which in turn is a flat projective family over
P1. Thus the degree of K ′ is constant on fibers. Then we get the same sort of contradiction:

degK ′ Y∞ = degK ′ X0 = degK ′ Y∞ + degK ′ Z∞ > degK ′ Y∞.

This led to a more wide-ranging discussion. A surprisingly easy theorem (which you
can find in Mumford’s Abelian Varieties for example) states that if X is a projective k-
scheme with an action by a finite group G, then the quotient X/G exists, and is also a
projective scheme. (One first has to define what one means by X/G!) If you are a little
careful in choosing the isomorphisms used to build our nonprojective surface (picking
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X ′

0 → Y ′′

∞ and X ′′

0 → Y ′

∞ to be the “same” isomorphisms), then there is a Z/2-action on
X (“swapping the P

1’s”), we have shown that the quotient W does not exist as a scheme,
hence giving another proof (modulo things we haven’t shown) that X is not projective.

2. PROOF OF IMPORTANT THEOREM ON CONSTANCY OF EULER CHARACTERISTIC IN
FLAT FAMILIES

Now you’ve seen a number of interesting results that seem to have nothing to do with
flatness. I find this a good motivation for this motivation: using the concept, we can prove
things that were interested in beforehand. It is time to finally prove Theorem 1.1.

Proof. The question is local on the base, so we may reduce to case Y is affine, say Y =

Spec B, so X ↪→ Pn
B for some n. We may reduce to the case X = Pn

B (as we can consider
F as a sheaf on P

n
B). We may reduce to showing that Hilbert polynomial F(m) is locally

constant for all m � 0 (as by Serre vanishing for m � 0, the Hilbert polynomial agrees
with the Euler characteristic). Now consider the Cech complex C∗ for F . Note that all the
terms in the Cech complex are flat. Twist by O(m) for m � 0, so that all the higher push-
forwards vanish. Hence Γ(C∗(m)) is exact except at the first term, where the cohomology
is Γ(π∗F(m)). We tack on this module to the front of the complex, so it is once again exact.
Thus (by an earlier exercise), as we have an exact sequence in which all but the first terms
are known to be flat, the first term is flat as well. As it is finitely generated, it is also free
by an earlier fact (flat and finitely generated over a Noetherian local ring equals free), and
thus has constant rank.

We’re interested in the cohomology of the fibers. To obtain that, we tensor the Cech
resolution with k(y) (as y runs over Y) and take cohomology. Now the extended Cech
resolution (with Γ(π∗F(m)) tacked on the front) is an exact sequence of flat modules, and
hence remains exact upon tensoring with k(y) (or indeed anything else). (Useful transla-
tion: cohomology commutes with base change.) Thus Γ(π∗F(m)) ⊗ k(y) ∼= Γ(π∗F(m)|y).
Thus the dimension of the Hilbert function is the rank of the locally free sheaf at that
point, which is locally constant. �

3. START OF THURSDAY’S CLASS: REVIEW

At this point, you’ve already seen a large number of facts about flatness. Don’t be
overwhelmed by them; keep in mind that you care about this concept because we have
answered questions we cared about even before knowing about flatness. Here are three
examples. (i) If you have a short exact sequence where the last is locally free, then you
can tensor with anything and the exact sequence will remain exact. (ii) We described a
morphism that is proper but not projective. (iii) We showed that you can’t always glue a
scheme to itself.

Here is a summary of what we know, highlighting the hard things.
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• definition; basic properties (pullback and localization). flat base change commutes
with higher pushforwards

• Tor: definition and symmetry. (Hence tensor exact sequences of flats with anything
and keep exactness.)

• ideal-theoretic criterion: Tor1(M, A/I) = 0 for all I. (flatness over PID = torsion-
free; over dual numbers) (important special case: DVR)

• for coherent modules over Noetherian local rings, flat=locally free
• flatness is open in good circumstances (flat + lft of lN is open; we should need only

weaker hypotheses)
• euler characteristics behave well in projective flat families. In particular, the degree

of an invertible sheaf on a flat projective family of curves is locally constant.

4. COHOMOLOGY AND BASE CHANGE THEOREMS

Here is the type of question we are considering. We’d like to see how higher pushfor-
wards behave with respect to base change. For example, we’ve seen that higher pushfor-
ward commutes with flat base change. A special case of base change is the inclusion of
a point, so this question specializes to the question: can you tell the cohomology of the
fiber from the higher pushforward? The next group of theorems I’ll discussed deal with
this issue. I’ll prove things for projective morphisms. The statements are true for proper
morphisms of Noetherian schemes too; the one fact you’ll see that I need is the follow-
ing: that the higher direct image sheaves of coherent sheaves under proper morphisms
are also coherent. (I’m largely following Mumford’s Abelian Varieties. The geometrically
interesting theorems all flow from the following neat but unmotivated result.

4.1. Key theorem. — Suppose π : X → Spec B is a projective morphism of Noetherian [needed?]
schemes, and F is a coherent sheaf on X, flat over Spec B. Then there is a finite complex

0 → K0 → K1 → · · · → Kn → 0

of finitely generated projective B-modules and an isomorphism of functors

(1) Hp(X ×B A,F ⊗B A) ∼= Hp(K∗ ⊗B A)

for all p ≥ 0 in the category of B-algebras A.

In fact, Ki will be free for i > 0. For i = 0, it is projective hence flat hence locally free
(by an earlier theorem) on Y.

Translation/idea: Given π : X → Spec B, we will have a complex of vector bundles on
the target that computes cohomology (higher-pushforwards), “universally” (even after
any base change). The idea is as follows: take the Cech complex, produce a “quasiisomor-
phic” complex (a complex with the same cohomology) of free modules. For those taking
derived category class: we have an isomorphic object in the derived category which is
easier to deal with as a complex. We’ll first construct the complex so that (1) holds for
B = A, and then show the result for general A later. Let’s put this into practice.
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4.2. Lemma. — Let C∗ be a complex of B-modules such that Hi(C∗) are finitely generated B-
modules, and that Cp 6= 0 only if 0 ≤ p ≤ n. Then there exists a complex K∗ of finitely generated
B-modules such that Kp 6= 0 only if 0 ≤ p ≤ n and Kp is free for p ≥ 1, and a homomorphism of
complexes φ : K∗ → C∗ such that φ induces isomorphisms Hi(K∗) → Hi(C∗) for all i.

Note that Ki is B-flat for i > 0. Moreover, if Cp are B-flat, then K0 is B-flat too.

For all of our purposes except for a side remark, I’d prefer a cleaner statement, where
C∗ is a complex of B-modules, with Cp 6= 0 only if p ≤ n (in other words, there could be
infinitely many non-zero Cp’s). The proof is then about half as long

Proof. Step 1. We’ll build this complex inductively, and worry about K0 when we get there.

Km

φm

��

δm
// Km+1

δm+1
//

φm+1

��

Km+2 //

φm+2

��

· · ·

· · · // Cm−1 // Cm
δm

// Cm+1

δm+1

// Cm+2 // · · · .

We assume we’ve defined (Kp, φp, δ
p) for p ≥ m + 1 such that these squares commute,

and the top row is a complex, and φp defines an isomorphism of cohomology Hq(K∗) →
Hq(C∗) for q ≥ m + 2 and a surjection ker δm+1 → Hm+1(C∗), and the Kp are finitely
generated B-modules.

We’ll adjust the complex to make φm+1 an isomorphism of cohomology, and then again
to make φm a surjection on cohomology. Let Bm+1 = ker(δm+1 : Hm+1(K∗) → Hm+1(C∗)).
Then we choose generators, and make these Km

1 . We have a new complex. We get the
0-maps on cohomology at level m. We then add more in to surject on cohomology on
level m.

Now what happens when we get to m = 0? We have maps of complexes, where ev-
erything in the top row is free, and we have an isomorphism of cohomology everywhere
except for K0, where we have a surjection of cohomology. Replace K0 by K0/ ker δ0∩ker φ0.
Then this gives an isomorphism of cohomology.

Step 2. We need to check that K0 is B-flat. Note that everything else in this quasiisomor-
phism is B-flat. Here is a clever trick: construct the mapping cylinder (call it M∗):

0 → K0 → C0 ⊕ K1 → C1 ⊕ K2 → · · · → Cn−1 ⊕ Kn → Cn → 0.

Then we have a short exact sequence of complexes

0 → C∗ → M∗ → K∗[1] → 0

(where K∗[1] is just the same complex as K∗, except slid over by one) yielding isomor-
phisms of cohomology H∗(K∗) → H∗(C∗), from which H∗(M∗) = 0. (This was an earlier
exercise: given a map of complexes induces an isomorphism on cohomology, the map-
ping cylinder is exact.) Now look back at the mapping cylinder M∗, which we now realize
is an exact sequence. All terms in it are flat except possibly K0. Hence K0 is flat too (also
by an earlier exercise)! �

7



4.3. Lemma. — Suppose K∗ → C∗ is a morphism of finite complexes of flat B-modules induc-
ing isomorphisms of cohomology (a “quasiisomorphism”). Then for every B-algebra A, the maps
Hp(C∗ ⊗B A) → Hp(K∗ ⊗B A) are isomorphisms.

Proof. Consider the mapping cylinder M∗, which we know is exact. Then M∗ ⊗B A is
still exact! (The reason was our earlier exercise that any exact sequence of flat modules
tensored with anything remains flat.) But M∗ ⊗B A is the mapping cylinder of K∗ ⊗B A →
C∗ ⊗B A, so this is a quasiisomorphism too. �

Now let’s prove the theorem!

Proof of theorem 4.1. Choose a finite covering (e.g. the standard covering). Take the Cech
complex C∗ for F . Apply the first lemma to get the nicer version K∗ of the same complex
C∗. Apply the second lemma to see that if you tensor with B and take cohomology, you
get the same answer whether you use K∗ or C∗. �

We are now ready to put this into use. We will use it to discuss a trio of facts: the Semi-
continuity Theorem, Grauert’s Theorem, and the Cohomology and Base Change Theo-
rem. (We’ll prove the first two.) The theorem of constancy of euler characteristic in flat
families also fits in this family.

These theorems involve the following situation. Suppose F is a coherent sheaf on X,
π : X → Y projective, Y (hence X) Noetherian, and F flat over Y.

Here are two related questions. Is Rpπ∗F locally free? Is φp : Rpπ∗F⊗k(y) → Hp(Xy,Fy)

an isomorphism?

We have shown Key theorem 4.1, that if Y is affine, say Y = Spec B, then we can compute
the pushforwards of F by a complex of locally free modules

0 → M0 → M1 → · · · → Mn → 0

where in fact Mp is free for p > 1. Moreover, this computes pushforwards “universally”:
after a base change, this remains true.

Now the dimension of the left is uppersemicontinuous by uppersemicontinuity of fiber
dimension of coherent sheaves. The semicontinuity theorem states that the dimension of
the right is also uppersemicontinuous. More formally:

4.4. Semicontinuity theorem. — Suppose X → Y is a projective morphisms of Noetherian
schemes, and F is a coherent sheaf on X flat over Y. Then for each p ≥ 0, the function Y → Z

given by y 7→ dimk(y) Hp(Xy,Fy) is upper semicontinuous on Y.

So “cohomology groups jump in projective flat families”. Again, we can replace pro-
jective by proper once we’ve shown finite-dimensionality of higher pushforwards (which
we haven’t). For pedants: can the Noetherian hypotheses be excised?
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Here is an example of jumping in action. Let C be a positive genus nonsingular projec-
tive irreducible curve, and consider the projection π : E × E → E. Let L be the invertible
sheaf (line bundle) corresponding to the divisor that is the diagonal, minus the section
p0 ∈ E. then Lp0

is trivial, but Lp is non-trivial for any p 6= p0 (as we’ve shown earlier in
the “fun with curves” section). Thus h0(E,Lp) is 0 in general, but jumps to 1 for p = p0.

Remark. Deligne showed that in the smooth case, at least over C, there is no jumping of
cohomology of the structure sheaf.

Proof. The result is local on Y, so we may assume Y is affine. Let K∗ be a complex as in
the key theorem 4.1. By localizing further, we can assume K∗ is locally free. So we are
computing cohomology on any fiber using a complex of vector bundles.

Then for y ∈ Y

dimk(y) H
p(Xy,Fy) = dimk(y) ker(dp ⊗A k(y)) − dimk(y) im(dp−1 ⊗A k(y))

= dimk(y)(K
p ⊗ k(y)) − dimk(y) im(dp ⊗A k(y)) − dimk(y) im(dp−1 ⊗A k(y))

(Side point: by taking alternating sums of these terms, we get a second proof of Theo-
rem 1.1 that χ(Xy,Fy) =

∑
(−1)ihi(Xy,Fy) is a constant function of y. I mention this be-

cause if extended the fact that higher cohomology of coherents is coherent under proper
pushforwards, we’d also have Theorem 1.1 in this case.)

Now dimk(y) im(dp⊗A k(y)) is a lower semicontinuous function on Y. Reason: the locus
where the dimension is less than some number q is obtained by setting all q × q minors
of the matrix Kp → Kp+1 to 0. So we’re done! �

5. LINE BUNDLES ARE TRIVIAL IN A ZARISKI-CLOSED LOCUS, AND GLIMPSES OF THE
RELATIVE PICARD SCHEME

(This was discussed on Thursday May 4, but fits in well here.)

5.1. Proposition. — Suppose L is an invertible sheaf on an integral projective scheme X such that
both L and L∨ have non-zero sections. Then L is the trivial sheaf.

As usual, “projective” may be replaced by “proper”. The only fact we need (which we
haven’t proved) is that the only global functions on proper schemes are constants. (We
haven’t proved that. It follows easily from the valuative criterion of properness — but we
haven’t proved that either!)

Proof. Suppose s and t are the non-zero sections of L and L∨. Then they are both non-
zero at the generic point (or more precisely, in the stalk at the generic point). (Otherwise,
they would be the zero-section — this is where we are using the integrality of X.) Under
the map L ⊗ L∨ → O, s ⊗ t maps to st, which is also non-zero. But the only global
functions (global sections of OX) are the constants, so st is a non-zero constant. But then s

9



is nowhere 0 (or else st would be somewhere zero), so L has a nowhere vanishing section,
and hence is trivial (isomorphic to OX). �

Now suppose X → Y is a flat projective morphism with integral fibers. (It is a “flat
family of geometrically integral schemes”.) Suppose that L is an invertible sheaf. Then
the locus of y ∈ Y where Ly is trivial on Xy is a closed set. Reason: the locus where
h0(Xy,Ly) ≥ 1 is closed by the Semicontinuity Theorem 4.4, and the same holes for the
locus where h0(Xy,L∨

y ) ≥ 1.

(Similarly, if L ′ and L ′′ are two invertible sheaves on the family X, the locus of points y

where L ′

y
∼= L ′′ is a closed subset: just apply the previous paragraph to L := L ′ ⊗ (L ′′)∨.)

In fact, we can jazz this up: for any L, there is in a natural sense a closed subscheme
where L is trivial. More precisely, we have the following theorem.

5.2. Seesaw Theorem. — Suppose π : X → Y is a projective flat morphism to a Noetherian
scheme, all of whose fibers are geometrically integral schemes, and L is an invertible sheaf on X.
Then there is a unique closed subscheme Y ′

↪→ Y such that for any fiber diagram

X ×Y Z
g

//

ρ

��

X

π

��
Z

f // Y

such that g∗L ∼= ρ∗M for some invertible sheaf M on Z, then f factors (uniquely) through
Y ′ → Y.

I want to make three comments before possibly proving this.

• I have no idea why it is called the seesaw theorem.

• As a special case, there is a “largest closed subscheme” on which the invertible sheaf
is the pullback of a trivial invertible sheaf.

• Also, this is precisely the statement that the functor is representable Y ′ → Y, and that
this morphism is a closed immersion.

I’m not going to use this, so I won’t prove it. But a slightly stripped down version of
this appears in Mumford (p. 89), and you should be able to edit his proof so that it works
in this generality.

There is a lesson I want to take away from this: this gives evidence for existence of a
very important moduli space: the Picard scheme. The Picard scheme Pic X/Y → Y is a
scheme over Y which represents the following functor: Given any T → Y, we have the set
of invertible sheaves on X ×Y T , modulo those invertible sheaves pulled back from T . In
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other words, there is a natural bijection between diagrams of the form
L

��
X ×T Y //

��

X

��
T // Y

and diagrams of the form
PicX/Y

��
T

<<
y

y
y

y
y

y
y

y
y

// Y.

It is a hard theorem (due to Grothendieck) that (at least if Y is reasonable, e.g. locally
Noetherian — I haven’t consulted the appropriate references) Pic X/Y → Y exists, i.e. that
this functor is representable. In fact Pic X/Y is of finite type.

We’ve seen special cases before when talking about curves: if C is a geometrically inte-
gral curve over a field k, of genus g, Pic C = Pic C/k is a dimension g projective nonsin-
gular variety.

Given its existence, it is easy to check that PicX/Y is a group scheme over Y, using our
functorial definition of group schemes.

5.3. Exercise. Do this!

The group scheme has a zero-section 0 : Y → PicX/Y . This turns out to be a closed
immersion. The closed subscheme produced by the Seesaw theorem is precisely the pull-
back of the 0-section. I suspect that you can use the Seesaw theorem to show that the
zero-section is a closed immersion.

5.4. Exercise. Show that the Picard scheme for X → Y (with our hypotheses: the morphism
is flat and projective, and the fibers are geometrically integral) is separated over Y by
showing that it satisfies the valuative criterion of separatedness.

Coming up soon: Grauert’s Theorem and Cohomology and base change!
E-mail address: vakil@math.stanford.edu
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This week: Grauert’s theorem and the Cohomology and base change theorem, and
applications. The Rigidity Lemma. Proof of Grauert’s theorem. Dimensions behave
well for flat morphisms. Associated points go to associated points.

1. COHOMOLOGY AND BASE CHANGE THEOREMS

We’re in the midst of discussing a family of theorems involving the following situation.
Suppose F is a coherent sheaf on X, π : X → Y projective, Y (hence X) Noetherian, and F
flat over Y.

Here are two related questions. Is Rpπ∗F locally free? Is φp : Rpπ∗F⊗k(y) → Hp(Xy,Fy)
an isomorphism?

We have shown a key intermediate result, that if Y is affine, say Y = Spec B, then we
can compute the pushforwards of F by a complex of locally free modules

0 → M0
→ M1

→ · · · → Mn
→ 0

where in fact Mp is free for p > 1. Moreover, this computes pushforwards “universally”:
after a base change, this remains true.

We have already shown the constancy of Euler characteristic, and the semicontinuity
theorem. I’m now going to discuss two big theorems, Grauert’s theorem and the Co-
homology and base change theorem, that are in some sense the scariest in Hartshorne,
coming at the end of Chapter III (along with the semicontinuity theorem). I hope you

Date: Tuesday, May 2 and Thursday, May 4, 2006. Last superficial update June 28, 2007. c© 2005, 2006,
2007 by Ravi Vakil.
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agree that semicontinuity isn’t that scary (given the key fact). I’d like to discuss applica-
tions of these two theorems to show you why you care; then given time I’ll give proofs.
I’ve found the statements worth remembering, even though they are a little confusing.

Note that if Rpπ∗F is locally free and φp is an isomorphism, then the right side is locally
constant. The following is a partial converse.

1.1. Grauert’s Theorem. — If Y is reduced, then hp locally constant implies Rpπ∗F is locally free
and φp is an isomorphism.

1.2. Cohomology and base change theorem. — Assume φp is surjective. Then the following hold.

(a) φp is an isomorphism, and the same is true nearby. [Note: The hypothesis is trivially
satisfied in the common case Hp = 0. If Hp = 0 at a point, then it is true nearby by
semicontinuity.]

(b) φp−1 is surjective (=isomorphic) if and only if Rpπ∗F is locally free. [This in turn implies
that hp is locally constant.]

Notice that (a) is about just what happens over the reduced scheme, but (b) has a neat
twist: you can check things over the reduced scheme, and it has implications over the
scheme as a whole!

Here are a couple of consequences.

1.3. Exercise. Suppose Hp(Xy,Fy) = 0 for all y ∈ Y. Show that φp−1 is an isomorphism
for all y ∈ Y. (Hint: cohomology and base change (b).)

1.4. Exercise. Suppose Rpπ∗F = 0 for p ≥ p0. Show that Hp(Xy,Fy) = 0 for all y ∈ Y,
k ≥ k0. (Same hint. You can also do this directly from the key theorem above.)

2. WHEN THE PUSHFORWARD OF THE FUNCTIONS ON X ARE THE FUNCTIONS ON Y

Many fun applications happen when a certain hypothesis holds, which I’ll now de-
scribe.

We say that π satisfies (*) if it is projective, and the natural morphism OY → π∗OX is an
isomorphism. Here are two statements that will give you a feel for this notion. First:

2.1. Important Exercise. Suppose π is a projective flat family, each of whose fibers are
(nonempty) integral schemes, or more generally whose fibers satisfy h0(Xy) = 1. Then (*)
holds. (Hint: consider

OY ⊗ k(y) // (π∗OX) ⊗ k(y)
φ0

// H0(Xy,OXy
) ∼= k(y) .
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The composition is surjective, hence φ0 is surjective, hence it is an isomorphism (by the
Cohomology and base change theorem 1.2 (a)). Then thanks to the Cohomology and base
change theorem 1.2 (b), π∗OX is locally free, thus of rank 1. If I have a map of invert-
ible sheaves OY → π∗OX that is an isomorphism on closed points, it is an isomorphism
(everywhere) by Nakayama.)

Note in the previous exercise: we are obtaining things not just about closed points!

Second: we will later prove a surprisingly hard result, that given any projective (proper)
morphism of Noetherian schemes satisfying (*) (without any flatness hypotheses!), the
fibers are all connected (“Zariski’s connectedness lemma”).

2.2. Exercise (the Hodge bundle; important in Gromov-Witten theory). Suppose π : X → Y

is a projective flat family, all of whose geometric fibers are connected reduced curves of
arithmetic genus g. Show that R1π∗OX is a locally free sheaf of rank g. This is called the
Hodge bundle. [Hint: use cohomology and base change (b) twice, once with p = 2, and
once with p = 1.]

Here is the question we’ll address in this section. Given an invertible sheaf L on X, we
wonder when it is the pullback of an invertible sheaf M on Y. Certainly it is necessary
for it to be trivial on the fibers. We’ll see that (*) holds, then this basically suffices. Here is
the idea: given L, how can we recover M? Thanks to the next exercise, it must be π∗L.

2.3. Exercise. Suppose π : X → Y satisfies (*). Show that if M is any invertible sheaf
on Y, then the natural morphism M → π∗π

∗M is an isomorphism. In particular, we can
recover M from π∗M by pushing forward. (Hint: projection formula.)

2.4. Proposition. — Suppose π : X → Y is a morphism of locally Noetherian integral schemes
with geometrically integral fibers (hence by Exercise 2.1 satisfying (*)). Suppose also that Y is
reduced, and L is an invertible sheaf on X that is trivial on the fibers of π (i.e. Ly is a trivial
invertible sheaf on Xy). Then π∗L is an invertible sheaf on Y (call it M), and L = π∗M.

Proof. To show that there exists such an invertible sheaf M on Y with π∗M ∼= L, it suffices
to show that π∗L is an invertible sheaf (call it M) and the natural homomorphism π∗M →

L is an isomorphism.

Now by Grauert’s theorem 1.1, π∗L is locally free of rank 1 (again, call it M), and
M⊗OY

k(y) → H0(Xy,Ly) is an isomorphism. We have a natural map of invertible sheaves
π∗M = π∗π∗L → L. To show that it is an isomorphism, we need only show that it is
surjective, i.e. show that it is surjective on the fibers, which is done. �

Here are some consequences.

A first trivial consequence: if you have two invertible sheaves on X that agree on the
fibers of π, then they differ by a pullback of an invertible sheaf on Y.
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2.5. Exercise. Suppose X is an integral Noetherian scheme. Show that Pic(X × P
1) ∼=

Pic X × Z. (Side remark: If X is non-reduced, this is still true, see Hartshorne Exercise
III.12.6(b). It need only be connected of finite type over k. Presumably locally Noetherian
suffices.) Extend this to X × P

n. Extend this to any P
n-bundle over X.

2.6. Exercise. Suppose X → Y is the projectivization of a vector bundle F over a reduced
locally Noetherian scheme (i.e. X = Proj Sym∗ F ). Then I think we’ve already shown in an
exercise that it is also the projectivization of F⊗L. If Y is reduced and locally Noetherian,
show that these are the only ways in which it is the projectivization of a vector bundle.
(Hint: note that you can recover F by pushing forward O(1).)

2.7. Exercise. Suppose π : X → Y is a projective flat morphism over a Noetherian integral
scheme, all of whose geometric fibers are isomorphic to P

n (over the appropriate field).
Show that this is a projective bundle if and only if there is an invertible sheaf on X that
restricts to O(1) on all the fibers. (One direction is clear: if it is a projective bundle, then it
has a projective O(1). In the other direction, the candidate vector bundle is π∗O(1). Show
that it is indeed a locally free sheaf of the desired rank. Show that its projectivization is
indeed π : X → Y.)

2.8. Exercise (An example of a Picard scheme). Show that the Picard scheme of P
1
k over k is

isomorphic to Z.

2.9. Harder but worthwhile Exercise (An example of a Picard scheme). Show that if E is
an elliptic curve over k (a geometrically integral and nonsingular genus 1 curve with a
marked k-point), then Pic E is isomorphic to E×Z. Hint: Choose a marked point p. (You’ll
note that this isn’t canonical.) Describe the candidate universal invertible sheaf on E × Z.
Given an invertible sheaf on E × X, where X is an arbitrary Noetherian scheme, describe
the morphism X → E × Z.

3. THE RIGIDITY LEMMA

The rigidity lemma is another useful fact about morphisms π : X → Y such that π∗OX

(condition (*) of the previous section). It is quite powerful, and quite cheap to prove, so
we may as well do it now. (During class, the hypotheses kept on dropping until there was
almost nothing left!)

3.1. Rigidity lemma (first version). — Suppose we have a commutative diagram

X

e closed, e∗OX = OY ��>
>>

>>
>>

f // Z

g quasi–proj.����
��

��
�

Y

where Y is locally Noetherian, where f takes Xy for some y ∈ Y. Then there is a neighborhood
U ⊂ Y of y on which this is true. Better: over U, f factors through the projection to Y, i.e. the
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following diagram commutes for some choice of h:

X|U
f //

e

  A
AA

AA
AA

A
Z|U

U

h
>>}}}}}}}}

.

Proof. This proof is very reminiscent of an earlier result, when we showed that a projective
morphisms with finite fibers is a finite morphism.

We can take g to be projective. We can take Y to be an affine neighborhood of y. Then
Z ↪→ P

n
Y for some n. Choose a hyperplane of P

n
y missing f(Xy), and extend it to a hyper-

plane H of P
n
Y . (If Y = Spec B, and y = [n], then we are extending a linear equation with

coefficients in B/n to an equation with coefficients in B.) Pull back this hyperplane to X;
the preimage is a closed subset. The image of this closed subset in Y is also a closed set
K ⊂ Y, as e is a closed map. But y /∈ K, so let U = Y − K. Over U, f(Xy) misses our
hyperplane H. Thus the map Xy → P

n
U factors through Xy → A

n
U. Thus the map is given

by n functions on X|U. But e∗OX
∼= OY , so these are precisely the pullbacks of functions

on U, so we are done. �

3.2. Rigidity lemma (second version). — Same thing, with the condition on g changed from
“projective” to simply “finite type”.

Proof. Shrink Y so that it is affine. Choose an open affine subset Z ′ of Z containing the
f(Xy). Then the complement the pullback of K = Z−Z ′ to X is a closed subset of X whose
image in Y is thus closed (as again e is a closed map), and misses y. We shrink Y further
such that f(X) lies in Z ′. But Z ′

→ Y is quasiprojective, so we can apply the previous
version. �

Here is another mild strengthening.

3.3. Rigidity lemma (third version). — If X is reduced and g is separated, and Y is connected, and
there is a section Y → X, then we can take U = Y.

Proof. We have two morphisms X → Z: f and f ◦ s ◦ e which agree on the open set U.
But we’ve shown earlier that any two morphisms from a reduced scheme to a separated
scheme agreeing on a dense open set are the same. �

Here are some nifty consequences.

3.4. Corollary (abelian varieties are abelian). — Suppose A is a projective integral group variety
(an abelian variety) over a field k. Then the multiplication map m : A × A → A is commutative.
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Proof. Consider the commutator map c : A × A → A that corresponds to (x, y) 7→

xyx−1y−1. We wish to show that this map sends A × A to the identity in A. Consider
A × A as a family over the first factor. Then over x = e, c maps the fiber to e. Thus by
the rigidity lemma (third version), the map c is a function only of the first factor. But then
c(x, y) = c(x, e) = e. �

3.5. Exercise. By a similar argument show that any map f : A → A ′ from one abelian
variety to another is a group homomorphism followed by a translation. (Hint: reduce
quickly to the case where f sends the identity to the identity. Then show that “f(x + y) −
f(x) − f(y) = e”.)

4. PROOF OF GRAUERT’S THEOREM

I’ll prove Grauert, but not Cohomology and Base Change. It would be wonderful if Co-
homology and Base Change followed by just mucking around with maps of free modules
over a ring.

4.1. Exercise++. Find such an argument.

We’ll need a preliminary result.

4.2. Lemma. — Suppose Y = Spec B is a reduced Noetherian scheme, and f : M → N is
a homomorphism of coherent free (hence projective, flat) B-modules. If dimk(y) im(f ⊗ k(y)) is
locally constant, then there are splittings M = M1 ⊕ M2 and N = N1 ⊕ N2 with f killing M1,
and sending M2 isomorphically to N1.

Proof. Note that f(M) ⊗ k ∼= f(M ⊗ k) from that surjection. From 0 → f(M) → N →

N/f(M) → 0 we have

f(M) ⊗ k //

��

N ⊗ k //

��

N/f(M) ⊗ k

��

// 0

f(M ⊗ k) // N ⊗ k // N ⊗ k/f(M ⊗ k) // 0

from which (N/f(M)) ⊗ k ∼= (N ⊗ k)/f(M ⊗ k). Now the one on the right has locally
constant rank, so the one on the left does too, hence is locally free, and flat, and projective.
Hence 0 → f(M) → N → N/f(M) → 0 splits, so let N2 = N/f(M), N1 = f(M). Also, N

and N/f(M) are flat and coherent, hence so is f(M).

We now play the same game with

0 → ker f → M → f(M) → 0.

f(M) is projective, hence this splits. Let ker f = M1. �
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Now let’s prove Grauert’s theorem 1.1. We can use this lemma to rewrite

Mp−1
dp−1

// Mp dp
// Mp+1

as Zp−1 ⊕ Kp−1 // Bp ⊕ Hp ⊕ Kp // Bp+1 ⊕ Kp+1 where dp−1 sends Kp−1 isomorphi-
cally onto Bp (and is otherwise 0), and dp sends Kp isomorphically onto Bp+1. Here Hp

is a projective module, so we have local freeness. Thus when we tensor with some other
ring, this structure is preserved as well; hence we have isomorphism. �

5. DIMENSIONS BEHAVE WELL FOR FLAT MORPHISMS

There are a few easier statements about flatness that I could have said much earlier.

Here’s a basic statement about how dimensions behave in flat families.

5.1. Proposition. — Suppose f : X → Y is a flat morphism of schemes all of whose stalks are
localizations of finite type k-algebras, with f(x) = y. (For example, X and Y could be finite type
k-schemes.) Then the dimension of Xy at x plus the dimension of Y and y is the dimension X at x.

In other words, there can’t be any components contained in a fibers; and you can’t have
any dimension-jumping.

In class, I first incorrectly stated this with the weaker hypotheses that X and Y are just
locally Noetherian. Kirsten pointed out that I used the fact that height = codimension,
which is not true for local Noetherian rings in general. However, we have shown it for
local rings of finite type k-schemes. Joe suggested that one could work around this prob-
lem.

Proof. This is a question about local rings, so we can consider SpecOX,x → SpecOY,y. We
may assume that Y is reduced. We prove the result by induction on dim Y. If dim Y = 0,
the result is immediate, as Xy = X and dimy Y = 0.

Now for dim Y > 0, I claim there is an element t ∈ m that is not a zero-divisor, i.e. is not
contained in any associated prime, i.e. (as Y is reduced) is not contained in any minimal
prime. Let p1, . . . , pn be the (finite number of) minimal primes. If m ⊂ p1 ∪· · ·∪pn, then in
the first quarter we showed (in an exercise) that m ⊂ pi for some i. But as m is maximal,
and pi is minimal, we must have m = pi, and dim Y = 0.

Now by flatness t is not a zero-divisor of OX,x. (Recall that non-zero-divisors pull back
to non-zero-divisors.) dimOY,y/t = dimOY,y − 1 by Krull’s principal ideal theorem (here
we use the fact that codimension = height), and dimOX,x/t = dimOX,x − 1 similarly. �.

5.2. Corollary. — Suppose f : X → Y is a flat finite-type morphism of locally Noetherian schemes,
and Y is irreducible. Then the following are equivalent.
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• Every irreducible component of X has dimension dim Y + n.
• For any point y ∈ Y (not necessarily closed!), every irreducible component of the fiber Xy

has dimension n.

5.3. Exercise. Prove this.

Important definition: If these conditions hold, we say that π is flat of relative dimension n.
This definition will come up when we define smooth of relative dimension n.

5.4. Exercise.
(a) Suppose π : X → Y is a finite-type morphism of locally Noetherian schemes, and
Y is irreducible. Show that the locus where π is flat of relative dimension n is an open
condition.
(b) Suppose π : X → Y is a flat finite-type morphism of locally Noetherian schemes, and Y

is irreducible. Show that X can be written as the disjoint union of schemes X0 ∪ X1 ∪ · · ·
where π|Xn

: Xn → Y is flat of relative dimension n.

5.5. Important Exercise. Use a variant of the proof of Proposition 5.1 to show that if
f : X → Y is a flat morphism of finite type k-schemes (or localizations thereof), then any
associated point of X must map to an associated point of Y. (I find this an important point
when visualizing flatness!)

E-mail address: vakil@math.stanford.edu
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This week: Local criteria for flatness (statement), (relatively) base-point-free, (rel-
atively) ample, very ample, every ample on a proper has a tensor power that is very
ample, Serre’s criterion for ampleness, Riemann-Roch for generically reduced curves.

1. THE LOCAL CRITERION FOR FLATNESS

I’ll end our discussion of flatness with the statement of two results which can be quite
useful. (Translation: I’ve seen them used.) They are both called the local criterion for
flatness.

In both situations, assume that (B, n) → (A, m) is a local morphism of local Noetherian
rings (i.e. a ring homomorphism with nA ⊂ m), and that M is a finitely generated A-
module. Of course we picture this in terms of geometry:

M̃

Spec(A, m)

��

Spec(B, n).

The local criteria for flatness are criteria for when M is flat over A. In practice, these are
used in two circumstances: to check when a morphism to a locally Noetherian scheme is
flat, or when a coherent sheaf on a locally Noetherian scheme is flat.

We’ve shown that to check if M is flat, we need check if TorB
1 (B/I, M) = 0 for all ideals

I. The (first) local criterion says we need only deal with the maximal ideal.

Date: Tuesday, May 9 and Thursday, May 11, 2006. Last updated June 28, 2007. c© 2005, 2006, 2007 by
Ravi Vakil.

1



1.1. Theorem (local criterion for flatness). — M is B-flat if and only if TorB
1 (B/n, M) = 0.

(You can see a proof in Eisenbud, p. 168.)

An even more useful variant is the following. Suppose t is a non-zero-divisor of B

in m (geometrically: a Cartier divisor on the target passing through the generic point).
If M is flat over B, then t is not a zero-divisor of M (we’ve checked this before: tensor
0 // B

×t
// B // B/(t) → 0 with M). Also, M/tM is a flat B/tB-module (flatness

commutes with base change). The next result says that this is a characterization.

1.2. Theorem (local slicing criterion for flatness). — M is B-flat if and only if M/tM is flat over
B/(t).

This is also sometimes called the local criterion for flatness. The proof is short (given
the first local criterion). You can read it in Eisenbud (p. 169).

1.3. Exercise (for those who know what a Cohen-Macaulay scheme is). Suppose π : X → Y is
a map of locally Noetherian schemes, where both X and Y are equidimensional, and Y is
nonsingular. Show that if any two of the following hold, then the third does as well:

• π is flat.
• X is Cohen-Macaulay.
• Every fiber Xy is Cohen-Macaulay of the expected dimension.

I concluded the section on flatness by reviewing everything we have learned about flatness, in a
good order.

2. BASE-POINT-FREE, AMPLE, VERY AMPLE

My goal is to discuss properties of invertible sheaves on schemes (an “absolute” no-
tion), and properties of invertible sheaves on a scheme with a morphism to another
scheme (a “relative” notion, meaning that it makes sense in families). The notions fit
into this table:

absolute relative
base-point-free relatively base-point-free
ample relatively ample
very ample over a ring very ample

This is admittedly horrible terminology. Warning: my definitions may have some ad-
ditional hypotheses not used in EGA. The additional hypotheses exclude some nasty be-
havior which tends not to come up in nature; indeed, I have only seen these notions used
in the circumstances in which I will describe them. There are very few facts to know, and
there is fairly little to prove.
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2.1. Definition of base-point-free and relative base-point-free (review from class 22 and class 24,
respectively). Recall that if F is a quasicoherent sheaf on a scheme X, then F is generated
by global sections if for any x ∈ X, the global sections generate the stalk Fx. Equivalently:
F is the quotient of a free sheaf. If F is a finite type quasicoherent sheaf, then we just
need to check that for any x, the global sections generate the fiber of F , by Nakayama’s
lemma. If furthermore F is invertible, we need only check that for any x there is a global
section not vanishing there. In the case where F is invertible, we give “generated by
global sections” a special name: base-point-free.

2.2. Exercise (generated ⊗ generated = generated for finite type sheaves). Suppose F and G

are finite type sheaves on a scheme X that are generated by global sections. Show that
F⊗G is also generated by global sections. In particular, if L and M are invertible sheaves
on a scheme X, and both L and M are base-point-free, then so is L ⊗ M. (This is often
summarized as “base-point-free + base-point-free = base-point-free”. The symbols + is
used rather than ⊗, because Pic is an abelian group.)

If π : X → Y is a morphism of schemes that is quasicompact and quasiseparated (so push-
forwards of quasicoherent sheaves are quasicoherent sheaves), and F is a quasicoherent
sheaf on X, we say that F is relatively generated by global sections (or relatively generated
for short) if π∗π∗F → F is a surjection of sheaves (class 24). As this is a morphism of
quasicoherent sheaves, this can be checked over any affine open subset of the target, and
corresponds to “generated by global sections” above each affine. In particular, this notion
is affine-local on the target. If F is locally free, this notion is called relatively base-point-free.

2.3. Definition of very ample. Suppose X → Y is a projective morphism. Then X = ProjS∗

for some graded algebra, locally generated in degree 1; given this description, X comes
with O(1). Then any invertible sheaf on X of this sort is said to be very ample (for the
morphism π). The notion of very ample is local on the base. (This is “better” than the
notion of projective, which isn’t local on the base, as we’ve seen in class 43/44 p. 4. Recall
why: a morphism is projective if there exists an O(1). Thus a morphism X → Y ∪ Y ′ could
be projective over Y and over Y ′, but not projective over Y∪Y ′, as the “O(1)” above Y need
not be the same as the “O(1)” above Y ′. On the other hand, the notion is “very ample”
is precisely the data of “an O(1)”.) You’ll recall that given such an invertible sheaf, then
X = Proj π∗L

⊗n, where the algebra on the right has the desired form. (It isn’t necessarily
the same graded algebra as you originally used to construct X.)

Notational remark: If Y is implicit, it is often omitted from the terminology. For example,
if X is a complex projective scheme, the phrase “L is very ample on X” often means that
“L is very ample for the structure morphism X → Spec C”.

2.4. Exercise (very ample + very ample = very ample). If L and M are invertible sheaves on
a scheme X, and both L and M are base-point-free, then so is L ⊗ M. Hint: Segre. In
particular, tensor powers of a very ample invertible sheaf are very ample.

2.5. Tricky exercise+ (very ample + relatively generated = very ample). Suppose L is very
ample, and M is relatively generated, both on X → Y. Show that L ⊗ M is very ample.
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(Hint: Reduce to the case where the target is affine. L induces a map to Pn
A, and this

corresponds to n + 1 sections s0, . . . , sn of L. We also have a finite number m of sections
t1, . . . , tm of M which generate the stalks. Consider the (n+ 1)m sections of L⊗M given
by sitj. Show that these sections are base-point-free, and hence induce a morphism to
P(n+1)m−1. Show that it is a closed immersion.)

2.6. Definition of ample and relatively ample. Suppose X is a quasicompact scheme. We say
an invertible sheaf L on X is ample if for all finite type sheaves F , F ⊗ Ln is generated by
global sections for n � 0. (“After finite twist, it is generated by global sections.”) This is
an absolute notion, not depending on a morphism.

2.7. Example. (a) If X is an affine scheme, and L is any invertible sheaf on X, then L is
ample.
(b) If X → Spec B is a projective morphism and L is a very ample invertible sheaf on X,
then L is ample (by Serre vanishing, Theorem 4.2(ii), class 29, p. 5). (We may need B

Noetherian here.)

We now give the relative version of this notion. Suppose π : X → Y is a morphism, and
L is an invertible sheaf on X. Suppose that for every affine open subset Spec B of Y there
is an n0 such that F ⊗ L⊗n restricted to the preimage of Spec B is relatively generated by
global sections for n ≥ n0. (In particular, π is quasicompact and quasiseparated — that
was a hypothesis for relatively generated.) Then we say that L is relatively ample (with
respect to π; although the reference to the morphism is often suppressed when it is clear
from the context). It is also sometimes called π-ample. Warning: the n0 depends on the
affine open; we may not be able to take a single n0 for all affine opens. We can, however,
if Y is quasicompact, and hence we’ll see this quasicompactness hypothesis on Y often.

Example. The examples of 2.7 naturally generalize.
(a) If X → Y is an affine morphism, and L is any invertible sheaf on X, then L is relatively
ample.
(b) If X → Y is a projective morphism and L is a very ample invertible sheaf on X, then L

is relatively ample. (We may need Y locally Noetherian here.)

2.8. Easy Lemma. — Fix a positive integer n.

(a) If L is an invertible sheaf on a scheme X, then L is ample if and only if L⊗n is ample.
(b) If π : X → Y is a morphism, and L is an invertible sheaf on X, then L is relatively ample if

and only if L⊗n is relatively ample.

In general, statements about ample sheaves (such as (a) above) will have immediate
analogues for statements about relatively ample sheaves where the target is quasicompact
(such as (b) above), and I won’t spell them out in the future. [I’m not sure what I meant
by this comment about (b); I’ll think about it.]

Proof. We prove (a); (b) is then immediate.
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Suppose L is ample. Then for any finite type sheaf F on X, there is some m0 such that
for m ≥ m0, F ⊗L⊗m0 is generated by global sections. Thus for m ′ ≥ m0/n, F ⊗ (L⊗n)m ′

is generated by global sections, so L⊗n is ample.

Suppose next that L⊗n is ample, and let F by any finite type sheaf. Then there is some
m0 such that (F)⊗ (Ln)m, (F ⊗L)⊗ (Ln)m, (F ⊗L⊗2)⊗ (Ln)m, . . . (F ⊗L⊗(m−1))⊗ (Ln)m,
are all generated by global sections for m ≥ m0. In other words, for m ′ ≥ nm0, F ⊗L⊗m ′

is generated by global sections. Hence L is ample. �

Example: any positive degree invertible sheaf on a curve is ample. Reason: a high tensor
power (such that the degree is at least 2g + 1) is very ample.

2.9. Proposition. — In each of the following, X is a scheme, L is an ample invertible sheaf (hence
X is quasicompact), and M is an invertible sheaf.

(a) (ample + generated = ample) If M is generated by global sections, then L ⊗M is ample.
(b) (ample + ample = ample) If M is ample, then L ⊗M is ample.

Similar statements hold for quasicompact and quasiseparated morphisms and relatively ample and
relatively generated.

Proof. (a) Suppose F is any finite type sheaf. Then by ampleness of L, there is an n0

such that for n ≥ n0, F ⊗ L⊗n is generated by global sections. Hence F ⊗ L⊗n ⊗M⊗n is
generated by global sections. Thus there is an n0 such that for n ≥ n0, F ⊗ (L ⊗M)⊗n is
generated by global sections. Hence L ⊗M is ample.

(b) As M is ample, M⊗n is base-point-free for some n > 0. But L⊗n is ample, so by (a)
(L ⊗M)⊗n is ample, so by Lemma 2.8, L ⊗M is ample. �

3. EVERY AMPLE ON A PROPER HAS A TENSOR POWER THAT IS VERY AMPLE

We’ll spend the rest of our discussion of ampleness considering consequences of the
following very useful result.

3.1. Theorem. — Suppose π : X → Y is proper and Y = Spec B is affine. If L is ample, then some
tensor power of L is very ample.

The converse follows from our earlier discussion, that very ample implies ample, Ex-
ample 2.7(b).

Proof. I hope to type in a short proof at some point. For now, I’ll content myself with refer-
ring to Hartshorne Theorem II.7.6. (He has more hypotheses, but his argument essentially
applies in this more general situation.)
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3.2. Exercise. Suppose π : X → Y is proper and Y is quasicompact. Show that if L is
relatively ample on X, then some tensor power of L is very ample.

Serre vanishing holds for any relatively ample invertible sheaf for a proper morphism
to a Noetherian base. More precisely:

3.3. Corollary (Serre vanishing, take two). — Suppose π : X → Y is a proper morphism, Y is
quasicompact, and L is a π-ample invertible sheaf on X. Then for any coherent sheaf F on X, for
m � 0, Riπ∗F ⊗ L⊗m = 0 for all i > 0.

Proof. By Theorem 3.1, L⊗n very ample for some n, so π is projective. Apply Serre vanish-
ing to F ⊗ L⊗i for 0 ≤ i < n. �

The converse holds, i.e. this in fact characterizes ampleness. For convenience, we state
it for the case of an affine target.

3.4. Theorem (Serre’s criterion for ampleness). — Suppose that π : X → Y = Spec B is a proper
morphism, and L is an invertible sheaf on X such that for any finite type sheaf F on X, F ⊗ L⊗n

is generated by global sections for n � 0. Then L is ample.

Essentially the same statement holds for relatively ample and quasicompact target. Ex-
ercise. Give and prove the statement. Whoops! Ziyu and Rob point out that I used Serre’s
criterion as the definition of ampleness (and similarly, relative ampleness). Thus this
exercise is nonsense.

3.5. Proof of Serre’s criterion. I hope to type in a better proof before long, but for now I’ll
content myself with referring to Hartshorne, Proposition III.5.3.

3.6. Exercise. Use Serre’s criterion for ampleness to prove that the pullback of ample
sheaf on a projective scheme by a finite morphism is ample. Hence if a base-point-free
invertible sheaf on a proper scheme induces a morphism to projective space that is finite
onto its image, then it is is ample.

3.7. Key Corollary. — Suppose π : X → Spec B is proper, and L and M are invertible sheaves on
X with L ample. Then L⊗n ⊗M is very ample for n � 0.

3.8. Exercise. Give and prove the corresponding statement for a relatively ample invert-
ible sheaf over a quasicompact base.

Proof. The theorem says that L⊗n is very ample for n � 0. By the definition of ampleness,
L⊗n ⊗M is generated for n � 0. Tensor these together, using the above. �

A key implication of the key corollary is:
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3.9. Corollary. — Any invertible sheaf on a projective X → Spec B is a difference of two very
ample invertible sheaves.

Proof. If M is any invertible sheaf, choose L very ample. Corollary 3.7 states that M⊗L⊗n

is very ample. As L⊗n is very ample (Exercise 2.4), we can write M as the difference of
two very ample sheaves: M ∼= (M⊗L⊗n) ⊗ (L⊗n)∗.

As always, we get a similar statement for relatively ample sheaves over a quasicompact
base.

Here are two interesting consequences of Corollary 3.9.

3.10. Exercise. Suppose X a projective k-scheme. Show that every invertible sheaf is
the difference of two effective Cartier divisors. Thus the groupification of the semigroup
of effective Cartier divisors is the Picard group. Hence if you want to prove something
about Cartier divisors on such a thing, you can study effective Cartier divisors.

(This is false if projective is replaced by proper — ask Sam Payne for an example.)

3.11. Important exercise. Suppose C is a generically reduced projective k-curve. Then we
can define degree of an invertible sheaf M as follows. Show that M has a meromorphic
section that is regular at every singular point of C. Thus our old definition (number of
zeros minus number of poles, using facts about discrete valuation rings) applies. Prove
the Riemann-Roch theorem for generically reduced projective curves. (Hint: our original
proof essentially will carry through without change.)

E-mail address: vakil@math.stanford.edu
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At the start of class 49, I gave an informal discussion on other criteria for ampleness,
and other adjectives for divisors. We discussed the following notions: Kleiman’s criterion
for ampleness, numerical equivalence, Neron-Severi group, Picard number, nef, the nef
cone and the ample cone, Nakai’s criterion, the Nakai-Moishezon criterion, big, Q-Cartier,
Snapper’s theorem.)

1. BLOWING UP A SCHEME ALONG A CLOSED SUBSCHEME

We’ll next discuss an important construction in algebraic geometry (and especially the
geometric side of the subject), the blow-up of a scheme along a closed subscheme (cut out
by a finite type ideal sheaf). We’ll start with a motivational example that will give you
a picture of the construction in a particularly important case (and the historically earli-
est case), in Section 2. I’ll then give a formal definition, in terms of universal property,
Section 3. This definition won’t immediately have a clear connection to the motivational
example! We’ll deduce some consequences of the definition (assuming that the blow-up
actually exists). We’ll prove that the blow-up always exists, by describing it quite ex-
plicitly, in Section 4. As a consequence, the blow-up morphism is projective, and we’ll
deduce more consequences from this. In Section 5, we’ll do a number of explicit compu-
tations, and see that in practice, it is possible to compute many things by hand. I’ll then
mention a couple of useful facts: (i) the blow-up a nonsingular variety in a nonsingular
variety is still nonsingular, something we’ll have observed in our explicit examples, and
(ii) Castelnuovo’s criterion, that on a smooth surface, “(−1)-curves” (P1’s with normal
bundle O(−1)) can be “blown down”.

Date: Tuesday, May 16 and Tuesday, May 23, 2006.
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2. MOTIVATIONAL EXAMPLE

We’re going to generalize the following notion, which will correspond to “blowing up”
the origin of A2

k (over an algebraically closed field k). Because this is just motivation, I’ll
be informal. Consider the subset of A2 × P1 corresponding to the following. We interpret
P1 as the lines through the origin. Consider the subset {(p ∈ A2, [`] ∈ P1) : p ∈ `)}. (I
showed you a model in class, admittedly over the non-algebraically-closed field k = R.)

I’ll now try to convince you that this is nonsingular (informally). Now P1 is smooth,
and for each point [`] in P1, we have a smooth choice of points on the line `. Thus we are
verifying smoothness by way of the fibration over P1.

Let’s make this more algebraic. Let x and y be coordinates on A2, and X and Y be pro-
jective coordinates on P1 (“corresponding” to x and y); we’ll consider the subset Bl(0,0) A2

of A2 × P1 corresponding to xY − yX = 0. We could then verify that this is nonsingular
(by looking at two covering patches).

Notice that the preimage of (0, 0) is a curve and hence a divisor (an effective Cartier
divisor, as the blown-up surface is nonsingular). Also, note that if we have some curve
singular at the origin, this could be partially desingularized. (A desingularization or a
resolution of singularities of a variety X is a proper birational morphism X̃ → X from a non-
singular scheme. We are interested in desingularizations for many reasons. For example,
we understand nonsingular curves quite well. and we could hope to understand other
curves through their desingularizations. This philosophy holds true in higher dimension
as well.) For example, the curve y2 = x3 + x2, which is nonsingular except for a node at
the origin, then we can take the preimage of the curve minus the origin, and take the clo-
sure of this locus in the blow-up, and we’ll obtain a nonsingular curve; the two branches
of the node downstairs are separated upstairs. (This will later be an exercise, once we’ve
defined things properly. The result will be called the proper transform of the curve.)

Let’s generalize this. First, we can blow up An at the origin (or more informally, “blow
up the origin”), getting a subvariety of An × Pn−1. More algebraically, If x1, . . . , xn are
coordinates on An, and X1, . . . , Xn are projective coordinates on Pn−1, then the blow-up
Bl~0 An is given by the equations xiXj − xjXi = 0. Once again, this is smooth: Pn−1 is
smooth, and for each point [`] ∈ Pn−1, we have a smooth choice of p ∈ `.

We can extend this further, by blowing up An+m along a coordinate m-plane An by
adding m more variables xn+1, . . . , xn+m to the previous example; we get a subset of
An+m × Pn−1.

Then intuitively, we could extend this to blowing up a nonsingular subvariety of a
nonsingular variety. We’ll make this more precise. In the course of doing so, we will
accidentally generalize this notion greatly, defining the blow-up of any finite type sheaf
of ideals in a scheme. In general, blowing up may not have such an intuitive description
as in the case of blowing up something nonsingular inside something nonsingular — it
does great violence to the scheme — but even then, it is very useful (for example, in
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developing intersection theory). The result will be very powerful, and will touch on many
other useful notions in algebra (such as the Rees algebra) that we won’t discuss here.

Our description will depend only the closed subscheme being blown up, and not on co-
ordinates. That remedies a defect was already present in the first baby example, blowing
up the plane at the origin. It is not obvious that if we picked different coordinates for the
plane (preserving the origin as a closed subscheme) that we wouldn’t have two different
resulting blow-ups.

As is often the case, there are two ways of understanding this notion, and each is useful
in different circumstances. The first is by universal property, which lets you show some
things without any work. The second is an explicit construction, which lets you get your
hands dirty and compute things (and implies for example that the blow-up morphism is
projective).

3. BLOWING UP, BY UNIVERSAL PROPERTY

I’ll start by defining the blow-up using the universal property. The disadvantage of
starting here is that this definition won’t obviously be the same as the examples I just
gave. It won’t even look related!

Suppose X ↪→ Y is a closed subscheme corresponding to a finite type sheaf of ideals. (If
Y is locally Noetherian, the “finite type” hypothesis is automatic, so Noetherian readers
can ignore it.)

The blow-up X ↪→ Y is a fiber diagram

EXY
� � //

��

BlX Y

β

��

X
� � // Y

such that EXY is an effective Cartier divisor on BlX Y (and is the scheme-theoretical pullback
of X on Y), such any other such fiber diagram

(1) D
� � //

��

W

��

X
� � // Y,

where D is an effective Cartier divisor on W, factors uniquely through it:

D
� � //

��

W

��

EXY
� � //

��

BlX Y

��

X
� � // Y.
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(Recall that an effective Cartier divisor is locally cut out by one equation that is not a
zero-divisor; equivalently, it is locally cut out by one equation, and contains no associated
points. This latter description will prove crucial.) BlX Y is called the blow-up (of Y along X,
or of Y with center X). EXY is called the exceptional divisor. (Bl and β stand for “blow-up”,
and E stands for “exceptional”.)

By a universal property argument, if the blow-up exists, it is unique up to unique iso-
morphism. (We can even recast this more explicitly in the language of Yoneda’s lemma:
consider the category of diagrams of the form (1), where morphisms are of the form

D
� � //

��

W

��

D ′
� � //

��

W ′

��

X
� � // Y.

Then the blow-up is a final object in this category, if one exists.)

If Z ↪→ Y is any closed subscheme of Y, then the (scheme-theoretic) pullback β−1Z is
called the total transform of Z. We will soon see that β is an isomorphism away from X

(Observation 3.4). β−1(Z − X) is called the proper transform or strict transform of Z. (We
will use the first terminology. We will also define it in a more general situation.) We’ll
soon see that the proper transform is naturally isomorphic to BlZ∩X Z, where by Z ∩ X we
mean the scheme-theoretic intersection (the blow-up closure lemma 3.7).

We will soon show that the blow-up always exists, and describe it explicitly. But first,
we make a series of observations, assuming that the blow up exists.

3.1. Observation. If X is the empty set, then BlX Y = Y. More generally, if X is a Cartier
divisor, then the blow-up is an isomorphism. (Reason: idY : Y → Y satisfies the universal
property.)

3.2. Exercise. If U is an open subset of Y, then BlU∩X U ∼= β−1(U), where β : BlX Y → Y is
the blow-up. (Hint: show β−1(U) satisfies the universal property!)

Thus “we can compute the blow-up locally.”

3.3. Exercise. Show that if Yα is an open cover of Y (as α runs over some index set), and
the blow-up of Yα along X ∩ Yα exists, then the blow-up of Y along X exists.

3.4. Observation. Combining Observation 3.1 and Exercise 3.2, we see that the blow-up is
an isomorphism away from the locus you are blowing up:

β|BlX Y−EXY : BlX Y − EXY → Y − X

is an isomorphism.
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3.5. Observation. If X = Y, then the blow-up is the empty set: the only map W → Y such
that the pullback of X is a Cartier divisor is ∅ ↪→ Y. In this case we have “blown Y out of
existence”!

3.6. Exercise (blow-up preserves irreducibility and reducedness). Show that if Y is irreducible,
and X doesn’t contain the generic point of Y, then BlX Y is irreducible. Show that if Y is
reduced, then BlX Y is reduced.

The following blow-up closure lemma is useful in several ways. At first, it is confusing
to look at, but once you look closely you’ll realize that it is not so unreasonable.

Suppose we have a fibered diagram

W
� �cl. imm.

//

��

Z

��

X
� �cl. imm.

// Y

where the bottom closed immersion corresponds to a finite type ideal sheaf (and hence
the upper closed immersion does too). The first time you read this, it may be helpful to
consider the special case where Z → Y is a closed immersion.

Then take the fiber product of this square by the blow-up β : BlX Y → Y, to obtain

Z ×Y EXY
� � //

��

Z ×Y BlX Y

��

EXY
� � Cartier

// BlX Y.

The bottom closed immersion is locally cut out by one equation, and thus the same is true
of the top closed immersion as well. However, it need not be a non-zero-divisor, and thus
the top closed immersion is not necessarily an effective Cartier divisor.

Let Z be the scheme-theoretic closure of Z ×Y BlX Y − W ×Y BlX Y in Z ×Y BlX Y. Note
that in the special case where Z → Y is a closed immersion, Z is the proper transform, as
defined in §3. For this reason, it is reasonable to call Z the proper transform of Z even if
Z isn’t a closed immersion. Similarly, it is reasonable to call Z×Z BlX Y the total transform
even if Z isn’t a closed immersion.

Define EZ ↪→ Z as the pullback of EXY to Z, i.e. by the fibered diagram

EZ
� � //

� _

cl. imm.
��

Z� _

cl. imm.
��

proper transform

Z ×Y EXY
� � //

��

Z ×Y BlX Y

��

total transform

EXY
� � Cartier

// BlX Y.
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Note that EZ is Cartier on Z (as it is locally the zero-scheme of a single function that does
not vanish on any associated points of Z).

3.7. Blow-up closure lemma. — (BlZ W, EZW) is canonically isomorphic to (Z, EZ).

This is very handy.

The first three comments apply to the special case where Z → W is a closed immersion,
and the fourth basically tells us we shouldn’t have concentrated on this special case.

(1) First, note that if Z → Y is a closed immersion, then this states that the proper
transform (as defined in §3) is the blow-up of Z along the scheme-theoretic intersection
W = X ∩ Z.

(2) In particular, it lets you actually compute blow-ups, and we’ll do lots of examples
soon. For example, suppose C is a plane curve, singular at a point p, and we want to
blow up C at p. Then we could instead blow up the plane at p (which we have already
described how to do, even if we haven’t yet proved that it satisfies the universal property
of blowing up), and then take the scheme-theoretic closure of C − p in the blow-up.

(3) More generally, if W is some nasty subscheme of Z that we wanted to blow-up,
and Z were a finite type k-scheme, then the same trick would work. We could work
locally (Exercise 3.2), so we may assume that Z is affine. If W is cut out by r equations
f1, . . . , fr ∈ Γ(OZ), then complete the f’s to a generating set f1, . . . , fn of Γ(OZ). This gives
a closed immersion Y ↪→ An such that W is the scheme-theoretic intersection of Y with a
coordinate linear space Ar.

3.8. (4) Most generally still, this reduces the existence of the blow-up to a specific special
case. (If you prefer to work over a fixed field k, feel free to replace Z by k in this dis-
cussion.) Suppose that for each n, Bl(x1,...,xn) Spec Z[x1, . . . , xn] exists. Then I claim that
the blow-up always exists. Here’s why. We may assume that Y is affine, say Spec B, and
X = Spec B/(f1, . . . , fn). Then we have a morphism Y → An

Z
given by xi 7→ fi, such that

X is the scheme-theoretic pullback of the origin. Hence by the blow-up closure lemma,
BlX Y exists.

3.9. Tricky Exercise+. Prove the blow-up closure lemma. Hint: obviously, construct maps
in both directions, using the universal property. The following diagram may or may not
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help.

EZ

zzvvvvvvvvvvvvvvvvvvvvvvvv

� � Cartier
//

55

uu

� _

cl. imm.

��

Z55

uu

{{wwwwwwwwwwwwwwwwwwwwwwwww � _

cl. imm.

��

EWZ
� � Cartier

//

��

BlW Z

��

W
� � //

$$III
II

II
II

II
Z

$$HHHH
HHHH

HHH EXY
� � Cartier

//

zzvv
vv

vv
vv

vv

BlX Y

{{vvvvvvvvv

X
� � // Y

3.10. Exercise. If Y and Z are closed subschemes of a given scheme X, show that BlY Y∪Z ∼=
BlY∩Z Z. (In particular, if you blow up a scheme along an irreducible component, the
irreducible component is blown out of existence.)

4. THE BLOW-UP EXISTS, AND IS PROJECTIVE

It is now time to show that the blow up always exists. I’ll give two arguments, be-
cause I find them enlightening in two different ways. Both will imply that the blow-up
morphism is projective. Hence the blow-up morphism is projective, hence quasicompact,
proper, finite type, separated. In particular, if Y → Z is projective (resp. quasiprojective,
quasicompact, proper, finite type, separated), so is BlX Y → Z. The blow-up of a k-variety
is a k-variety (using the fact that irreducibility, reducedness are preserved, Exercise 3.6).

Approach 1. As explained above (§3.8), it suffices to show that Bl(x1,...,xn) Spec Z[x1, . . . , xn]

exists. But we know what it is supposed to be: the locus in
Spec Z[x1, . . . , xn] × Proj Z[X1, . . . , Xn]

such that xiXj − xjXi = 0. We’ll show this soon.

Approach 2. We can describe the blow-up all at once as a Proj.

4.1. Theorem (Proj description of the blow-up). — Suppose X ↪→ Y is a closed subscheme cut out
by a finite type sheaf of ideals I ↪→ OY . Then

Proj
(

OY ⊕ I ⊕ I2 ⊕ I3 ⊕ · · ·
)

→ Y

satisfies the universal property of blowing up.

We’ll prove this soon (Section 4.2), after seeing what this gives us. (The reason we had a
finite type requirement is that I wanted this Proj to exist; we needed the sheaf of algebras
to satisfy the conditions stated earlier.)

But first, we should make sure that the preimage of X is indeed an effective Cartier
divisor. We can work affine-locally (Exercise 3.2), so I’ll assume that Y = Spec B, and X is
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cut out by the finitely generated ideal I. Then
BlX Y = Proj

(

B ⊕ I ⊕ I2 ⊕ · · ·
)

.

(We are slightly abusing notation by using the notation BlX Y, as we haven’t yet shown
that this satisfies the universal property. But I hope that by now you trust me.)

The preimage of X isn’t just any effective Cartier divisor; it corresponds to the invertible
sheaf O(1) on this Proj. Indeed, O(1) corresponds to taking our graded ring, chopping
off the bottom piece, and sliding all the graded pieces to the left by 1; it is the invertible
sheaf corresponding to the graded module

I ⊕ I2 ⊕ I3 ⊕ · · ·

(where that first summand I has grading 0). But this can be interpreted as the scheme-
theoretic pullback of X, which corresponds to the ideal I of B:

I
(

B ⊕ I ⊕ I2 ⊕ · · ·
)

↪→ B ⊕ I ⊕ I2 ⊕ · · · .

Thus the scheme-theoretic pullback of X ↪→ Y to ProjOY ⊕ I ⊕ I2 ⊕ · · · , the invertible
sheaf corresponding to I ⊕ I2 ⊕ I3 ⊕ · · · , is an effective Cartier divisor in class O(1).
Once we have verified that this construction is indeed the blow-up, this divisor will be
our exceptional divisor EXY.

Moreover, we see that the exceptional divisor can be described beautifully as a Proj

over X:
(2) EXY = Proj

X
B/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · .

We’ll later see that in good circumstances (if X is a local complete intersection in some-
thing nonsingular, or more generally a local complete intersection in a Cohen-Macaulay
scheme) this is a projective bundle (the “projectivized normal bundle”).

4.2. Proof of the universal property, Theorem 4.1. Let’s prove that this Proj construction
satisfies the universal property. Then approach 1 will also follow, as a special case of
approach 2. You may ask why I bothered with approach 1. I have two reasons: one is
that you may find it more comfortable to work with this one nice ring, and the picture
may be geometrically clearer to you (in the same way that thinking about the blow-up
closure lemma in the case where Z → Y is a closed immersion is more intuitive). The
second reason is that, as you’ll find in the exercises, you’ll see some facts more easily in
this explicit example, and you can then pull them back to more general examples.

Proof. Reduce to the case of affine target R with ideal I. Reduce to the case of affine
source, with principal effective Cartier divisor t. (A principal effective Cartier divisor is
cut out by a single non-zero-divisor. Recall that an effective Cartier divisor is cut out only
locally by a single non-zero divisor.) Thus we have reduced to the case Spec S → Spec R,
corresponding to f : R → S. Say (x1, . . . , xn) = I, with (f(x1), . . . , f(xn)) = (t). We’ll
describe one map Spec S → Proj R[I] that will extend the map on the open set Spec St →

Spec R. It is then unique: a map to a separated R-scheme is determined by its behavior
away from the associated points (proved earlier). We map R[I] to S as follows: the degree
one part is f : R → S, and f(Xi) (where Xi corresponds to xi, except it is in degree 1) goes
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to f(xi)/t. Hence an element X of degree d goes to X/(td). On the open set D+(X1), we get
the map R[X2/X1, . . . , Xn/X1]/(x2 −X2/X1x1, . . . , xiXj −xjXi, . . . ) → S (where there may be
many relations) which agrees with f away from D(t). Thus this map does extend away
from V(I). �

Here are some applications and observations arising from this construction of the blow-
up.

4.3. Observation. We can verify that our initial motivational examples are indeed blow-
ups. For example, blowing up A2 (with co-ordinates x and y) at the origin yields: B =

k[x, y], I = (x, y), and Proj B ⊕ I ⊕ I2 = Proj B[X, Y] where the elements of B have degree
0, and X and Y are degree 1 and correspond to x and y.

4.4. Observation. Note that the normal bundle to a Cartier divisor D is the invertible sheaf
O(D)|D, the invertible sheaf corresponding to the D on the total space, then restricted to
D. (This was discussed earlier in the section on differentials.) (Reason: if D corresponds
to the ideal sheaf I, then recall that I = O(D)∨, and that the conormal sheaf was I/I2 =

I |D.) The ideal sheaf corresponding to the exceptional divisor is O(1), so the invertible
sheaf corresponding to the exceptional divisor is O(−1). (I prefer to think of this in light
of approach 1, but there is no real difference.) Thus for example in the case of the blow-up
of a point in the plane, the exceptional divisor has normal bundle O(−1). In the case of
the blow-up of a nonsingular subvariety of a nonsingular variety, the blow up turns out to
be nonsingular (a fact discussed soon in §6.1), and the exceptional divisor is a projective
bundle over X, and the normal bundle to the exceptional divisor restricts to O(−1).

4.5. More serious application: dimensional vanishing for quasicoherent sheaves on
quasiprojective schemes. Here is something promised long ago. I want to point out
something interesting here: in proof I give below, we will need to potentially blow up
arbitrary closed schemes. We won’t need to understand precisely what happens when
we do so; all we need is the fact that the exceptional divisor is indeed a (Cartier) divisor.

5. EXPLICIT COMPUTATIONS

In this section you will do a number of explicit of examples, to get a sense of how
blow-ups behave, how they are useful, and how one can work with them explicitly. For
convenience, all of the following are over an algebraically closed field k of characteristic
0.

5.1. Example: Blowing up the plane along the origin. Let’s first blow up the plane A2
k

along the origin, and see that the result agrees with our discussion in §2. Let x and y be
the coordinates on A2

k. The the blow-up is Proj k[x, y, X, Y] where xY − yX = 0. This is
naturally a closed subscheme of A2

k × P1
k, cut out (in terms of the projective coordinates X

and Y on P1
k) by xY − yX = 0. We consider the two usual patches on P1

k: [X; Y] = [s; 1] and
[1; t]. The first patch yields Spec k[x, y, s]/(sy−x), and the second gives Spec k[x, y, t]/(y−
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xt). Notice that both are nonsingular: the first is naturally Spec k[y, s] ∼= A2
k, the second is

Spec k[x, t] ∼= A2
k.

Let’s describe the exceptional divisor. We first consider the first (s) patch. The ideal is
generated by (x, y), which in our ys-coordinates is (ys, y) = (y), which is indeed princi-
pal. Thus on this patch the exceptional divisor is generated by y. Similarly, in the second
patch, the exceptional divisor is cut out by x. (This can be a little confusing, but there is
no contradiction!)

5.2. The proper transform of a nodal curve. Consider next the curve y2 = x3 + x2 inside the
plane A2

k. Let’s blow up the origin, and compute the total and proper transform of the
curve. (By the blow-up closure lemma, the latter is the blow-up of the nodal curve at the
origin.) In the first patch, we get y2 − s2y2 − s3y3 = 0. This factors: we get the exceptional
divisor y with multiplicity two, and the curve 1 − s2 − y3 = 0. Easy exercise: check that
the proper transform is nonsingular. Also, notice where the proper transform meets the
exceptional divisor: at two points, s = ±1. This corresponds to the two tangent directions
at the origin. (Notice that s = y/x.)

5.3. Exercise. Describe both the total and proper transform of the curve C given by
y = x2 − x in Bl(0,0) A2. Verify that the proper transform of C is isomorphic to C. Interpret
the intersection of the proper transform of C with the exceptional divisor E as the slope
of C at the origin.

5.4. Exercise: blowing up a cuspidal plane curve. Describe the proper transform of the
cuspidal curve C ′ given by y2 = x3 in the plane A2

k. Show that it is nonsingular. Show
that the proper transform of C meets the exceptional divisor E at one point, and is tangent
to E there.

5.5. Exercise. (a) Desingularize the tacnode y2 = x4 by blowing up the plane at the origin
(and taking the proper transform), and then blowing up the resulting surface once more.
(b) Desingularize y8 − x5 = 0 in the same way. How many blow-ups do you need?
(c) Do (a) instead in one step by blowing up (y, x2).

5.6. Exercise. Blowing up a nonreduced subscheme of a nonsingular scheme can give you
something singular, as shown in this example. Describe the blow up of the ideal (x, y2) in
A2

k. What singularity do you get? (Hint: it appears in a nearby exercise.)

5.7. Exercise. Blow up the cone point z2 = x2 + y2 at the origin. Show that the resulting
surface is nonsingular. Show that the exceptional divisor is isomorphic to P1.

5.8. Harder but enlightening exercise. If X ↪→ Pn is a projective scheme, show that the
exceptional divisor of the blow up the affine cone over X at the origin is isomorphic to X,
and that its normal bundle is OX(−1). (I prefer approach 1 here, but both work.)

10



In the case X = P1, we recover the blow-up of the plane at a point. In particular,
we again recover the important fact that the normal bundle to the exceptional divisor is
O(−1).

5.9. Exercise. Show that the multiplicity of the exceptional divisor in the total transform
of a subscheme of An when you blow up the origin is the lowest degree that appears in a
defining equation of the subscheme. (For example, in the case of the nodal and cuspidal
curves above, Example 5.2 and Exercise 5.4 respectively, the exceptional divisor appears
with multiplicity 2.) This is called the multiplicity of the singularity.

5.10. Exercise. Suppose Y is the cone x2 + y2 = z2, and X is the ruling of the cone x = 0,
y = z. Show that BlX Y is nonsingular. (In this case we are blowing up a codimension 1

locus that is not a Cartier divisor. Note that it is Cartier away from the cone point, so you
should expect your answer to be an isomorphism away from the cone point.)

5.11. Harder but useful exercise (blow-ups resolve base loci of rational maps to projective space).
(I find this easier via method 1.) Suppose we have a scheme Y, an invertible sheaf L, and
a number of sections s0, . . . , sn of L. Then away from the closed subscheme X cut out
by s0 = · · · = sn = 0, these sections give a morphism to Pn. Show that this morphism
extends to a morphism BlX Y → Pn, where this morphism corresponds to the invertible
sheaf (π∗L)(−EXY), where π : BlX Y → Y is the blow-up morphism. In other words,
“blowing up the base scheme resolves this rational map”. (Hint: it suffices to consider an
affine open subset of Y where L is trivial.)

6. TWO STRAY FACTS

There are two stray facts I want to mention.

6.1. Blowing up a nonsingular in a nonsingular. The first is that if you blow up a non-
singular subscheme of a nonsingular locally Noetherian scheme, the result is nonsingular.
I didn’t have the time to prove this, but I discussed some of the mathematics behind it.
(This is harder than our previous discussion. Also, it uses a flavor of argument that in
general I haven’t gotten to, about local complete intersections and Cohen-Macaulayness.)
Moreover, for a local complete intersection X ↪→ Y cut out by ideal sheaf I, I/I2 is locally
free (class 39/40, Theorem 2.20, p. 10). Then it is a fact (unproved here) that for a lo-
cal complete intersection, the natural map Symn I/I2

→ In/In+1 is an isomorphism. Of
course it suffices to prove this for affine open sets. More generally, if A is Cohen-Macaulay
(recall that I’ve stated that nonsingular schemes are Cohen-Macaulay), and x1, . . . , xr ∈ m

is a regular sequence, with I = (x1, . . . , xr), then the natural map is an isomorphism. You
can read about this at p. 110 of Matsumura’s Commutative Algebra.

Assuming this fact, we conclude that if X ↪→ Y is a complete intersection in a non-
singular scheme (or more generally cut out by a regular sequence in a Cohen-Macaulay
scheme), the exceptional divisor is the projectivized normal bundle (by (2)). (Exercise:
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Blow up (xy, z) in A3, and verify that the exceptional divisor is indeed the projectivized
normal bundle.)

In particular, in the case where we blow up a nonsingular subvariety in a nonsingular
variety, the exceptional divisor is nonsingular. We can then show that the blow-up is
nonsingular as follows. The blow-up BlX Y remains nonsingular away from EXY, as it is
here isomorphic to the nonsingular space Y −X. Thus we need check only the exceptional
divisor. Fix any point of the exceptional divisor p. Then the dimension of EXY at p is
precisely the dimension of the Zariski tangent space (by nonsingularity). Moreover, the
dimension of BlX Y at p is one more than that of EXY (by Krull’s Principal Ideal Theorem),
as the latter is an effective Cartier divisor), and the dimension of the Zariski tangent space
of BlX Y at p is at most one more than that of EXY. But the first of these is at most as big as
the second, so we must have equality, which means that BlX Y is nonsingular at p.

6.2. Exercise. Suppose X is an irreducible nonsingular subvariety of a nonsingular variety
Y, of codimension at least 2. Describe a natural isomorphism Pic BlX Y ∼= Pic Y ⊕Z. (Hint:
compare divisors on BlX Y and Y. Show that the exceptional divisor EXY gives a non-
torsion element of Pic(BlX Y) by describing a P1 on BlX Y which has intersection number
−1 with EXY.)

(If I had more time, I would have used this to give Hironaka’s example of a nonpro-
jective proper nonsingular threefold. If you are curious and have ten minutes, please ask
me! It includes our nonprojective proper surface as a closed subscheme, and indeed that
is how we can show nonprojectivity.)

6.3. Castelnuovo’s criterion.

A curve in a nonsingular surface that is isomorphic to P1 with normal bundle O(−1)

is called a (−1)-curve. We’ve shown that if we blow up a nonsingular point of a surface
at a (reduced) point, the exceptional divisor is a (−1)-curve. Castelnuovo’s criterion is
the converse: if we have a quasiprojective surface containing a (−1)-curve, that surface is
obtained by blowing up another surface at a reduced nonsingular point. (We say that we
can “blow down” the (−1)-curve.)

E-mail address: vakil@math.stanford.edu
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1. SMOOTH, ÉTALE, UNRAMIFIED

We will next describe analogues of some important notions in differential geometry
— the following particular types of maps of manifolds. They naturally form a family of
three.

• Submersions are maps that induce surjections of tangent spaces everywhere. They
are useful in the notion of a fibration.

• Covering spaces are maps that induce isomorphisms of tangent spaces, or equiva-
lently, are local isomorphisms.

• Immersions are maps that induce injections of tangent spaces.

Warning repeated from earlier: “immersion” is often used in algebraic geometry with a
different meaning. We won’t use this word in an algebro-geometric context (without an
adjective such as “open” or “closed”) in order to avoid confusion. I drew pictures of the
three. (A fourth notion is related to these three: a map of manifolds is an embedding if it
is an immersion that is an inclusion of sets, where the source has the subspace topology.
This is analogous to locally closed immersion in algebraic geometry.)

We will define algebraic analogues of these three notions: smooth, étale, and unrami-
fied. In the case of nonsingular varieties over an algebraically closed field, we could take
the differential geometric definition. We would like to define these notions more gener-
ally. Indeed, one of the points of algebraic geometry is to generalize “smooth” notions to
singular situations. Also, we’ll want to make arguments by “working over” the generic
point, and also over nonreduced subschemes. We may even want to do things over non-
algebraically closed fields, or over the integers.

Date: Thursday, May 25 and Tuesday, May 30, 2006. Updated June 8.
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Our definitions will be combinations of notions we’ve already seen, and thus we’ll see
that they have many good properties. We’ll see (§2.1) that in the category of nonsingular
varieties over algebraically closed fields, we recover the differential geometric definition.
Our three definitions won’t be so obviously a natural triplet, but I’ll mention the definition
given in EGA (§4.1), and in this context once again the definitions are very similar.

Let’s first consider some examples of things we want to be analogues of “covering
space” and “submersion”, and see if they help us make good definitions.

We’ll start with something we would want to be a covering space. Consider the parabola
x = y2 projecting to the x-axis, over the complex numbers. (This example has come up
again and again!) We might reasonably want this to be a covering space away from the
origin. We might also want the notion of covering space to be an open condition: the
locus where a morphism is a covering space should be open on the source. This is true
for the differential geometric definition. (More generally, we might want this notion to be
preserved by base change.) But then this should be a “covering space” over the generic
point, and here we get a non-trivial residue field extension (C(y)/C(y2)), not an isomor-
phism. Thus we are forced to consider (the Spec’s of) certain finite extensions of fields to
be covering spaces. (We’ll see soon that we just want separable extensions.)

Note also in this example there are no (non-empty) Zariski-open subsets U ⊂ X and
V ⊂ V where the map sends U into V isomorphically. This will later lead to the notion of
the étale topology, which is a bizarre sort of topology (not even a topology in the usual
sense, but a “Grothendieck topology”).

1.1. Here is an issue with smoothness: we would certainly want the fibers to be smooth, so
reasonably we would want the fibers to be nonsingular. But we know that nonsingularity
over a field does not behave well over a base change (consider Spec k(t)[u]/(up − t) →
Spec k(t) and base change by Spec k(t)[v]/(vp − t) → Spec k(t), where char k = p). We can
patch that by noting that nonsingularity behaves well over algebraically closed fields, and
hence we could require that all the geometric fibers are nonsingular. But that isn’t quite
enough. For example, a horrible map from a scheme X to a curve Y that maps a different
nonsingular variety to a each point Y (X is an infinite disjoint union of these) should not
be considered a submersion in any reasonable sense. Also, we might reasonably not want
to consider Spec k → Spec k[ε]/ε2 to be a submersion (for example, this isn’t surjective on
tangent spaces, and more generally the picture “doesn’t look like a fibration”). (I drew
pictures of these two pathologies.) Both problems are failures of π : X → Y to be a nice,
”continuous” family. Whenever we are looking for some vague notion of “niceness” we
know that “flatness” will be in the definition. (This is the reason we waited so long before
introducing the notion of smoothness — we needed to develop flatness first!)

One last issue: we will require the geometric fibers to be varieties, so we can think of
them as “smooth” in the old-fashioned intuitive sense. We could impose this by requir-
ing our morphisms to be locally of finite type, or (a stronger condition) locally of finite
presentation.
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I should have defined “locally of finite presentation” back when we defined “locally of
finite type” and the many other notions satisfying the affine covering lemma. It isn’t any
harder. A morphism of affine schemes Spec A → Spec B is locally of finite presentation if it
corresponds to B → B[x1, . . . , xn]/(f1, . . . , fr) — A should be finitely generated over B, and
also have a finite number of relations. This notion satisfies the hypotheses of the affine
covering lemma. A morphism of schemes π : X → Y is locally of finite presentation if every
map of affine open sets Spec A → Spec B induced by π is locally of finite presentation. If
you work only with locally Noetherian schemes, then these two notions are the same.

I haven’t thought through why Grothendieck went with the stricter condition of “lo-
cally of finite presentation” in his definition of smooth etc., rather than “locally of finite
type”.

Finally, we define our three notions!

1.2. Definition. A morphism π : X → Y is smooth of relative dimension n provided that it
is locally of finite presentation and flat of relative dimension n, and ΩX/Y is locally free of
rank n.

A morphism π : X → Y is étale provided that it is locally of finite presentation and flat,
and ΩX/Y = 0.

A morphism π : X → Y is unramified provided that it is locally of finite presentation,
and ΩX/Y = 0.

1.3. Examples.

• An
Y → Y, Pn

Y → Y are smooth morphisms of relative dimension n.
• Locally finitely presented open immersions are étale.
• Unramified. Locally finitely presented locally closed immersions are unramified.

1.4. Quick observations and comments.

1.5. All three notions are local on the target, and local on the source, and are preserved
by base change. That’s because all of the terms arising in the definition have these
properties. Exercise. Show that all three notions are open conditions. State this rigorously
and prove it. (Hint: Given π : X → Y, then there is a largest open subset of X where π is
smooth of relative dimension n, etc.)

1.6. Note that π is étale if and only if π is smooth and unramified, if and only if π is flat
and unramified.

1.7. Jacobian criterion. The smooth and étale definitions are perfectly set up to use a
Jacobian criterion. Exercise. Show that Spec B[x1, . . . , xn]/(f1, . . . , fr) → Spec B is smooth
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of relative dimension n (resp. étale) if it is flat of relative dimension n (resp. flat) and the
corank of Jacobian matrix is n (resp. the Jacobian matrix is full rank).

1.8. Exercise: smoothness etc. over an algebraically closed field. Show that if k is an alge-
braically closed field, X → Spec k is smooth of relative dimension n if and only if X is
a disjoint union of nonsingular k-varieties of dimension n. (Hint: use the Jacobian crite-
rion.) Show that X → Spec k is étale if and only if it is unramified if and only if X is a union
of points isomorphic to Spec k. More generally, if k is a field (not necessarily algebraically
closed), show that X → Spec k is étale if and only if it is unramified if and only if X is the
disjoint union of Spec’s of finite separable extensions of k.

1.9. A morphism π : X → Y is smooth if it is locally of finite presentation and flat, and in
an open neighborhood of every point x ∈ X in which π is of constant relative dimension,
ΩX/Y is locally free of that relative dimension. (I should have shown earlier that the locus
where a locally of finite presentation morphism is flat of a given relative dimension is
open, but I may not have. We indeed showed the fact without the “relative dimension”
statement, and the argument is essentially the same with this condition added.) (Exercise.
Show that π is smooth if X can be written as a disjoint union X =

∐
n≥0 Xn where π|Xn is

smooth of relative dimension n.) This notion isn’t really as “clean” as “smooth of relative
dimension n”, but people often use the naked adjective “smooth” for simplicity.

Exercise. Show that étale is the same as smooth of relative dimension 0. In other words,
show that étale implies relative dimension 0. (Hint: if there is a point x ∈ X where π has
positive relative dimension, show that ΩX/Y is not 0 at x. You may want to base change,
to consider just the fiber above π(x).)

1.10. Note that unramified doesn’t have a flatness hypothesis, and indeed we didn’t ex-
pect it, as we would want the inclusion of the origin into A1 to be unramified. Thus
seemingly pathological things of the sort we excluded from the notion of “smooth” and
“unramified” morphisms are unramified. For example, if X =

∐
z∈C

Spec C, then the mor-
phism X → A1

C
sending the point corresponding to z to the point z ∈ A1

C
is unramified.

Such is life.

Exercise. Suppose X
f //

h=g◦f

��?
??

??
??

Y

g
����

��
��

�

Z

are locally finitely presented morphisms.

(a) Show that if h is unramified, then so is f. (Hint: property P exercise.)
(b) Suppose g is étale. Show that f is smooth (resp. étale, unramified) if and only if h is.

(Hint: Observe that ΩX/Y → ΩX/Y is an isomorphism from the relative cotangent
sequence, see 2.3 for a reminder.)

Regularity vs. smoothness. Suppose char k = p, and consider the morphism Spec k(u) →
Spec k(up). Then the source is nonsingular, but the morphism is not étale (or smooth, or
unramified).
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In fact, if k is not algebraically closed, “nonsingular” isn’t a great notion, as we saw
in the fall when we had to work hard to develop the theory of nonsingularity. Instead,
“smooth (of some dimension)” over a field is much better. You should almost go back
in your notes and throw out our discussion of nonsingularity. But don’t — there were
a couple of key concepts that have been useful: discrete valuation rings (nonsingularity
in codimension 1) and nonsingularity at closed points of a variety (nonsingularity in top
codimension).

2. HARDER FACTS

I want to segregate three facts which require more effort, to emphasize that the earlier
facts are automatic given what we know.

2.1. Connection to differential-geometric notion of smoothness.

The following exercise makes the connection to the differential-geometric notion of
smoothness. Unfortunately, we will need this fact in the next section on generic smooth-
ness.

2.2. Trickier Exercise. Suppose π : X → Y is a morphism of smooth (pure-dimensional)
varieties over a field k. Let n = dim X − dim Y. Suppose that for each closed point x ∈ X,
the induced map on the Zariski tangent space Tf : Tx → Ty is surjective. Show that f is
smooth of relative dimension n. (Hint: The trickiest thing is to show flatness. Use the
(second) local criterion for flatness.)

I think this is the easiest of the three “harder” facts, and it isn’t so bad.

For pedants: I think the same argument works over a more arbitrary base. In other words,
suppose in the following diagram of pure-dimensional Noetherian schemes, Y is reduced.

X //

smooth ��?
??

??
??

Y

smooth����
��

��
�

Z

Let n = dim X − dim Y. Suppose that for each closed point x ∈ X, the induced map on the Zariski
tangent space Tf : Tx → Ty is surjective. Show that f is smooth of relative dimension n. I think
the same argument works, with a twist at the end using Exercise 1.10(b). Please correct me if I’m
wrong!

2.3. The relative cotangent sequence is left-exact in good circumstances.

Recall the relative cotangent sequence. Suppose X
f // Y

g
// Z be morphisms of

schemes. Then there is an exact sequence of quasicoherent sheaves on X

f∗ΩY/Z → ΩX/Z → ΩX/Y → 0.
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We have been always keeping in mind that if you see a right-exact sequence, you should
expect that this is the tail end of a long exact sequence. In this case, you should expect that
the next term to the left (the “H1 term”) should depend just on X/Y, and not on Z, because
the last term on the right does. Indeed this is the case: these “homology” groups are called
André-Quillen homology groups. You might also hope then that in some mysteriously
“good” circumstances, this first “H1” on the left should vanish, and hence the relative
cotangent sequence should be exact on the left. Indeed that is the case, as is hinted by the
following exercise.

2.4. Exercise on differentials. If X → Y is a smooth morphism, show that the relative
cotangent sequence is exact on the left as well.

This exercise is the reason this discussion is in the “harder” section — the rest is easy.
Can someone provide a clean proof of this fact?

2.5. Unimportant exercise. Predict a circumstance in which the relative conormal sequence
is left-exact.

2.6. Corollary. Suppose f is étale. Then the pullback of differentials f∗ΩY/Z → ΩX/Z is an
isomorphism. (This should be very believable to you from the picture you should have
in your head!)

2.7. Exercise. Show that all three notions are preserved by composition. (More precisely,
in the smooth case, smooth of relative dimension m composed with smooth of relative
dimension n is smooth of relative dimension n + m.) You’ll need Exercise 2.4 in the
smooth case.

2.8. Easy exercise. Show that all three notions are closed under products. (More pre-
cisely, in the case of smoothness: If X, Y → Z are smooth of relative dimension m and n

respectively, then X ×Z Y → Z is smooth of relative dimension m + n.) (Hint: This is
a consequence of base change and composition, as we have discussed earlier. Consider
X ×Z Y → Y → Z.)

2.9. Exercise: smoothness implies surjection of tangent sheaves. Continuing the terminology
of the above, Suppose X → Y is a smooth morphism of Z-schemes. Show that 0 → TX/Y →
TX/Z → f∗TY/Z → 0 is an exact sequence of sheaves, and in particular, TX/Z → f∗TY/Z is
surjective, paralleling the notion of submersion in differential geometry. (Recall TX/Y =

Hom(ΩX/Y,OX) and similarly for TX/Z, TY/Z.)

2.10. Characterization of smooth and etale in terms of fibers.
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By Exercise 1.8, we know what the fibers look like for étale and unramified morphisms;
and what the geometric fibers look like for smooth morphisms. There is a good charac-
terization of these notions in terms of the geometric fibers, and this is a convenient way
of thinking about the three definitions.

2.11. Exercise: characterization of etale and unramified morphisms in terms of fibers. Suppose
π : X → Y is a morphism locally of finite presentation. Prove that π is étale if and only
if it is flat, and the geometric fibers (above Spec k → Y, say) are unions of Spec’s of fields
(with discrete topology), each a finite separable extension of the field k. Prove that π is
unramified if and only if the geometric fibers (above Spec k → Y, say) are unions of Spec’s
of fields (with discrete topology), each a finite separable extension of the field k. (Hint: a
finite type sheaf that is 0 at all points must be the 0-sheaf.)

There is an analogous statement for smooth morphisms, that is harder. (That’s why this
discussion is in the “harder” section.)

2.12. Harder exercise. Suppose π : X → Y is locally of finite presentation. Show that π is
smooth of relative dimension n if and only if π is flat, and the geometric fibers are disjoint
unions of n-dimensional nonsingular varieties (over the appropriate field).

3. GENERIC SMOOTHNESS IN CHARACTERISTIC 0

We will next see a number of important results that fall under the rubric of “generic
smoothness”. All will require working over a field of characteristic 0 in an essential way.
So far in this course, we have had to add a few caveats here and there for people encoun-
tering positive characteristic. This is probably the first case where positive characteristic
people should just skip this section.

Our first result is an algebraic analog of Sard’s theorem.

3.1. Proposition (generic smoothness in the source). — Let k be a field of characteristic 0, and let
π : X → Y be a dominant morphism of integral finite-type k-schemes. Then there is a non-empty
(=dense) open set U ⊂ X such that π|U is smooth.

We’ve basically seen this argument before, when we showed that a variety has an open
subset that is nonsingular.

Proof. Define n = dim X − dim Y (the “relative dimension”). Now FF(X)/FF(Y) is a finitely
generated field extension of transcendence degree n. It is separably generated by n ele-
ments (as we are in characteristic 0). Thus Ω has rank n at the generic point. Its rank is
at least n everywhere. By uppersemicontinuity of fiber rank of a coherent sheaf, it is rank
n for every point in a dense open set. Recall that on a reduced scheme, constant rank
implies locally free of that rank (Class 15, Exercise 5.2); hence Ω is locally free of rank
n on that set. Also, by openness of flatness, it is flat on a dense open set. Let U be the
intersection of these two open sets. �
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For pedants: In class, I retreated to this statement above. However, I think the following holds.
Suppose π : X → Y is a dominant finite type morphism of integral schemes, where char FF(Y) = 0

(and hence char FF(X) = 0 from FF(Y) ↪→ FF(X)). Then there is a non-empty open set U ⊂ X

such that π|U is smooth.

The proof above needs the following tweak. Define n = dim X − dim Y. Let η be the generic
point of Y, and let Xη be fiber of π above η; it is non-empty by the dominant hypothesis. Then Xη

is a finite type scheme over FF(Y). I claim dim Xη = n. Indeed, π is flat near Xη (everything is flat
over a field, and flatness is an open condition), and we’ve shown for a flat morphism the dimension
of the fiber is the dimension of the source minus the dimension of the target. Then proceed as above.

Please let me know if I’ve made a mistake!

3.2. In §1.1, we saw an example where this result fails in positive characteristic, involving
an inseparable extension of fields. Here is another example, over an algebraically closed
field of characteristic p: A1

k = Spec k[t] → Spec k[u] = A1
k, given by u 7→ tp. The earlier

example (§1.1) is what is going on at the generic point.

If the source of π is smooth over a field, the situation is even nicer.

3.3. Theorem (generic smoothness in the target). — Suppose f : X → Y is a morphism of k-
varieties, where char k = 0, and X is smooth over k. Then there is a dense open subset of Y such
that f|f−1(U) is a smooth morphism.

(Note: f−1(U) may be empty! Indeed, if f is not dominant, we will have to take such a
U.)

For pedants: I think the following generalization holds, assuming that my earlier notes to
pedants aren’t bogus. Generalize the above hypotheses to the following morphisms of Q-schemes.
(Requiring a scheme to be defined over Q is precisely the same as requiring it to “live in character-
istic 0”, i.e. the morphism to Spec Z has image precisely [(0)].)

locally Noetherian, irreducible X
smooth

##GGGGGGGGGG

finite type
// Y

dominant, smooth
{{xxxxxxxxxx

locally Noetherian, integral

Z

integral

To prove this, we’ll use a neat trick.

3.4. Lemma. — Suppose π : X → Y is a morphism of schemes that are finite type over k, where
char k = 0. Define

Xr = {closed points x ∈ X : rank Tπ,x ≤ r }.
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Then dim f(Xr) ≤ r. (Note that Xr is a closed subset; it is cut out by determinantal equations.
Hence by Chevalley’s theorem, its image is constructible, and we can take its dimension.)

For pedants: I think the only hypotheses we need are that π is a finite type morphism of locally
Noetherian schemes over Q. The proof seems to work as is, after an initial reduction to verifying it
on an arbitrary affine open subset of Y.

Here is an example of the lemma, to help you find it believable. Suppose X is a non-
singular surface, and Y is a nonsingular curve. Then for each x ∈ x, the tangent map
Tπ,x : Tx → Tπ(x) is a map from a two-dimensional vector space to a one-dimensional vec-
tor space, and thus has rank 1 or 0. I then drew some pictures. If π is dominant, then we
have a picture like this [omitted]. The tangent map has rank 0 at this one point. The image
is indeed rank 0. The tangent map has rank at most 1 everywhere. The image indeed has
rank 1.

Now imagine that π contracted X to a point. Then the tangent map has rank 0 every-
where, and indeed the image has dimension 0.

Proof of lemma. We can replace by X by an irreducible component of Xr, and Y by the
closure of that component’s image of X in Y. (The resulting map will have all of X con-
tained in Xr. This boils down to the following linear algebra observation: if a linear map
ρ : V1 → V2 has rank at most r, and V ′

i is a subspace of Vi, with ρ sending V ′
1 to V ′

2, then
the restriction of ρ to V ′

1 has rank at most that of ρ itself.) Thus we have a dominant mor-
phism f : X → Y, and we wish to show that dim Y ≤ r. By generic smoothness on the
source (Proposition 3.1), there is a nonempty open subset U ⊂ X such that f : U → Y is
smooth. But then for any x ∈ X, the tangent map Tx,X → Tπ(x),Y is surjective (by smooth-
ness), and has rank at most r, so dim Y = dimπ(x) Y ≤ dim Tπ(x),Y ≤ r. �

There’s not much left to prove the theorem.

Proof of Theorem 3.3. Reduce to the case Y smooth over k (by restricting to a smaller open

set, using generic smoothness of Y, Proposition 3.1). Say n = dim Y. dim f(Xn−1) ≤ n − 1

by the lemma, so remove this as well. Then the rank of Tf is at least r for each closed point
of X. But as Y is nonsingular of dimension r, we have that Tf is surjective for every closed
point of X, hence surjective. Thus f is smooth by Hard Exercise 2.2. �

3.5. The Kleiman-Bertini theorem. The Kleiman-Bertini theorem is elementary to prove,
and extremely useful, for example in enumerative geometry.

Throughout this discussion, we’ll work in the category of k-varieties, where k is an
algebraically closed field of characteristic 0. The definitions and results generalize easily
to the non-algebraically closed case, and I’ll discuss this parenthetically.

3.6. Suppose G is a group variety. Then I claim that G is smooth over k. Reason: It is
generically smooth (so it has a dense open set U that is smooth), and G acts transitively
on itself (so we can cover G with translates of U).
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We can generalize this. We say that a G-action a : G×X → X on a variety X is transitive if
it is transitive on closed points. (If k is not algebraically closed, we replace this by saying
that it is transitive on k-valued points. In other words, we base change to the algebraic
closure, and ask if the resulting action is transitive. Note that in characteristic 0, reduced
= geometrically reduced, so G and X both remain reduced upon base change to k.)

In other words, if U is a non-empty open subset of X, then we can cover X with trans-
lates of X. (Translation: G×U → X is surjective.) Such an X (with a transitive G-action) is
called a homogeneous space for G.

3.7. Exercise. Paralleling §3.6, show that a homogeneous space X is smooth over k.

3.8. The Kleiman-Bertini theorem. — Suppose X is homogeneous space for group variety G (over
an algebraically closed field k of characteristic 0). Suppose f : Y → X and g : Z → X be morphisms
from smooth k-varieties Y, Z. Then there is a nonempty open subset V ⊂ G such that for every
σ ∈ V(k), Y ×X Z defined by

Y ×X Z

��

// Z

g

��
Y

σ◦f // X

(i.e. Y is “translated by σ”) is smooth over k of dimension exactly dim Y + dim Z − dim X. Better:
there is an open subset of V ⊂ G such that

(1) (G ×k Y) ×X Z → G

is a smooth morphism of relative dimension dim Y + dim Z − dim X.

(The statement and proof will carry through even if k is not algebraically closed.)

The first time you hear this, you should think of the special case where Y → X and
Z → X are closed immersions (hence “smooth subvarieties”). In this case, the Kleiman-
Bertini theorem says that the second subvariety will meet a “general translate” of the first
transversely.

Proof. It is more pleasant to describe this proof “backwards”, by considering how we
would prove it ourselves. We will end up using generic smoothness twice, as well as
many facts we now know and love.

In order to show that the morphism (1) is generically smooth on the target, it would
suffice to apply Theorem 3.3), so we wish to show that (G ×k Y) ×X Z is a smooth k-
variety. Now Z is smooth over k, so it suffices to show that (G×kY)×XZ → Z is a smooth
morphism (as the composition of two smooth morphisms is smooth). But this is obtained
by base changed from G ×k Y → X, so it suffices to show that this latter morphism is
smooth (as smoothness is preserved by base change).

This is a G-equivariant morphism G ×k Y
a◦f // X . (By “G-equivariant”, we mean that

G action on both sides respects the morphism.) By generic smoothness of the target (The-
orem 3.3), this is smooth over a dense open subset X. But then by transitivity of the G
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action, this morphism is smooth (everywhere). (Exercise: verify the relative dimension
statement.) �

3.9. Corollary (Bertini’s theorem, improved version). Suppose X is a smooth k-variety, where k is
algebraically closed of characteristic 0. Let δ be a finite-dimensional base-point-free linear system,
i.e. a finite vector space of sections of some invertible sheaf L. Then almost every element of δ,
considered as a closed subscheme of X, is nonsingular. (More explicitly: each element s ∈ H0(X,L)

gives a closed subscheme of X. For a general s, considered as a point of PH0(X,L), the closed
subscheme is smooth over k.)

(Again, the statement and proof will carry through even if k is not algebraically closed.)

This is a good improvement on Bertini’s theorem. For example, we don’t actually need
L to be very ample, or X to be projective.

3.10. Exercise. Prove this!

3.11. Easy Exercise. Interpret the old version of Bertini’s theorem (over a characteristic 0

field) as a corollary of this statement.

Note that this fails in positive characteristic, as shown by the one-dimensional linear
system {pP : P ∈ P1}. This is essentially Example 3.2.

4. FORMAL INTERPRETATIONS

For those of you who like complete local rings, or who want to make the connection to
complex analytic geometry, here are some useful reformulations, which I won’t prove.

Suppose (B, n) → (A, m) is a map of Noetherian local rings, inducing an isomorphism

of residue fields, and a morphism of completions at the maximal ideals B̂ → Â (the “hat”
terminology arose first in class 13, immediately after the statement of Theorem 2.2). Then
the induced map of schemes Spec A → Spec B is:

• étale if B̂ → Â is a bijection.

• smooth if B̂ → Â is isomorphic to B̂ → B̂[[x1, . . . , xn]]. In other words, formally,
smoothness involves adding some free variables. (In case I’ve forgotten to say this
before: “Formally” means “in the completion”.)

• unramified if B̂ → Â is surjective.

4.1. Formally unramified, smooth, and étale. EGA has defines these three notions differ-
ently. The definitions there make clear that these three definitions form a family, in a way
that is quite similar to the differential-geometric definition. (You should largely ignore
what follows, unless you find later in life that you really care. I won’t prove anything.)
We say that π : X → Y is formally smooth (resp. formally unramified, formally étale) if for all
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affine schemes Z, and every closed subscheme Z0 defined by a nilpotent ideal, and every
morphism Z → Y, the canonical map HomY(Z, X) → HomY(Z0, X) is surjective (resp. in-
jective, bijective). This is summarized in the following diagram, which is reminiscent of
the valuative criteria for separatedness and properness.

Spec Z0
//

� _

nilpotent ideal

��

X

π

��
Spec Z //

?

;;xxxxxxxxx

Y

(Exercise: show that this is the same as the definition we would get by replacing “nilpo-
tent” by “square-zero”. This is sometimes an easier formulation to work with.)

EGA defines smooth as morphisms that are formally smooth and locally of finite pre-
sentation (and similarly for the unramified and étale).

E-mail address: vakil@math.stanford.edu
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1. SERRE DUALITY

Our last topic is Serre duality. Recall that Serre duality arose in our section on “fun with
curves” (classes 33–36). We’ll prove the statement used there, and generalize it greatly.

Our goal is to rigorously prove everything we needed for curves, and to generalize the
statement significantly. Serre duality can be generalized beyond belief, and we’ll content
ourselves with the version that is most useful. For the generalization, we will need a few
facts that we haven’t proved, but that we came close to proving.

(i) The existence (and behavior) of the cup product in (Cech) cohomology. For any quasico-
herent sheaves F and G, there is a natural map Hi(X,F) × Hj(X,G) → Hi+j(X,F ⊗ G)

satisfying all the properties you might hope. From the Cech cohomology point of view
this isn’t hard. For those of you who prefer derived functors, I haven’t thought through
why it is true. For i = 0 or j = 0, the meaning of the cup product is easy. (For example,
if i = 0, the map involves the following. The j-cocycle of G is the data of sections of G of
(j+1)-fold intersections of affine open sets. The cup product corresponds to “multiplying

Date: Thursday, June 1 and Tuesday, June 6, 2006. Updated June 19.
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each of these by the (restriction of the) global section of F”.) This version is all we’ll need
for nonsingular projective curves (as if i, j > 0, i + j > 1).

(ii) The Cohen-Macaulay/flatness theorem. I never properly defined Cohen-Macaulay, so
I didn’t have a chance to prove that nonsingular schemes are Cohen-Macaulay, and if
π : X → Y is a morphism from a pure-dimensional Cohen-Macaulay scheme to a pure-
dimensional nonsingular scheme, then π is flat if all the fibers are of the expected dimen-
sion. (I stated this, however.)

We’ll take these two facts for granted.

Here now is the statement of Serre duality.

Suppose X is a Cohen-Macaulay projective k-scheme of pure dimension n. A dual-
izing sheaf for X over k is a coherent sheaf ωX (or ωX/k) on X along with a trace map
Hn(X, ωW) → k, such that for all finite rank locally free sheaves F on X,

(1) Hi(X,F) × Hn−i(X,F∨ ⊗ ωX) // Hn(X, ωX)
t // k

is a perfect pairing. In terms of the cup product, the first map in (1) is the composition

Hi(X,F) × Hn−i(X,F∨ ⊗ ωX) → Hn(X, (F ⊗F∨) ⊗ ωX) → Hn(X, ωX).

1.1. Theorem (Serre duality). — A dualizing sheaf always exists.

We will proceed as follows.

• We’ll partially extend this to coherent sheaves in general: Hom(F , ωX) → Hn(F)∨

is an isomorphism for all F .
• Using this, we’ll show by a Yoneda argument that (ωX, t) is unique up to unique

isomorphism.
• We will then prove the Serre duality theorem 1.1. This will take us some time.

We’ll first prove that the dualizing sheaf exists for projective space. We’ll then
prove it for anything admitting a finite flat morphism to projective space. Finally
we’ll show that every projective Cohen-Macaulay k-scheme admits a finite flat
morphism to projective space.

• We’ll prove the result in families (i.e. we’ll define a “relative dualizing sheaf” in
good circumstances). This is useful in the theory of moduli of curves, and Gromov-
Witten theory.

• The existence of a dualizing sheaf will be straightforward to show — surprisingly
so, at least to me. However, it is also surprisingly slippery — getting a hold of it in
concrete circumstances is quite difficult. For example, on the open subset where X

is smooth, ωX is an invertible sheaf. We’ll show this. Furthermore, on this locus,
ωX = det ΩX. (Thus in the case of curves, ωX = ΩX. In the “fun with curves”
section, we needed the fact that ΩX is dualizing because we wanted to prove the
Riemann-Hurwitz formula.)
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1.2. Warm-up trivial exercise. Show that if h0(X,OX) = 1 (e.g. if X is geometrically integral),
then the trace map is an isomorphism, and conversely.

2. EXTENSION TO COHERENT SHEAVES; UNIQUENESS OF THE DUALIZING SHEAF

2.1. Proposition. — If (ωX, t) exists, then for any coherent sheaf F on X, the natural map
Hom(F , ωX) × Hn(X,F) → Hn(X, ωX) → k is a perfect pairing.

In other words, (1) holds for i = n and any coherent sheaf (not just locally free coher-
ent sheaves). You might reasonably ask if it holds for general i, and it is true that these
other cases are very useful, although not as useful as the case we’re proving here. In fact
the naive generalization does not hold. The correct generalization involves Ext groups,
which we have not defined. The precise statement is the following. For any quasicoher-
ent sheaves F and G, there is a natural map Exti(F ,G) × Hj(X,F) → Hi+j(G). Via this
morphism,

Exti(F , ωX) × Hn−i(X,F) // Hn(X, ωX)
t // k

is a perfect pairing.

Proof of Proposition 2.1. Given any coherent F , take a partial locally free resolution

E1 → E0 → F → 0.

(Recall that we find a locally free resolution as follows. E0 is a direct sum of line bundles.
We then find E1 that is also a direct sum of line bundles that surjects onto the kernel of
E0 → F .)

Then applying the left-exact functor Hom(·, ωX), we get

0 → Hom(F , ωX) → Hom(E0, ωX) → Hom(E1, ωX)

i.e. 0 → Hom(F , ωX) → (E0)∨ ⊗ ωX → (E1)∨ ⊗ ωX

Also

Hn(E1) → Hn(E0) → Hn(F) → 0

from which

0 → Hn(F)∨ → Hn(E0)∨ → Hn(E1)∨

There is a natural map Hom(H, ωX) × Hn(H) → Hn(ωX) → k for all coherent sheaves,
which by assumption (that ωX is dualizing) is an isomorphism when H is locally free.
Thus we have morphisms (where all squares are commuting)

0 //

∼

��

Hom(F , ω) //

��

(E0)∨(ω) //

∼

��

(E1)∨(ω)

∼

��

0 // Hn(F)∨ // Hn(E0)∨ // Hn(E1)∨

where all vertical maps but one are known to be isomorphisms. Hence by the Five
Lemma, the remaining map is also an isomorphism. �
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We can now use Yoneda’s lemma to prove:

2.2. Proposition. — If a dualizing sheaf (ωX, t) exists, it is unique up to unique isomor-
phism.

Proof. Suppose we have two dualizing sheaves, (ωX, t) and (ω ′
X, t ′). From the two mor-

phisms

(2) Hom(F , ωX) × Hn(X,F) // Hn(X, ωX)
t // k

Hom(F , ω ′
X) × Hn(X,F) // Hn(X, ω ′

X)
t′

// k,

we get a natural bijection Hom(F , ωX) ∼= Hom(F , ω ′
X), which is functorial in F . By

Yoneda’s lemma, this induces a (unique) isomorphism ωX
∼= ω ′

X. From (2), under this
isomorphism, the two trace maps must be the same too. �

3. PROVING SERRE DUALITY FOR PROJECTIVE SPACE OVER A FIELD

3.1. Exercise. Prove (1) for Pn, and F = O(m), where ωPn = O(−n − 1). (Hint: do this by
hand!) Hence (1) holds for direct sums of O(m)’s.

3.2. Proposition. — Serre duality (Theorem 1.1) holds for projective space.

Proof. We now prove (1) for any locally free F on Pn. As usual, take

(3) 0 → K → ⊕O(m) → F → 0.

Note that K is flat (as O(m) and F are flat and coherent), and hence K is also locally free
of finite rank (flat coherent sheaves on locally Noetherian schemes are locally free — this
was one of the important facts about flatness). For convenience, set G = ⊕O(m).

Take the long exact sequence in cohomology, and dualize, to obtain

(4) 0 → Hn(Pn,F)∨ → Hn(Pn,G)∨ → · · · → H0(Pn,H)∨ → 0.

Now instead take (3), tensor with ωPn
∼= OPn(−n − 1) (which preserves exactness, as

OPn(−n − 1) is locally free), and take the corresponding long exact sequence

0 // H0(Pn,F∨ ⊗ ωPn) // H0(Pn,G∨ ⊗ ωPn) // H0(Pn,H∨ ⊗ ωPn)

// H1(Pn,F∨ ⊗ ωPn) // · · ·
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Using the trace morphism, this exact sequence maps to the earlier one (4):

Hi(Pn ,F∨
⊗ ωPn )

αi

F

��

// Hi(Pn, G∨
⊗ ωPn ) //

αi

G

��

Hi(Pn ,H∨
⊗ ωPn )

αi

H

��

// Hi+1(Pn ,F∨
⊗ ωPn )

αi+1

F

��
Hn−i(Pn ,F)∨ // Hi(Pn,G)∨ // Hi(Pn,H)∨ // Hi+1(Pn,F)∨

(At some point around here, I could simplify matters by pointing out that Hi(G) = 0 for
all i 6= 0, n, as G is the direct sum of line bundles, but then I’d still need to deal with the
ends, so I’ll prefer not to.) All squares here commute. This is fairly straightforward check
for those not involving the connecting homomorphism. (Exercise. Check this.) It is longer
and more tedious (but equally straightforward) to check that

Hi(Pn,H∨ ⊗ ωPn)

αi
H

��

// Hi+1(Pn,F∨ ⊗ ωPn)

αi+1
F

��

Hi(Pn,H)∨ // Hi+1(Pn,F)∨

commutes. This requires the definition of the cup product, which we haven’t done, so
this is one of the arguments I promised to omit.

We then induct our way through the sequence as usual: α−1
G is surjective (vacuously),

and α−1
H and α0

G are injective, hence by the “subtle” Five Lemma (class 32, page 10), α0
F

is injective for all locally free F . In particular, α0
H is injective (as H is locally free). But

then α0
H is injective, and α−1

H and α0
G are surjective, hence α0

F is surjective, and thus an
isomorphism for all locally free F . Thus α0

H is also an isomorphism, and we continue
inductively to show that αi

F is an isomorphism for all i. �

4. PROVING SERRE DUALITY FOR FINITE FLAT COVERS OF OTHER SPACES FOR WHICH

DUALITY HOLDS

We’re now going to make a new construction. It will be relatively elementary to de-
scribe, but the intuition is very deep. (Caution: here “cover” doesn’t mean covering
space as in differential geometry; it just means “surjective map”. The word “cover” is
often used in this imprecise way in algebraic geometry.)

Suppose π : X → Y is an affine morphism, and G is a quasicoherent sheaf on Y:

X

π

��

G

�
�
�
�
�
�
�

Y.

Observe that HomY(π∗OX,G) is a sheaf of π∗OX-modules. (The subscript Y is included
to remind us where the sheaf lives.) The reason is that affine-locally on Y, over an affine
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open set Spec B (on which G corresponds to B-module N, and with preimage Spec A ⊂ X)

(5) A

N

~
~
~
~
~
~
~
~

B

OO

this is the statement that HomB(A, N) is naturally an A-module (i.e. the A-module struc-
ture behaves well with respect to localization by b ∈ B, and hence these modules glue
together to form a quasicoherent sheaf).

In our earlier discussion of affine morphisms, we saw that quasicoherent π∗OX-modules
correspond to quasicoherent sheaves on X. Hence HomY(π∗OX,G) corresponds to some
quasicoherent sheaf π ′G on X.

Notational warning. This notation π ′ is my own, and solely for the purposes of this
section. If π is finite, then this construction is called π! (pronounced “upper shriek”).
You may ask why I’m introducing this extra notation “upper shriek”. That’s because this
notation is standard, while my π ′ notation is just made up. π! is one of the “six operations”
on sheaves defined Grothendieck. It is the most complicated one, and is complicated to
define for general π. Those of you attending Young-Hoon Kiem’s lectures on the derived
category may be a little perplexed, as there he defined π! for elements of the derived
category of sheaves, not for sheaves themselves. In the finite case, we can define this
notion at the level of sheaves, but we can’t in general.

Here are some important observations about this notion.

4.1. By construction, we have an isomorphism of quasicoherent sheaves on Y

π∗π
′G ∼= HomY(π∗OX,G).

4.2. π ′ is a covariant functor from the category of quasicoherent sheaves on Y to quasico-
herent sheaves on X.

4.3. If π is a finite morphism, and Y (and hence X) is locally Noetherian, then π ′ is a
covariant functor from the category of coherent sheaves on Y to coherent sheaves on X. We
show this affine locally, see (5). As A and N are both coherent B-modules, HomB(A, N) is
a coherent B-module, hence a finitely generated B-module, and hence a finitely generated
A-module, hence a coherent A-module.

4.4. If F is a quasicoherent sheaf on X, then there is a natural map

(6) π∗ HomX(F , π ′G) → HomY(π∗F ,G).

Reason: if M is an A-module, we have a natural map

(7) HomA(M, HomB(A, N)) → HomB(M, N)
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defined as follows. Given m ∈ M, and an element of HomA(M, HomB(A, N)), send m to
φm(1). This is clearly a homomorphism of B-modules. Moreover, this morphism behaves
well with respect to localization of B with respect to an element of B, and hence this
description yields a morphism of quasicoherent sheaves.

4.5. Lemma. The morphism (6) is an isomorphism.

Is there an obvious reason why the map is an isomorphism? There should be...

Proof. We will show that the natural map (7) is an isomorphism. Fix a presentation of M:

A⊕m → A⊕n → M → 0

(where the direct sums needn’t be finite). Applying HomA(·, HomB(A, N)) to this sequence
yields the top row of the following diagram, and applying HomB(·, N) yields the bottom
row, and the vertical morphisms arise from the morphism (7).

0 //

∼

��

HomA(M, HomB(A, N)) //

��

HomA(A, HomB(A, N))⊕n //

∼

��

HomA(A, HomB(A, N))⊕m

∼

��

0 // HomB(M, N) // HomB(A, N)⊕n // HomB(A, N)⊕m

(The squares clearly commute.) Be sure to convince yourself that

HomB(A, N)⊕n ∼= HomB(A⊕n, N)

even when n isn’t finite (and ditto for the three similar terms)! Then all but one of the
vertical homomorphisms are isomorphisms, and hence by the Five Lemma the remaining
morphism is an isomorphism. �

Hence π ′ is right-adjoint to π∗ for affine morphisms and quasicoherent sheaves. (Also,
by Observation 4.3, it is right-adjoint for finite morphisms and coherent sheaves on locally
Noetherian schemes.) In particular, there is a natural morphism π∗π

!G → G.

4.6. Proposition. — Suppose X → Y is a finite flat morphism of projective k-schemes of pure
dimension n, and (ωY, tY) is a dualizing sheaf for Y. Then π!ωY along with the trace morphism

tX : Hn(X, π!ωY)
∼ // Hn(Y, π∗π

!ωY) // Hn(Y, ωY)
tY // k

is a dualizing sheaf for X.

(That first isomorphism arises because X → Y is affine.)
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Proof.

Hn−i(X,F∨(π!ωY)) ∼= Hn−i(Y, π∗(F
∨ ⊗ π!ωY)) as π is affine

∼= Hn−i(Y, π∗(Hom(F , π!ωY)))

∼= Hn−i(Y, Hom(π∗F , ωY)) by 4.5
∼= Hn−i(Y, (π∗F)∨(ωY))

∼= Hi(Y, π∗F)∨ by Serre duality for Y

∼= Hi(X,F)∨ as π is affine

At the third-last and second-last steps, we are using the fact that π∗F is locally free, and
it is here that we are using flatness! �

5. ALL PROJECTIVE COHEN-MACAULAY k-SCHEMES OF PURE DIMENSION n ARE FINITE

FLAT COVERS OF P
n

We conclude the proof of the Serre duality theorem 1.1 by establishing the result in the
title of this section.

Assume X ↪→ P
N is projective Cohen-Macaulay of pure dimension n (e.g. smooth).

First assume that k is an infinite field. Then long ago in an exercise that I promised
would be important (and has repeatedly been so), we showed that there is a linear space
of dimension N − n − 1 (one less than complementary dimension) missing X. Project
from that linear space, to obtain π : X → Pn. Note that the fibers are finite (the fibers are
all closed subschemes of affine space), and hence π is a finite morphism. I’ve stated the
“Cohen-Macaulay/flatness theorem” that a morphism from a equidimensional Cohen-
Macaulay scheme to a smooth k-scheme is flat if and only if the fibers are of the expected
dimension. Hence π is flat.

5.1. Exercise. Prove the result in general, if k is not necessarily infinite. Hint: show that
there is some d such that there is an intersection of N − n − 1 degree d hypersurfaces
missing X. Then try the above argument with the dth Veronese of P

N.

6. SERRE DUALITY IN FAMILIES

6.1. Exercise: Serre duality in families. Suppose π : X → Y is a flat projective morphism of
locally Noetherian schemes, of relative dimension n. Assume all of the geometric fibers
are Cohen-Macaulay. Then there exists a coherent sheaf ωX/Y on X, along with a trace
map Rnπ∗ωX/Y → OY such that, for every finite rank locally free sheaves F on X, each of
whose higher pushforwards are locally free on Y,

(8) Riπ∗F × Rn−iπ∗(F
∨ ⊗ ωX) // Rnπ∗ωX

t // OY

is a perfect pairing. (Hint: follow through the same argument!)
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Note that the hypothesis, that all higher pushforwards are locally free on Y, is the sort
of thing provided by the cohomology and base change theorem. (In the solution to Exer-
cise 6.1, you will likely show that Rn−iπ∗(F

∨ ⊗ ωX) is a locally free sheaf for all F such
that Riπ∗F is a locally free sheaf.)

You will need the fibral flatness theorem (EGA IV(3).11.3.10–11), which you should feel
free to use: if g : X → S, h : Y → S are locally of finite presentation, and f : X → Y is an
S-morphism, then the following are equivalent:

(a) g is flat and fs : Xs → Ys is flat for all s ∈ s,
(b) h is flat at all points of f(X) and f is flat.

7. WHAT WE STILL WANT

There are three or four more facts I want you to know.

• On the locus of X where k is smooth, there is an isomorphism ωX/k
∼= det ΩX/k.

(Note for experts: it isn’t canonical!) We define det ΩX/k to be KX. We used this in
the case of smooth curves over k (proper, geometrically integral). This is surpris-
ingly hard, certainly harder than the mere existence of the canonical sheaf!

• The adjunction formula. If D is a Cartier divisor on X (so D is also Cohen-Macaulay,
by one of the facts about Cohen-Macaulayness I’ve mentioned), then ωD/k =
(

ωX/k ⊗OX(D)
)

|D.

On can show this using Ext groups, but I haven’t established their existence or proper-
ties. So instead, I’m going to go as far as I can without using them, and then I’ll tell you a
little about them.

But first, here are some exercises assuming that ω is isomorphic to det Ω on the smooth
locus.

7.1. Exercise (Serre duality gives a symmetry of the Hodge diamond). Suppose X is a smooth
projective k-variety of dimension n. Define Ω

p
X = ∧pΩX. Show that we have a natural

isomorphism Hq(X, Ωp) ∼= Hn−q(X, Ωn−p)∨.

7.2. Exercise (adjunction for smooth subvarieties of smooth varieties). Suppose X is a smooth
projective k-scheme, and and D is a smooth effective Cartier divisor. Show that KD

∼=
KX(D)|D. Hence if we knew that KX

∼= ωX and KD
∼= ωD, this would let us compute ωD

in terms of ωX. We will use this shortly.

7.3. Exercise. Compute K for a smooth complete intersection in PN of hypersurfaces of
degree d1, . . . , dn. Compute ω for a complete intersection in PN of hypersurfaces of degree
d1, . . . , dn. (This will be the same calculation!) Find all possible cases where K ∼= O. These
are examples of Calabi-Yau varieties (or Calabi-Yau manifolds if k = C), at least when they
have dimension at least 2. If they have dimension precisely 2, they are called K3 surfaces.
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8. THE DUALIZING SHEAF IS AN INVERTIBLE SHEAF ON THE SMOOTH LOCUS

(I didn’t do this in class, but promised it in the notes. A simpler proof in the case where
X is a curve is given in §9.)

We begin with some preliminaries.

(0) If f : U → U is the identity, and F is a quasicoherent sheaf on U, then f ′F ∼= F .

(i) The ′ construction behaves well with respect to flat base change, as the pushforward
does. In other words, if

X ′
h //

g

��

X

e

��
Y ′

f // Y

is a fiber diagram, where f (and hence h) is flat, and F is any quasicoherent sheaf on Y,
then there is a canonical isomorphism h∗e ′F ∼= g ′f∗F .

(ii) The ′ construction behaves well with respect to disjoint unions of the source. In
other words, if fi : Xi → Y (i = 1, 2) are two morphisms, f : X1 ∪ X2 → Y is the induced
morphism from the disjoint union, and F is a quasicoherent sheaf on Y, then f ′F is f ′

1F
on X1 and f ′

2F on X2. The reason again is that pushforward behaves well with respect to
disjoint union.

Exercise. Prove both these facts, using abstract nonsense.

Given a smooth point x ∈ X, we can choose our projection so that π : X → Pn is etale
at that point. Exercise. Prove this. (Hint: We need only check isomorphisms of tangent
spaces.)

So hence we need only check our desired result on the etale locus U for X → Pn. (This
is an open set, as etaleness is an open condition.) Consider the base change.

X ×Pn
k

U h //

g

��

X

e

��

U
f // Pn

k.

There is a section U → X×Pn U of the vertical morphism on the left. Exercise. Show that it
expresses U as a connected component of X ×Pn U. (Hint: Show that a section of an etale
morphism always expresses the target as a component of the source as follows. Check
that s is a homeomorphism onto its image. Use Nakayama’s lemma.) The dualizing sheaf
ωP

n
k

is invertible, and hence f∗ωP
n
k

is invertible on U. Hence g!f∗ωP
n
k

is invertible on s(U)

(by observation (0)). By observation (i) then, h∗g∗ωP
n
k

∼= h∗ωX is an invertible sheaf.

We are now reduced to showing the following. Suppose h : U → X is an etale mor-
phism. (In the etale topology, this is called an “etale open set”, even though it isn’t an
open set in any reasonable sense.) Its image is an open subset of X (as etale morphisms
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are open maps). Suppose F is a coherent sheaf on X such that h∗F is an invertible sheaf
on U. Then F is an invertible sheaf on the image of U.

(Experts will notice that this is a special case of faithfully flat descent.)

Exercise. Prove this. Hint: it suffices to check that the stalks of F are isomorphic to the
stalks of the structure sheaf. Hence reduce the question to a map of local rings: suppose
(B, n) → (A, m) is etale, and N is a coherent B-module such that M := N ⊗B A is isomor-
phic to A. We wish to show that N is isomorphic to B. Use Nakayama’s lemma to show
that N has the same minimal number of generators (over B) as M (over A), by showing
that dimB/n N − dimA/m M. Hence this number is 1, so N ∼= B/I for some ideal I. Then
show that I = 0 — you’ll use flatness here.

9. AN EASIER PROOF THAT THE DUALIZING SHEAF OF A SMOOTH CURVE IS INVERTIBLE

Here is another proof that for curves, the dualizing sheaf is invertible. We’ll show that
it is torsion-free, and rank 1.

First, here is why it is rank 1 at the generic point. We have observed that f! behaves
well with respect to flat base change. Suppose L/K is a finite extension of degree n. Then
HomK(L, K) is an L-module. What is its rank? As a K-module, it has rank n. Hence as
an L-module it has rank 1. Applying this to C → P1 at the generic point (L = FF(C),
K = FF(P1)) gives us the desired result. (Side remark: its structure as an L-module is a
little mysterious. You can see that some sort of duality is relevant here. Illuminating this
module’s structure involves the norm map.)

Conclusion: the dualizing sheaf is rank 1 at the generic point.

Here is why it is torsion free. Let ωt be the torsion part of ω, and ωnt be the torsion-free
part, so we have an exact sequence

0 → ωt → ω → ωnt → 0.

9.1. Exercise. Show that this splits: ω = ωt ⊕ ωnt. (Hint: It suffices to find a splitting
map ω → ωt. As ωt is supported at a finite set of points, it suffices to find this map in a
neighborhood of one of the points in the support. Restrict to a small enough affine open
set where ωnt is free. Then on this there is a splitting ωnt → ω, from which on that open
set we have a splitting ω → ωt.)

Notice that ωnt is rank 1 and torsion-free, hence an invertible sheaf. By Serre duality,
for any invertible sheaf L, h0(L) = h1(ωnt⊗L∨) and h1(L) = h0(ωnt⊗L∨)+h0(ωt⊗L).
Substitute L = OX in the first of these equations and L = ωX in the second, to obtain that
h0(X, ωt) = 0. But the only skyscraper sheaf with no sections is the 0 sheaf, hence ωt = 0.
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10. THE SHEAF OF DIFFERENTIALS IS DUALIZING FOR A SMOOTH PROJECTIVE CURVE

One can show that the determinant of the sheaf of differentials is the dualizing sheaf
using Ext groups, but this involves developing some more machinery, without proof.
Instead, I’d like to prove it directly for curves, using what we already have proved. (Note
again that our proof of Serre duality for curves was rigorous — the cup product was
already well-defined for dimension 1 schemes.)

I’ll do this in a sequence of exercises.

Suppose C is an geometrically irreducible, smooth projective k-curve.

We wish to show that ΩC
∼= ωC. Both are invertible sheaves. (Proofs that ωC is invert-

ible were given in §8 and §9.)

Define the genus of a curve as g = h1(C,OC). By Serre duality, this is h0(C, ωC). Also,
h0(C,OC) = h1(C, ωC) = 1.

Suppose we knew that h0(C, ΩC) = h0(C, ωC), and h1(C, ΩC) = h1(ωC) (= 1). Then
deg ΩC = deg ωC. Also, by Serre duality h0(C, Ω∨

C ⊗ωC) = h1(ΩC) = 1. Thus Ω∨

C ⊗ωC is
a degree 0 invertible sheaf with a nonzero section. We have seen that this implies that the
sheaf is trivial, so ΩC

∼= ωC.

Thus it suffices to prove that h1(C, ΩC) = 1, and h0(C, ΩC) = h0(C, ωC). By Serre dual-
ity, we can restate the latter equality without reference to ω: h0(C, Ω) = h1(C,OC). Note
that we can assume k = k: all three cohomology group dimensions hi(C, ΩC), h0(C,OC)

are preserved by field extension (shown earlier).

Until this point, the argument is slick and direct. What remains is reasonably pleasant, but
circuitous. Can you think of a faster way to proceed, for example using branched covers of P1?

10.1. Exercise. Show that C can be expressed as a plane curve with only nodes as sin-
gularities. (Hint: embed C in a large projective space, and take a general projection. The
Kleiman-Bertini theorem, or at least its method of proof, will be handy.)

Let the degree of this plane curve be d, and the number of nodes be δ. We then blow
up P

2 at the nodes (let S = Bl P2), obtaining a closed immersion C ↪→ S. Let H be the
divisor class that is the pullback of the line (O(1)) on P2. Let E1, . . . , Eδ be the classes of
the exceptional divisors.

10.2. Exercise. Show that the class of C on P
2 is dH − 2

∑
Ei. (Reason: the total transform

has class dH. Each exceptional divisor appears in the total transform with multiplicity
two.)

10.3. Exercise. Use long exact sequences to show that h1(C,OC) =
(

d−1

2

)

− δ. (Hint:
Compute χ(C,OC) instead. One possibility is to compute χ(C ′,OC′) where C ′ is the image
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of C in P2, and use the Leray spectral sequence for C → C ′. Another possibility is to work
on S directly.)

10.4. Exercise. Show that ΩC = KS(C)|C. Show that this is

(−3H +
∑

Ei) + (dH −
∑

2Ei).

Show that this has degree 2g − 2 where g = h1(OC). (Possible hint: use long exact se-
quences.)

10.5. Exercise. Show that h0(ΩC) > 2g − 2 − g + 1 = g − 1 from

0 → H0(S,KS) → H0(S,KS(C)) → H0(C, ΩC).

10.6. Exercise. Show that ΩC
∼= ωC.

11. EXT GROUPS, AND ADJUNCTION

Let me now introduce Ext groups and their properties, without proof. Suppose i is
a non-negative integer. Given two quasicoherent sheaves, Exti(F ,G) is a quasicoherent
sheaf. Ext0(F ,G) = Hom(F ,G). Then there are long exact sequences in both arguments.
In other words, if

0 → F ′ → F → F ′′ → 0

is a short exact sequence, then there is a long exact sequence starting

0 → Ext0(F ′′,G) → Ext0(F ,G) → Ext0(F ′,G) → Ext1(F ′′,G) → · · · ,

and if
0 → G ′ → G → G ′′ → 0

is a short exact sequence, then there is a long exact sequence starting

0 → Ext0(F ,G ′) → Ext0(F ,G) → Ext0(F ,G ′′) → Ext0(F ,G ′) → · · · .

Also, if F is locally free, there is a canonical isomorphism Exti(F ,G) ∼= Hi(X,G ⊗ F∨).

For any quasicoherent sheaves F and G, there is a natural map Exti(F ,G)×Hj(X,F) →
Hi+j(G).

For any coherent sheaf on X, there is a natural morphism (“cup product”) Exti(F ,G)×

Hj(X,F) → Hi+j(X,G).

11.1. Exercise. Suppose X is Cohen-Macaulay, and finite type and projective over k (so
Serre duality holds). Via this morphism, show that

Exti(F , ωX) × Hn−i(X,F) // Hn(X, ωX)
t // k

is a perfect pairing. Feel free to assume whatever nice properties of Ext-groups you need
(as we haven’t proven any of them anyway).
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Hence Serre duality yields a natural extension to coherent sheaves. This is sometimes
called Serre duality as well. This more general statement is handy to prove the adjunction
formula.

11.2. Adjunction formula. — If X is a Serre duality space (i.e. a space where Serre duality
holds), and D is an effective Cartier divisor, then ωD = (ωX ⊗O(D))|D.

We’ve seen that if X and D were smooth, and we knew that ωX
∼= det ΩX and ωD

∼=
det ΩD, we would be able to prove this easily (Exercise 7.2).

But we get more. For example, complete intersections in projective space have invert-
ible dualizing sheaves, no matter how singular or how nonreduced. Indeed, complete
intersections in any smooth projective k-scheme have invertible dualizing sheaves.

A projective k-schemes with invertible dualizing sheaf is so nice that it has a name: it
is said to be Gorenstein. (Gorenstein has a more general definition, that also involves a
dualizing sheaf. It is a local definition, like nonsingularity and Cohen-Macaulayness.)

11.3. Exercise. Prove the adjunction formula. (Hint: Consider 0 → ωX → ωX(D) →
ωX(D)|D → 0. Apply HomX(F , ·) to this, and take the long exact sequence in Ext-groups.)
As before, feel free to assume whatever facts about Ext groups you need.

The following exercise is a bit distasteful, but potentially handy. Most likely you should
skip it, and just show that ωX

∼= det ΩX using the theory of Ext groups.

11.4. Exercise. We make a (temporary) definition inductively by definition. A k-variety
is “nice” if it is smooth, and (i) it has dimension 0 or 1, or (ii) for any nontrivial invertible
sheaf L on X, there is a nice divisor D such that L|D 6= 0. Show that for any nice k-variety,
ωX

∼= det ΩX. (Hint: use the adjunction formula, and the fact that we know the result for
curves.)

11.5. Remark. You may wonder if ωX is always an invertible sheaf. In fact it isn’t, for
example if X = Spec k[x, y]/(x, y)2. I think I can give you a neat and short explanation of
this fact. If you are curious, just ask.

E-mail address: vakil@math.stanford.edu
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